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Abstract. In this paper, the initial-value problem for integral-differential equation of the hyperbolic type
in a Hilbert space H is considered. The unique solvability of this problem is established. The first order
and the second order of accuracy difference schemes approximately solving this problem are presented.
The convergence estimates for the solutions of these difference schemes are obtained. Theoretical results
are supported by numerical example.

1. Introduction

Hyperbolic equations have wide range of applications in fluid dynamics, theory of elasticity, vibration
theories, electromagnetics, electrodynamics, hydrodynamics, wave propagation, etc. [16, 17]. There is a
great deal of work in constructing and analysing difference schemes for numerical solutions of hyperbolic
differential equations [1, 3-12]. In [2], linear integral-differential equations of the hyperbolic type with two
dependent limits have been studied. Various difference schemes for numerical solutions of these kind of
equations were the subject of previous studies [2, 13-15].

In this paper, we consider the initial value problem

t
d2
;gt) +Au(t) = f B(p)u(p)dp + f(t,u(h), -1<t<1, "

—t
u(0) = up, u'(0) =u

for semilinear integral-differential equation in a Hilbert space H with unbounded linear operators A and
B(t) in H with dense domain D(A) c D(B(t)). We assume that A™! and B(t) commute and satisfy

|BHA,,_, <M, -1<t<Ll

H—H — (2)

Various initial-boundary value problems for the integral-differential equation of hyperbolic type with two
dependent limits can be reduced to the initial value problem (1) in a Hilbert space H.
A function u(t) is called a solution of the problem (1) if the following conditions are satisfied:
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i) u(t) is twice continuously differentiable on [-1, 1]. The derivative at the endpoints of the segment are
understood as the appropriate unilateral derivatives.

ii) The element u(t) belongs to D(A) for all t € [-1, 1], and the function Au(t) is continuous on [-1,1].
iii) u(t) satisfies the equations and the initial conditions (1).

A solution of problem (1) defined in this manner will from now on be referred to as a solution of problem
(1) in the space C(H) = C([-1,1], H) of all continuous functions ¢(t) defined on [-1,1] with values in H
equipped with the norm

el = max e, ()

-1<t<1

We consider the problem (1) under the assumption that A is a positive definite self-adjoint operator with
A > 0I, where 6 > 6y > 0.

In the present paper, the unique solvability of the initial-value problem (1) is obtained. The first order
and the second order of accuracy difference schemes approximately solving the initial-value problem (1) are
presented. The convergence estimates for the solutions of these difference schemes are obtained. Numerical
illustrations for the simple test problem are provided.

2. Unique Solvability of Problem

Theorem 2.1. Suppose that ug € D(A), u € D(AY?), fis the continuous function on [-1,1] x H, and there is an
L > 0 such that f satisfies the Lipschitz condition

A2 (f(t,u) - ft0)|,, S Lllu—olly, -1<t<1 (4)
forall u,v € H. Then, there is a unique solution of the initial value problem (1).

Proof. The proof of the existence and uniqueness of the solution of problem (1) is based on the following
formula

t t

Mﬂ=meﬁﬁﬁma+j}G—TM@Mﬁ»MHl[A4U—dM—hMBﬁWﬁMT

0 -t
and the fixed point theorem. It is easy to see that the operator

t t

Fmozamm+qm%+j}a—ﬂﬂ@mﬂﬁmthﬁc—dm—hmmﬂmﬂw

0 —t

maps C([—l, 1],H) into C([—l, 1],H). By using a special value of A in the norm

_ —Alt]
|| = max e vy, 5
0l cer=1,11,1) max oIl ()

we can prove that F is the contraction operator on C*([-1, 1], H). Indeed, applying (4), the triangle inequality
and the following estimates

le@lly <1, [|AY2s@)||, <1, -1<t<1,
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we have
t

MFu(t) = Fo)lly, = e f A2t — T)A_l/z( £z, u(0) - f(T,U(T)))dT

o
. f (1= et = 1eD)BA™ (u(0) = o) J
Y H
It []
< ML [ - ol de+2M [ o) - ool
0 —|t
|t]
= Le M fe“e‘AI llu(t) — v(7)llz dt
0
It 0
+2Me M fe“e‘“ lu(t) — v(7)||y dT + fe—mem [[u(t) — (D)l dT
0 —[t]
1 It 0
< e ML fe/\TdT +2M fe“dT +2M fe_“dt llu = olic--1,11m)
. 0 i "
M 1 — e
= ¢ A'”T(L +4M) llu = vllc -1 = (L +4M) llu = vlic:-1,11m)
1—¢*
< (L + 4M) v = Olle:(=1,17,1)

for any t € [-1,1]. So,

IFu — Follcq-1,11,m) < @ |l = Olles-1,11,8) -

1—¢*

wherea, = (L +4M) — Owhen A — oo. So, Fis the contraction operator on C*([-1, 1], H). Finally, we

note that the norms (3) and (5) are equivalentin C ([—1, 1,H ), which completes the proof of this theorem. [

3. First Order of Accuracy Difference Scheme

We construct the first order of accuracy difference scheme

k

— 2uy + Uy
M+Auk+1: Z B]‘u]'T+f(tk/uk)/ k:1""’N_l’

72

j=—k+1
—k
Upyq — 22Uy + Up
kel T2k K1y Ay = — Z Bjujt + f(t, ux), k=-N+1,...,-1,
j=k+1 (6)
t
1 1
t=%, t=kr, k=-N..N, Bk:EfB(P)dp, k=-N+1,...,N,

b1
Ug —U_1

uo = u(0), (I+ TZA)@ = (I + T2A) = u

for approximate solutions of problem (1).
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Theorem 3.1. Let u(t) be a solution of (1). Assume that the requirements of the Theorem 2.1 are satisfied and
ATV2y (), w' (1), AV (t) are continuous functions on [—1,1]. Then the difference scheme (6) has a unique solution

and the following convergence estimate holds

max |ju — u(t <Mt
—NsksN“ ke — u(tolly ,

where M* does not depend on .

Proof. Subtracting (1) from (6), we obtain the system of difference equations

k

=22 + Z
SR B B R PR Z Bizjt+¢r, k=1,....N-1,

T2

j=—k+1
Zke1 — 22k + Zk—1 Az s = v Bz, k= -N+1 1
T+ zk_l_—Z iZiT + P, =-N+1,...,-1,
j=k+1
z0 =0, (I+T2A)¥=0€/ I+ ZA) = =5,
where z; = uy — u(ty) is the convergence error of the dlfference scheme (6) and
k
u(t —2u(ty) + u(ty
g = ) 22O 2 W0)) _ gy Y Bty + flt ) - (k)
T j=—k+1
2, -
d
+ ;‘:2") + Au(ty) - f B(p)u(p)dp, k=1,...,N-1,
—t
-k
u(t —2u(ty) + u(ty
g = — ) 22U 2 W01) _ )= Y Bjutt)e + £t w) — Flb u(t)
T j=k+1
t
4 ;‘gk) + Au(ty) - f B(p)u(p)dp, k=-N+1,...,-1,
P )u(T) ( ), ﬁ=u6—(1+12A)u(0)_Tu(_T)-
By [10], the first order of accuracy difference scheme
w + Az =, k=1,...,N-1,
T
zo =0, (I+TZA)M =a
T
has the solution
-1
= (1 + TZA) 1a,
k= 1 ‘
zk:(R—R) RE - R¥)z + T RR (R - Rk-J)T21p]-, k=2,...,N,
j=1

where R = (1 +i7A'%) " and R = (1-#zA"?) " Using RR = (1+ %) " and (R-R)"' =

have
k-1
z = (R-R) (R~ R¥)wRRa+ Y (R—R)" RR(RT —R) 2y,
j=1
_ iA;/z i iTtA=1/2 Rk‘j _ Rk—j) v, k=2,...,N.

j=1

(7)
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k
By putting i = 2 Bjzjt + ¢r fork=1,...,N — 1, we obtain
j=—k+1

2 —
(10)
k-1
A~ 1/2
+Z” (R - R) Z Bz, k=2,...,N.
j= s=—j+1
Since itAY?R =1 — R and —itAY2R =T - R, we have
k-1 . k-1 ; Pk pie =
lTAl/z PP Rk—]—l Rk-J Rk] Rk—s 4 Rk-s
—j — Rk=7) = N N S
Z > (RFT = R¥7) = Z + I .
j=s j=s j=s
and in the similar way
1o AlR R Rl+s—1 4 Rk+s-1
RNz T
Z > (R - R =1 . .
j=—s+1
Then,
k-1
A—1/2
1’[2 Rk]_Rkj ZBZS
j=1 s=—j+1
k-1 k-1 0 k-1 .
itAY? itAl/? g
—j — Rk=j k=j _ Rk=j -1
ZZ (R* - R¥7) BA 2,7 + Z Z > (R¥ - R¥7) B,A 2,1 (11)
s=1 j=s s=—k+2 j=—s+1
k-1 0 ~
Rk—s + Rk—s Rk+s—1 + Rk+s—1
= I— T)BSA_leT-F Z (I— — BiA™'zt, k=2,...,N.
s=1 s=—k+2
Putting (11) in (10), we obtain
RF-RF K1 Rk=i _ Rk-i
_ -1/2, _ A2
Zk 5 A" Fa -1 i B Pj
j=1
k-1 0 ~
Rk—s + Rk B Rk+s—1 + Rk+s—1 B
+’L’Z(I— T)BSA lzg+ 1 Z (I— — BA 'z, k=2,...,N.
s=1 s=—k+2
Then, using (2) and the following estimates
IRll—p <1, “R||H—>H = ||TA1/2R”H—>H ||TA1/2R||H T
yields
k-1 k-1
-1/2 -1/2 —
lzally < A 2|, + 7 Y A 2], + 27 Y il k=2 N (12)
j=1 j=—k+1

Furthermore, from (9) we have

Izl < [|A7,, - (13)
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In a similar way, one can prove that

—k-1
lzeller < A7, + 7 Z 1A 2], +2M7 Y |l -N,...,-2
j=k+1 j=k+1

and
lz-ally < A28,

From (8) by using (2) and (4), we have

||A_1/2¢k”H < HA—l/z (u"(tk) _ u(te) — 2uT(2fk) + u(fkl)) + ”A1/2 (ltesy) — M(fk))”H
H ) §
+ AT (e ) = f(teu))|],, + AW[ Y Butt)r - f B(p)u(p)dp]
b str ot t o o "
— 1 ff 1/2 " 1/2,,7
= ||= (&)d&dzds|| + AV’ (s)ds
th,[ s z H J
AR 0 - St ], + | Y f B(p)A~ f A1/2u’<s)dsdp
7__k+1t

< at+Lllzlly, k=1,...,N-1.

In a similar way, one can prove that
A2, < ot + Lllzllr, k=-N+1,...,-1.

Furthermore, from (8) we have

—u(0
”A_UZ“”H < [la12 (% _ u(t T“( ))‘

- |t f f 12 () deds
T
0 0

In a similar way, one can prove that

+1]|AY2 (u(r) - u(0)||,,

fA]/Zu’(s)ds

0

< 3T

+ 7T
H

H

a2, < e
Thus, using (16)-(19) in (12)-(15) gives us
k-1

lzellyy < et + (L + 2M) Z
j=—Ik+1

k=-N,...,-1,1,...,N.

1014

(14)

(15)

(16)

(17)

(18)

(19)

(20)

Finally, using (20) and the theorem about the discrete analogue of a Gronwall type integral inequality

with two dependent limits [], we obtain the estimate (7). O
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4. Second Order of Accuracy Difference Scheme

We construct the second order of accuracy difference schemewe consider
Upp1 — 2Ug + Ugq

1 1
) + EAuk + ZA(ukH + uk—l)
k

u;+uiq
=t ) Bj_%(%)+f(tk,uk), k=1,...,N-1,
j=—k+1
— 22Uy + Up— 1 1
Hperr = 2Uge T U1 —Auk+ —A(Mk+1 + Ug1)

72
Uu;+uq
= -7 Z B,%( ! Z )+f(tk/uk)/ k:_N+1/'-'1_1/ (21)
j=k+1
e
T:I\l,, te=kt, k=-N,...,N, Bk_1—1fB(p)dp, k=-N+1,...,N,
tr—1
uy —up

up =u(0), (I+72A)
(I + TZA) Yo~ 41

= % (f(0,u9) — Aug) + 1y,
= 2 (Ao = 0, w0)) + i

for approximate solutions of problem (1).

Theorem 4.1. Let u(t) be a solution of (1). Assume that the requirements of the Theorem 2.1 are satisfied and
ATY2y @), w(t), AY2u(t) are continuous functions on [—1,1]. Then the difference scheme (21) has a unique
solution and the following convergence estimate holds

—u(tolly < M'7%, 22
_max [l = u(tolly T (22)
where M* does not depend on .

Proof. Subtracting (1) from (21), we obtain the system of difference equations

k

Zi41 — 22k + Zp_ 1 1 Zj+2zj
HAZI Iy Anct AG +ac) =7 ) By (T g k=1 N1,
j=—k+1
—k
Zks1 — 22k + Z 1 1 Zi+2ziq
"”T—zk“ + 5 Az + AR +201) = T Z B, (%) +¢r, k=-N+1,...,-1,
] =k+1
20 =0, (I+12A)¥ =a, (+7PAH2 =g
where z; = uy — u(ty) is the convergence error of the dlfference scheme (21) and
k
o ultier) = 2ute) + u(te-1) 1 1 u(ty) + u(tj-1)
=~ - = S Ault) = A @Wlten) +ulte) 7 Y By |~
j=—k+1
f
d? ( t)

+f (b, i) = f b, u(te)) + —5— + Aute) - fB(P)M(P)dPI k=1,...,N-1,

—ty

—k
u(tir1) —ZuT(;k) +u(te-1) %Au(tk) _ }IA (teer) + (b)) — 7 Z B, ,

j=k+1

Pr=-

M(tj) + u(t]'_1)
2

2 ik
+f (b, uk) — fte, ulte)) + d ;lgk) + Au(ty) — fB(p)u(p)dp, k=-N+1,...,-1,

—ty
- % (F(0, o — Aug)) + ) — (I + TZA)M, = %(Auo — F(0, 1)) + 1l — (I + TZA)M.
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Now, the proof of estimate (22) is similar to the proof of estimate (7) and is based on the following
results:

|A™ 2|, <at?, ATV, < cr® |ATP|, < st + Lllzdly, k=-N+1,...,-1,1,...,N-1.

O

5. Numerical Example

In this section, we shall validate our findings by numerical illustrations for simple test problem. We
consider the initial-boundary value problem:

t
2
up(t, x) — ty(t, x) = fuxx(s, x)ds + (§t3 +£+ 2) sinx — sin (t2 sinx) +sin(u(t,x)), —1<t<1,0<x<m,

Zt
u(0,x)=0, u(0,x)=0, 0<x<m,
u(t,00=0, u(t,m)=0, -1<t<],

(23)
which has the exact solution u(t, x) = t* sin x.
Firstly, applying the first order of accuracy difference scheme (6) to the problem (23), we have
ka1 k k-1 k+1 _ n, k+1 k+1 k j o, j
u —2],{ + u u+1 Zun +u_1 1/[+1 Zun+u_1 23 2 .
n TZ" n___n 5 ¢ Z L 7 L +(§tk+tk+2)smxn
j=—k+1
—sin(tﬁsinxn) +sin(u’,‘,), n=1,... M-1, k=1,... N-1,
k+1 X k-1 k-1 _ ny k-1 k-1 -k . J ) j
wktl —ouk 4y U, 1 2u;, +u, U, 4 2u,7+u_1 2 )
. Tz" e 3 = =1 Z — 7 =+ (gti +1+ 2) sinx;, (24)
j=k+1
—sin(&sinx,) +sin(uf), n=1,...,M-1, k=-N+1,..,-1,
1
TEN h = ]\E/I’ ttr=kt, k=-N,...,.N, x,=nh, n=0,...,M,
ug =0, ui = u;l =0, n=0,...,.M, ug = ”5(\/1 =0, k=-N,...,N.

The first order of accuracy difference scheme (24) is implemented for different values of M and N. The
errors are computed by

IErrorlle, = max [u(te, xn) = ], (25)

0<n<M

where u¥ represents the numerical solution at (f, x,,). Table 1 shows the errors between the exact solution
of the initial-boundary value problem (23) and the numerical solutions computed by using the first order
of accuracy difference scheme (24) for different values of N and M. We observe that the scheme has the first
order convergence as is it expected to be.

N=M=8 | N=M=16 | N=M=32 | N=M=64 | N=M=128

IError|l., | 1.65x 107! | 828 x 1072 | 414x 1072 | 2.07x 1072 | 1.04x 102

Table 1: The errors between the exact solution of the initial-boundary value problem (23) and the numerical solutions computed by
using the first order of accuracy difference scheme (24) for different values of N and M.
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Secondly, applying the second order of accuracy difference scheme (21) to the initial-boundary value
problem (23), we get:
k

k+1 k k-1 kK _ k k+1 _ k+1 k+1 k-1 _ k—1 k-1
Up' = 2Uy + 1y Uy 2u, +u u 2u;, tu U 2u,” +u

+ n-1 _ “n+l n-1
72 2h? 4h? 4h?
k WS | W e
_ Wi 2“" + W et zu” + Wy gtS t2 2 si
=T 2 + 2 + 3k + 1+ 2)smXxy,
j=—k+1

—sin(t,%sinxn)+sin(uﬁ), n=1,... M-1, k=1,..., N-1,

k+1 k k-1 kK _ k k k+1 _ k+1 k+1 k-1 _ k—1 k-1
Uy, = Zun + Uy _ un+1 2”" + un—l _ un+1 Zun + un—l _ un+1 2”” + un—l (26)
T2 2h? 4h? 4h?
—k Jo i j 71 _ 501 j-1
_ un+1 2”” + un—l un+1 2”” + un—l 2 3 2 .
=-T + + =t +t; +2]sinx,
2K? 212 3k Tk
j=k+1
—sin(t,%sinxn)+sin(uﬁ), n=1,...M-1, k=-N+1,...,-1,
1 1
= tr=kt, k=-N,...,N, x,=nh, n=0,...,M,

Mr
=0, u}l:uglzfczsinxn, n=0,...,M, u’ézuﬁ‘wzo, k=-N,...,N.

The second order of accuracy difference scheme (26) is implemented for different values of M and N.
The errors between the exact solution of problem (23) and the numerical solution of the difference scheme
(26) are computed by (25). Table 2 shows the errors between the exact solution of problem (23) and the
numerical solutions computed by using the second order of accuracy difference schemes (26) for different
values of N and M. We observe that the scheme has the second order convergence as is it expected to be.

N=M=8 | N=M=16 | N=M=32 | N=M=64 | N=M=128

IError|l., | 424x1073 | 934x107% | 215x 10 | 5.14x 10 | 1.25x107°

Table 2: The errors between the exact solution of the initial-boundary value problem (23) and the numerical solutions computed by
using the second order of accuracy difference scheme (26) for different values of N and M.

6. Conclusions

We considered the initial-value problem (1) for semilinear integral-differential equation in a Hilbert
space H. We have proved that this problem has a unique solution. We constructed the first order and
the second order of accuracy difference schemes approximately solving this problem. The convergence
estimates for the solutions of these difference schemes were obtained. Numerical illustrations for the
simple test problem were provided to support our theoretical results.

Finally, we note that higher order accurate difference schemes [11, 12] can be constructed and the
convergence results for the solutions of these difference schemes can be established in the similar way.
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