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Abstract. A dynamic system, when the motion of the object is described by the system of nonlinear
ordinary differential equations, is considered. The right part of the system involves the phase coordinates
as a unknown constant vector-parameter and a small number. The statistical data are taken from practice:
the initial and final values of the object coordinates. Using the method of quasilinearization the given
equation is reduced to the system of linear differential equations, where the coefficients of the coordinate
and unknown parameter, also of the perturbations depend on a small parameter linearly. Then, by using
the least-squares method the unknown constant vector-parameter is searched in the form of power series
on a small parameter and for the coefficients of zero and the first orders the analytical formulas are given.
The fundamental matrices both in a zero and in the first approach are constructed approximately, by means
of the ordinary Euler method. On an example the determination of the coefficient of hydraulic resistance
(CHR) in the lift in the oil extraction by gas lift method is illustrated, as the obtained results in the first
approaching coincides with well-known results on order of 10−2.

1. Introduction

The problem of identification [3, 9, 13] of the dynamic systems [7, 8, 11, 16] has a lot of practical
applications, one of them is the applying in the oil fields, for example, in the oil extraction [8, 13, 20]. Really,
in the serve of oil by means of pipelines, in the extraction of oil by the gas lift method or by the rod-pumping
setting and other methods - the determination of CHR [3, 6, 9], in layers - the determination of parameters of
formation of gas-liquid mixture [10] and other, requires development of numerical methods for the solving
of corresponding problems of identification [18] of the dynamic systems. In [9] the gradient method on
the basis of Gramm-Schmidt orthogonalization for determination of CHR is given. In [4, 9] the asymptotic
method is given for determination of CHR in the first approaching relatively to small parameter, where
a small parameter is accepted by inverse to the value of depth of the well. It is shown, that if the use of
ordinary Gramm-Schmidt method requires enough large machine time, then an asymptotic method allows
to calculate the solution of CHR in the first approaching analytically and the numerical results coincide
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with the sought solution to the 10−2 order. Coming from these results, the authors of [3, 5] generalized the
results obtained in [4] for multidimensional case. Further, using the methods of quazilinearization [14] and
least-squares [17] the computational algorithm is suggested for solving of general identification problem
of the dynamic systems for determination of the constant vector-parameter, which can be used for finding
the CHR in the lift and the parameters for formation of gas-liquid mixture in the layers of the wells in the
oil production.

The results of calculations show that in simplest case, when the sought (unknown) constant vector-
parameter - the subject to determination is scalar, then the method of Gramm-Schmidt requires 2 hours
in the simple example (with exactness 10−8 order). Therefore, makes the sense to develop an asymptotic
method for solving of identification problem of the dynamic systems, when the small parameter is included
to the right part of corresponding differential equations, where on the example of the oil fields it is the
inverse value of depth of the wells.

In this work it is assumed, that some series of initial and final values (statistical data) of phase coordinate
of nonlinear ordinary differential equation1) ( to the right part are included the small parameter and
unknown constant vector ) are given. It is required to find the small paremeter and unknown constant
vector in such way that their solutions in the end point coincided (with certain exactness) with statistical
data. Using the methods of least-squares and quazilinearization is given an iterative scheme for the
construction of asymptotic solutions in the first approach relatively to the small parameter.

The results are illustrated on the example of the oil extraction by gaslift method for determination of
CHR, where the small parameter ε is accepted inverse to the value of depth of the well. Also for the
coefficients of asymptotic expressions on ε the analytical formulas are given, where the linear differential
equation is changed by the discrete approximation using ordinary Euler method. The given numerical
results for the values of CHR, which are differs on order of 10−2 from the [1, 3, 9] can be used as a good
initial approach for iterative schemes [3].

2. Problem Statement

Let a nonlinear ordinary differential equation

ẏ (x) = f
(
y (x) , α, ε

)
(1)

and some sets of initial and final values of the n-dimensional phase vector y(x) are given

yk (0) = y0k, yk (l) = ylk, k = 0, ...,N − 1. (2)

Here α is a constant unknown vector, ε is a small parameter, f is the n-dimensional function is differentiable
on y, α, ε. It is required to find such vector-parameter α = α∗, that the end value yi(l, α∗, ε)(the solution of
equation (1) with an initial value y0k) exactly enough coincided with ylk (k = 0, 1, ...,N − 1). Such problem
further we will call the identification of the dynamic systems (1).

Let the initial approach yi(x), αi be given. Using the method of quazilinearization [3, 17] we present the
equation (1) in the linear form relatively yi(x), αi and ε, in the following form

ẏi(x) =
(
A0

(
yi−1 (x) , αi−1

)
+ εA1

(
yi−1 (x) , αi−1

))
yi(x)+

+
(
B0

(
yi−1 (x) , αi−1

)
+ εB1

(
yi−1 (x) , αi−1

))
αi+

+
(
C0

(
yi−1 (x) , αi−1

)
+ εC1

(
yi−1 (x) , αi−1

))
,

(3)

where Ai

(
yi−1 (x) , αi−1

)
,Bi

(
yi−1 (x) , αi−1

)
, Ci

(
yi−1 (x) , αi−1

)
, are the results of decomposition of Taylor in the

1)In the spatial case [2] the motion of the equation describing by the hyperbolic equations the problem is reduced the solution of
the corresponding problem, where the discrete model is considered.
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first approach and determined in the following form

A0

(
yi−1 (x) , αi−1

)
= f ′y

(
yi−1

0 , αi−1
0 , 0

)
, A1

(
yi−1 (x) , αi−1

)
= f ′′yε

(
yi−1

0 , αi−1
0 , 0

)
,

B0

(
yi−1 (x) , αi−1

)
= f ′α

(
yi−1

0 , αi−1
0 , 0

)
, B1

(
yi−1 (x) , αi−1

)
= f ′′αε

(
yi−1

0 , αi−1
0 , 0

)
,

C0

(
yi−1 (x) , αi−1

)
= f

(
yi−1

0 , αi−1
0 , 0

)
− f ′y

(
yi−1

0 , αi−1
0 , 0

)
yi−1

0 − fα
(
yi−1

0 , αi−1
0 , 0

)
αi−1

0 ,

C1

(
yi−1 (x) , αi−1

)
= f ′ε

(
yi−1

0 , αi−1
0 , 0

)
− f ′′yε

(
yi−1

0 , αi−1
0 , 0

)
yi−1

0 − f ′′αε
(
yi−1

0 , αi−1
0 , 0

)
αi−1

0 .

(4)

Now we present the solution of linear equation [19] in the following form

yi(t) =
(
Φ0,i−1

0 (t) + εΦ1,i−1
0

)
yi(0) +

(
Φ0,i−1

1 (t) + εΦ1,i−1
1

)
αi +

(
Φ0,i−1

2 (t) + εΦ1,i−1
2

)
, (5)

where Φ0,i−1
0 (t, 0),Φ1,(i−1)

0 (t, 0) are determined from the next linear differential equations

Φ0,i−1
0 (t, 0) = A0

(
yi−1 (x) , αi−1

)
Φ0,i−1

0 (t, 0), Φ0,i−1
0 (0, 0) = E,

Φ1,i−1
0 (t, 0) = A0

(
yi−1 (x) , αi−1

)
Φ1,i−1

0 (t, 0) + A1

(
yi−1 (x) , αi−1

)
Φ0,i−1

0 (t, 0),
Φ1,i−1

0 (0, 0) = 0

(6)

and

Φi−1
0 (t, 0) = Φ0,i−1

0 (t, 0) + εΦ1,i−1
0 (t, 0)

is the fundamental matrix of the homogeneous equation (5) in the first approach relatively small parameter
ε, and Φn,i−1

1 (t, 0), Φn,i−1
2 (t, 0), (n = 0, 1) from (5) are determined in the following form [5]

Φ0,i−1
1 (t, 0) =

t∫
0

Φ0,i−1
0 (τ, 0) B0

(
yi−1, αi−1

)
dτ,

Φ1,i−1
1 (t, 0) =

t∫
0

(
Φ0,i−1

0 (τ, 0) B1

(
yi−1, αi−1

)
+ Φ1,i−1

0 (τ, 0) B0

(
yi−1, αi−1

)
dτ,

Φ0,i−1
2 (t, 0) =

t∫
0

Φ0,i−1
0 (τ, 0) C0

(
yi−1, αi−1

)
dτ,

Φ1,i−1
2 (t, 0) =

t∫
0

(
Φ0,i−1

0 (τ, 0) C1

(
yi−1, αi−1

)
+ Φ1,i−1

0 (τ, 0) C0

(
yi−1, αi−1

)
dτ.

(7)

Further for the solutions (5) in the point x = l and for the final values from (2) we construct the functional

Ii =

N−1∑
k=0

(
yi

k (l) − yi
lk

)′
A

(
yi

k (l) − yi
lk

)
, (8)

where A is the well-known weight matrix, yi
k(l) is the solution of the equation (5) at statistical data yk(0) = y0k

from (2). Thus, if we can choose such αi, that the functional (8) get the minimum value, then we in fact
provide the closeness of the solution y(x, α, ε) in the point x = l with yi

k (l) = yi
lk from (2).
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3. Calculation of the Gradient of the Functional (8)

To obtain the formula for the gradient from the functional (8) first we putyi
k(l) from (5) into (8):

Ii =
N−1∑
k=0

{[
y′0

i
(
Φ0,i−1

0 + εΦ1,i−1
0

)′
+ α′i

(
Φ0,i−1

1 + εΦ1,i−1
1

)′
+

(
Φ0,i−1

2 + εΦ1,i−1
2

)′
− y′lk

i
]

A×

×

[(
Φ0,i−1

0 + εΦ1,i−1
0

)
yi

0 +
(
Φ0,i−1

1 + εΦ1,i−1
1

)
αi +

(
Φ0,i−1

2 + εΦ1,i−1
2

)
− yi

lk

]}
=

=
N−1∑
k=0

{[
y′0

iΦ′0
0,i−1AΦ0,i−1

0 yi
0 + y′0

iΦ′0
0,i−1AΦ0,i−1

1 αi + y′0
iΦ′0

0,i−1AΦ0,i−1
2 −

−y′0
iΦ′0

0,i−1Ayi
lk + α′iΦ′1

0,i−1AΦ0,i−1
0 yi

0 + α′iΦ′1
0,i−1AΦ0,i−1

1 αi + α′iΦ′1
0,i−1AΦ0,i−1

2
−α′iΦ′1

0,i−1Aylk + Φ′2
0,i−1AΦ0,i−1

0 yi
0 + Φ′2

0,i−1AΦ0,i−1
1 αi + Φ′2

0,i−1AΦ0,i−1
2 −

−Φ′2
0,i−1Ayi

lk − y′lk
iAΦ0,i−1

0 yi
0 − y′lk

iAΦ0,i−1
1 yi

0 − y′lk
iA Φ0,i−1

2 + y′lk
iAyi

lk

]
+

+ε
[
y′0

iΦ′0
0,i−1AΦ1,i−1

0 yi
0 + y′0

iΦ′0
0,i−1AΦ1,i−1

1 αi + y′0
iΦ′0

0,i−1AΦ1,i−1
2 +

+y′0
iΦ′0

1,i−1AΦ0,i−1
0 yi

0 + y′0
iΦ′0

1,i−1AΦ1,i−1
0 αi + y′0

iΦ′0
1,i−1AΦ0,i−1

2 − y′0
iΦ′0

1,i−1Ayi
lk+

+α′iΦ′1
0,i−1AΦ1,i−1

0 yi
0 + Φ′1

0,i−1AΦ1,i−1
1 αi + Φ′1

0,i−1AΦ1,i−1
2 + α′iΦ′1

1,i−1AΦ0,i−1
0 yi

0+

+α′iΦ′1
1,i−1AΦ0,i−1

1 αi + α′iΦ′1
1,i−1AΦ0,i−1

2 − α′iΦ′1
1,i−1Ayi

lk + Φ′2
0,i−1AΦ1,i−1

0 yi
0+

+Φ′2
0,i−1AΦ1,i−1

1 αi + Φ′2
0,i−1AΦ1,i−1

2 + Φ′2
1,i−1AΦ0,i−1

0 yi
0 + Φ′2

1,i−1AΦ0,i−1
1 αi+

+Φ′2
1,i−1AΦ0,i−1

2 −Φ′2
1,i−1Ayi

lk − y′lk
iAΦ1,i−1

0 yi
0 − y′lk

iAΦ1,i−1
1 αi

− y′lk
iAΦ1,i−1

2

]
=

=
N−1∑
k=0

{
y′0

iΦ′0
0,i−1AΦ0,i−1

0 yi
0 + 2y′0

iΦ′0
0,i−1AΦ0,i−1

1 αi + 2y′0
iΦ′0

0,i−1AΦ0,i−1
2 −

−2y′0
iΦ′0

0,i−1Ayi
lk + α′i−1Φ′1

0,i−1AΦ0,i−1
1 αi

− 2α′i−1Φ′1
0,i−1Ayi

lk+

+Φ′2
0,i−1AΦ0,i−1

2 − 2Φ′2
0,i−1Ayi

lk − y′lk
iAyi

lk+

+ε
[
2y′0

iΦ′0
0,i−1AΦ1,i−1

0 yi
0 + 2y′0

iΦ′0
0,i−1AΦ1,i−1

1 αi + 2y′0
iΦ′0

0,i−1AΦ1,i−1
2 +

+2y′0
iΦ′0

1,i−1AΦ0,i−1
1 αi + 2y′0

iΦ′0
1,i−1AΦ0,i−1

2 − 2y′0
iΦ′0

1,i−1Ayi
lk + 2Φ′1

1,i−1AΦ0,i−1
1 αi2+

+2α′iΦ′1
1,i−1AΦ0,i−1

2 − 2′αiΦ′1
1,i−1Ayi

lk + 2Φ′2
0,i−1AΦ1,i−1

2 +

+2 Φ′1
0,i−1AΦ1,i−1

2 αi
− 2Φ′2

1,i−1Ayi
lk

]}
=

=
N−1∑
k=0

{
Φ′0

0,i−1AΦ0,i−1
0 yi

0
2 + 2y′0

iΦ′0
0,i−1Ayi

lk + 2y′0
iΦ′0

0,i−1AΦ0,i−1
2 − 2y′0

iΦ′0
0,i−1Ayi

0yi
lk +

+Φ′2
0,i−1AΦ0,i−1

2 − 2Φ′2
0,i−1Ayi

lk − y′lk
iAyi

lk+

(9)

+2ε
(
y′0

iΦ′0
0,i−1AΦ1,i−1

0 yi
0 + y′0

iΦ′0
0,i−1AΦ1,i−1

2 + y′0
iΦ′0

1,i−1AΦ0,i−1
2 −

− y′0
iΦ′0

1,i−1Ayi
lk + Φ′2

0,i−1AΦ1,i−1
2 −Φ′2

1,i−1Ayi
lk

)
+

+
(
Φ′0

0,i−1AΦ0,i−1
1 yi

0 −Φ′1
0,i−1Ayi

lk + 2 Φ′1
0,i−1AΦ0,i−1

2 +

+
(
Φ′0

0,i−1AΦ1,i−1
1 yi

0 + Φ′0
1,i−1AΦ0,i−1

1 yi
0 + Φ′1

1,i−1AΦ0,i−1
2 −

−Φ′1
1,i−1Ayi

lk + Φ′1
0,i−1AΦ1,i−1

2

))
αi+

+
(
Φ′1

0,i−1AΦ0,i−1
1 + εΦ′1

1,i−1AΦ0,i−1
1

)
αi2

}
.

Now we take the derivate on an unknown constant vector αi from (9) where I′αi is determined in the
following form:

I′αi =
N−1∑
k=0

(
Φ′0

0,i−1AΦ0,i−1
1 yi

0 −Φ′1
0,i−1Ayi

lk + 2Φ′1
0,i−1AΦ0,i−1

2 +

+ε
(
Φ′0

0,i−1AΦ1,i−1
1 yi

0 + Φ′0
1,i−1AΦ0,i−1

1 yi
0 +

+ Φ′1
1,i−1AΦ0,i−1

2 −Φ′1
1,i−1Ayi

lk + Φ′1
0,i−1AΦ1,i−1

2

)
+

+ 2
(
Φ′1

0,i−1AΦ0,i−1
1 + εΦ′1

1,i−1AΦ0,i−1
1

)
αi

)
.

(10)
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We equate to zero the first derivate Ii
α
′

and search αiin the form

y0 (t) = 1. (11)

For determination αi
0 and αi

1 we have the next algebraic equations:

N−1∑
k=0

(
Φ′0

0,i−1AΦ0,i−1
1 yi

0 −Φ′1
0,i−1Ayi

lk + 2Φ′1
0,i−1AΦ0,i−1

2 + 2Φ′1
0,i−1AΦ0,i−1

1 αi
0

)
= 0,

N−1∑
k=0

{
Φ′0

0,i−1AΦ1,i−1
1 yi

0 + Φ′0
1,i−1AΦ0,i−1

1 yi
0 + Φ′1

1,i−1AΦ0,i−1
2 −Φ′1

1,i−1Ayi
lk +

+Φ′1
0,i−1AΦ1,i−1

2 + 2Φ′1
0,i−1AΦ0,i−1

1 αi
0 + 2Φ′1

1,i−1AΦ0,i−1
1 αi

1

}
= 0.

(12)

After solving the equations (12) relatively to and αi
1, correspondingly, we have2):

αi
0 = −

1
2

N−1∑
k=0

{(
Φ′1

0,i−1AΦ0,i−1
1

)−1 (
Φ′0

0,i−1AΦ0,i−1
1 yi

0 −Φ′1
0,i−1Ayi

lk + 2Φ′1
0,i−1AΦ0,i−1

2

)}
, (13)

αi
1 = − 1

2

N−1∑
k=0

{(
Φ′1

1,i−1AΦ0,i−1
1

)−1 (
Φ′0

0,i−1AΦ1,i−1
1 yi

0 + Φ′0
1,i−1AΦ0,i−1

1 yi
0 + Φ′1

1,i−1AΦ0,i−1
2 −

−Φ′1
1,i−1Ayi

lk + Φ′1
0,i−1AΦ1,i−1

2 −Φ′1
0,i−1AΦ0,i−1

1

N−1∑
k=0

(
Φ′1

0,i−1AΦ0,i−1
1

)−1
×

×

(
Φ′0

0,i−1AΦ0,i−1
1 yi

0 −Φ′1
0,i−1Ayi

lk + 2Φ′1
0,i−1AΦ0,i−1

2

)}
.

(14)

Thus calculating α in the first approach on ξ we obtain: αi
≈ αi

0 + εαi
1.

Summarizing the above it is possible to present the computational algorithm [12] for solving of the
problem of identification (1), (2), (8)

Algorithm 1.

1. The nonlinear function δ2 from (1), the initial yk (0) and final yk (l) , the given weight matrices Ai, the
initial approaches yi−1(x), αi−1 and small number αi are forming.

2. fy
(
y0, α0, 0

)
, fα

(
y0, α0, 0

)
, f ′y

(
y0, α0, 0

)
, f ′α

(
y0, α0, 0

)
, f ′′yz

(
y0, α0, 0

)
, f ′′αz

(
y0, α0, 0

)
are calculating.

3. A0

(
yi−1 (x) , αi−1

)
, A1

(
yi−1 (x) , αi−1

)
, B0

(
yi−1 (x) , αi−1

)
, B1

(
yi−1 (x) , αi−1

)
, C0

(
yi−1 (x) , αi−1

)
, αi

0 are form-
ing from (3).

4. The fundamental matrices Φ0,i−1
0 (t, 0), yl are calculating [19] at the initial Φ0,i−1

0 (0, 0) = E, αi−1
1 from (6).

5. By using of the fundamental matrices ∆, αi
≈ αi

0 + εαi
1, yl−1, Φ1,i−1

2 (t, 0) are calculating the integrals.

6. αi
0 and αi

1 are calculating from (11).

7. Φ1,i−1
1 (t, 0) we accept y0(x) as the initial iteration. If it is satisfied, we go to the step 2. Otherwise the

calculation process is stopped.

2)Here it is assumed that
(
Φ′1

0,i−1AΦ0,i−1
1

)−1
and

(
Φ′1

1,i−1AΦ0,i−1
1

)−1
are exist. If these conditions are not exist, we can use the

regularization method [15].
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4. Ordinary Algorithm of Euler for Solving (1) and the Approximate Formulas forΦ0,i−1
0

(t, 0),Φ0,i−1
2

(t, 0),

Φ0,i−1
1

(t, 0),Φ1,i−1
1

(t, 0),Φ0,i−1
2

(t, 0),Φ1,i−1
2

(t, 0)

We note that at calculating αi over the algorithm 1 one of the difficulties is the procedure of finding
of Φ0,i−1

0 (t, 0), Φ1,i−1
0 (t, 0)andΦ0,i−1

1 (t, 0), Φ1,i−1
1 (t, 0), Φ0,i−1

2 (t, 0), Φ1,i−1
2 (t, 0). However by help of approximate

methods it is possible to restore them.
Now discretizing on the step ∆ the equation (3) on the first Euler method [8, 20], we obtain:

yi+1 =
(
E + ∆

(
A0

(
yi−1, αi−1

)
+ εA1

(
yi−1, αi−1

)))
yi

k+

+∆
(
B0

(
yi−1, αi−1

)
+ εB1

(
yi−1, αi−1

))
αi

k + ∆
(
C0

(
yi−1, αi−1

)
+ εC1

(
yi−1, αi−1

))
.

(15)

It is now possible to express yl through an initial condition y0. First we show this expressions for y1, y2

y1 = ((E + ∆A0) + ∆Aε) y0 + (B0 + εB1)αi + (C0 + εC1) ,
y2 =

(
(E + ∆A0)2 + 2ε∆ (E + ∆A0) A1

)
y0+

+ [(E + ∆A0) B0 + B0 + ε ((E + ∆A0) B1 + B1 + ∆A1B0)]αi+
+ [(E + ∆A0)] C0 + C0 + ε ((E + ∆A0) + 2ε∆ (E + ∆A0) C1 + C1 + ∆A1C0)] .

Let for yl−1 are true the relations

yl−1 =
(
(E + ∆A0)N−1 + N∆ (E + ∆A0)N−2 ε

)
y0+

+
[(

(E + ∆A0)N−2 B0 + ε
(
(E + ∆A0)N−2 B1 +

+N (E + ∆A0)N−2 ∆A1B0

]
αi + ε

(
(E + ∆A0)N−2 C+

+ε
(
(E + ∆A0)N−2 C1 + N (E + ∆A0)N−2 ∆A1C0

)
.

By mathematical induction we will prove easily, that

yl =
(
(E + ∆A0)N + N∆ (E + ∆A0)N−1 ε

)
y0+

+
[(

(E + ∆A0)N−1 B0 + ε
(
(E + ∆A0)N−1 B1 +

+N (E + ∆A0)N−1 ∆A1B0

]
αi + ε

(
(E + ∆A0)N−1 C+

+ε
(
(E + ∆A0)N−1 C1 + N (E + ∆A0)N−1 ∆A1C0

)
.

(16)

Now from (16) we define the approximate formulas for Φ
j
i (0, l).

Note that the finding of αi
0 , αi

1 from (14) makes difficulty from calculations of fundamental matrices
Φn

0 (t, 0), Φn
1 (t, 0), Φn

2 (t, 0)(n = 0, 1) from the system of linear differential equations (5). Therefore in the next
point by means of ordinary method of Euler we discretize the equation (5) and restore approximately the
fundamental matrices Φn

i (t, 0), (n = 0, 1)(i = 0, 1, 2) in the first approach. As is shown from (13) - (14) for
renewal of αi

0 , αi
1 it is necessary to take into account the higher Φ

j
i (0, l) . The relation (16) allows to find

them. Therefore comparing (16) with (5) we have:

Φ0,i−1
0 = (E + ∆A0)N ,

Φ1,i−1
0 = N∆ (E + ∆A0)N−1 ,

Φ0,i−1
1 = (E + ∆A0)N−1 B0,

Φ1,i−1
1 = (E + ∆A0)N−1 B1 + N (E + ∆A0)N−1 ∆A1B0,

Φ0,i−1
2 = (E + ∆A0)N−1 C0,

Φ1,i−1
2 = (E + ∆A0)N−1 C1 + N (E + ∆A0)N−1 ∆A1C0.

(17)

Thus it is simpler to calculate αi
0, α

i
1 from (13), (14) by means of approximate formulas.
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We note that with the help of (17) we can easily find for αi−1
0 , αi−1

1 from (13) and (14) the next expressions
in an obvious form

αi
0 = − 1

2

N−1∑
k=0

{(
B′0

(
E + ∆A′0

)N−1
A

(
E + ∆A′0

)N−1
B0

)−1
×

×

(
y′0

i
(
E + ∆A′0

)N
A

(
E + ∆A′0

)N−1
B0 − B′0

(
E + ∆A′0

)N−1
Aylk+

+ y′0
i
(
E + ∆A′0

)N
A

(
(E + ∆A0)N−1 B1 + N

(
E + ∆A′0

)N−1
∆A1B0

))}
,

(18)

αi
1 = − 1

2

N−1∑
k=0

{(
B′0

(
E + ∆A′0

)N−1
A

(
E + ∆A′0

)N−1
B0

)−1
×

×

(
y′0

iB′0
(
E + ∆A′0

)N−1
A

(
E + ∆A′0

)N−1
B0 + +B′1

(
E + ∆A′0

)N−1
+

+B′0A′1∆N
(
E + ∆A′0

)N−1
A

(
E + ∆A′0

)N−1
C0 − B′1

(
E + ∆A′0

)N−1
+

+B′0A′1∆N
(
E + ∆A′0

)N−1
Aylk + B′0

(
E + ∆A′0

)N−1
A

(
E + ∆A′0

)N−1
C1+

N
(
E + ∆A′0

)N−1
∆A1C0 +

(
E + ∆A′0

)N−1
B1+

+N
(
E + ∆A′0

)N−1
A1B0A

(
E + ∆A′0

)N−1
B0

)
×

×

(
B′0

(
E + ∆A′0

)N−1
A

(
E + ∆A′0

)N−1
B0

)−1
×(

y′0
i
(
E + ∆A′0

)N
A

(
E + ∆A′0

)N−1
B0 − B′0

(
E + ∆A′0

)N−1
Aylk+

+y′0
i
(
E + ∆A′0

)N
A

(
(E + ∆A0)N−1 B1 + N

(
E + ∆A′0

)N−1
∆A1B0

))}
.

(19)

We note that for the obtaining of more exact values it is necessary to make the discretization on the method
of Runge-Kutta and other. Thus, summarizing the above results we can offer the next computational
algorithm for finding of coincidence αi

≈ αi
0 + εαi

1.
Algorithm 2.

1. The function f
(
y, x, α

)
and the statistical data yi

0 , yi
l from (2) and (3) (i = 0, 1, ...,N) are given.

2. The derivatives fy, fα are calculating
3. A0,A1,B0,B1,C0,C1 are calculating from (4).
4. Φ0,i−1

0 ,Φ1,i−1
0 ,Φ0,i−1

1 ,Φ1,i−1
1 ,Φ0,i−1

2 ,Φ1,i−1
2 are calculating from (7) (or (17)).

5. αi
0 and αi

1 are calculating by the formulas (13) and (14), correspondingly (or (18), (19)).
6. αi

≈ αi
0 + εαi

1 are calculating
7. The condition Ii > Ii+1 is checked up. If the condition is not satisfied, we go to the step 2. Otherwise

the calculation process is stopped .

We note that formulas (18) and (19) allow approximately to find α.
We consider the following example.

5. Example

Let us consider the gas lift process for the oil production where the motion equation is described by the
following nonlinear ordinary differential equation [3, 6, 8, 10]

•

Q =
2a(λc)ρFQ2

ε2c2ρ2F2 −Q2 , Q(0) = u, (20)

where c >> ωc, except Q = ρωcF all values are constant, F is the cross-sectional area of pump-compressor
pipes, that is constant relatively to axes.
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Here it is assumed that the transition from the end of ring pipe through the layer to beginning of the lift
(x = l) is executed on the following difference equation:

Q(l + 0) = γQ(l − 0) + γ1(Q(l − 0))Q̄,
γ1(Q(l − 0)) = −δ3(Q(l − 0) − δ2)2 + δ1,

(21)

where γ, δ1, δ2, δ3 are constant real numbers, which are subject to determination.
For simplicity we suppose that parameters γ, δ1, δ2, δ3 are known and it is required to find the CHR

λc, included to (20) through α(λc).
Further some nominal trajectory Q0 (x) and parameter α0 are searching supposing that kth iteration is

already done. Linearizing the equation (20) near these data we have

Q̇k (x) = A
(
Qk−1, αk−1

)
Qk (x) + B

(
Qk−1, αk−1

)
αk + C

(
Qk−1, αk−1

)
, (22)

where

A0

(
yi−1 (x) , αi−1

)
= 0, A1

(
yi−1 (x) , αi−1

)
= 4ai−1c2ρ3F3Qi−1,

B0

(
yi−1 (x) , αi−1

)
= −2ρF, B1

(
yi−1 (x) , αi−1

)
= 2ρ3F3c2

C0

(
yi−1 (x) , αi−1

)
= 2ρFai−1, C1

(
yi−1 (x) , αi−1

)
= 2ai−1c2ρ3F3

(
2
(
Qi−1

)2
+ 1

)
.

Note that by help of relations (17), (18) the matrices Φk−1, Φk−1
1 (x, 0) ,Φk−1

2 (x, 0) are calculating in the
following form

Φk−1
1 (x, 0) =

 2N−1∑
j=N+2

(
j∏

1=2N−1

(
E + A

(
Qk−1(xi1 ), αk−1

))
h
)
B
(
Qk−1(x j−1), αk−1

)
h

+

+B
(
Qk−1(x2N−1), αk−1

)
h,

Φk−1
2 (x, 0) =

 2N−1∑
j=N+2

(
j∏

1=2N−1

(
E + A

(
Qk−1(xi1 ), αk−1

))
h
)
C

(
Qk−1(x j−1), αk−1

)
h

+

+C
(
Qk−1(x2N−1), αk−1

)
h,

where h s an enough small number, which is the step of integration.
Let the statistical data, that are the results of measuring of debit Q̃i

2n on leaving with the given initial
volume of gas are given, i.e.Q̃i

0, Q̃i
2n, i = 1, 5 are known.

Table 1.
yl+0

i 5.5698 5.5732 5.5761 5.5810 5.5848 5.5852 5.5824
y2l

i 4.4242 4.4248 4.4254 4.4262 4.4266 4.4263 4.4251

Then the functional from (8) has the following form:

I =
1
2

5∑
i=1

∣∣∣Qi
0 −Qi

l

∣∣∣2 ,
where Qi

l is the solution of the equation (3) for the initial conditions Qi
0. Let the parameters of the equation

(20) look like as:

at 0 ≤ x < l − 0 : l = 1485 m, s = 331m/s , ρ =
0,717k1

m3 , d =
√

1142 − 73210−3m, λ= 0.01,
at l + 0 < x ≤ 2l : s = 850m/s, ρ =

700k1
m3 , d = 0.073 m, λ = 0.23.

(23)



F.A. Aliev et al. / Filomat 32:3 (2018), 1025–1033 1033

Now we pass to implementation of the above algorithm.
The initial value of CHR λ0

c we accept equal to 1. Accepting y0 (t) = 1 and repeating the procedure
1-5 from the algorithm 2 we determine the values of λ1

c , y1 (t). After 44 iterations the following result was
obtained:

λc ≈ 0.29834,

that coincides with λ from (23) within 10−2.
Note that such approach can be satisfactory to finding of initial iterations of ordinary gradient method,

for finding of CHR [3], linearizing [1] and other.
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