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Abstract. Uniform equiconvergence of spectral expansions related to the second-order differential opera-
tors with involution: −u′′(−x) and −u′′(−x) + q(x)u(x) with the initial data u(−1) = 0, u′(−1) = 0 is obtained.
Starting with the spectral analysis of the unperturbed operator, the estimates of the Green’s functions
are established and then applied via the contour integrating approach to the spectral expansions. As a
corollary, it is proved that the root functions of the perturbed operator form the basis in L2(−1, 1) for any
complex-valued coefficient q(x) ∈ L2(−1, 1).

1. Introduction

Let q(x) ∈ L2(−1, 1) be a complex-valued function andL be the closed operator related to the functional-
differential operation

l[u] = −u′′(−x) + q(x)u(x), −1 < x < 1, (1)

equipped with the initial data at x = −1:

u(−1) = 0, u′(−1) = 0. (2)

If q(x) is real-valued then the operatorL is self-adjoint on the domainD(L) =
{

f (x) ∈W2
2(−1, 1) | f (−1) =

f ′(−1) = 0
}
, the spectrum of L is discrete and, therefore, any function f (x) ∈ L2(−1, 1) has the related

eigenfunction expansion which converges in L2(−1, 1).
In the general (non-self-adjoint) case the convergence of the corresponding biorthogonal series for a

given f (x) could be studied through the equiconvergence theorems. Namely, if Sm(x, f ) and σm(x, f ) are
partial sums of the eigenfunction expansions for the unperturbed (q(x) ≡ 0) and general cases ofL then the
equiconvergence result means that

σm(x, f ) − Sm(x, f ) = o(1), m→∞. (3)
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For conventional ODE, Sm(x, f ) are the partial sums of the Fourier series which are widely studied. In
particular, the relation (3) means that any test on convergence or divergence of Fourier series could be
translated for the general eigenfunction expansion σm(x, f ).

In the case when the differential operator is defined by the operation with involution it is natural to
compare σm(x, f ) with the sums Sm(x, f ) for the case q(x) ≡ 0 in (1) due to following reasons: (i) it is hard to
find a competing boundary value problem for (1)–(2) as the ODE with initial data do not have the spectrum;
(ii) the eigenfunctions for (1)–(2) with q(x) ≡ 0 are given explicitly and Sm(x, f ) could be studied easier;
(iii) the asymptotics of eigenfunctions in the unperturbed case shows that its main terms form the ”bad”
system for constructing related expansions.

The central result of the paper is the equiconvergence property (3) that holds uniformly with respect to
x ∈ [−1, 1] for any integrable function f (x). As a byproduct of this result, the basicity of root functions of L
in L2(−1, 1) is obtained.

There are several approaches to attack the equiconvergence theorem.
The one that dates back to the early 1990’s uses a representation of the partial sum of the eigenfunction

expansion via the contour integral in the complex plane and the resolvent of the operator (see [5] and the
recent research in [7, 12, 21, 25, 26]). It is worth also mentioning the approach by V. I. Il’in (see the survey
in [9]) which is not connected directly with the form of the boundary conditions and could be applied
to a variety of non-self-adjoint cases [8, 18–20]. The basis property of eigenfunctions for various types of
differential operators was lately discussed in [10, 11, 23, 27].

Results on the spectral properties of one-dimensional differential operators with involution (we use the
simplest one – with reflection ν(x) = −x on [−1, 1]) are eagerly applied in research of PDE. The recent papers
by Aleroev, Kirane and Malik [1], Kirane and Al-Sati [13] give plausible examples. Various applications of
differential operators with involutions could be found in [6].

Spectral theory of differential operators with involution forms a specific niche in the study of ODE.
Eigenfunction expansions for the first-order differential operators with involution are considered in [3, 14,
28]. Sample second-order differential operators with involution are discussed in [15, 29, 30]. A specific
example of a boundary-value problem for the second-order differential operator with involution that
produces an infinite number of associated functions is given in [16, 17]. There are also valuable results
on the Green’s function for the boundary value problems related to functional-differential operators with
involution by Cabada and Tojo [4, 32] and new types of non-classical Sturm–Liouville problems by Aydemir,
Mukhtarov et al. [2, 24].

The paper consists of three parts. Following this introduction the second section focuses on the un-
perturbed case. The eigenvalues, eigenfunctions, the Green’s function are discussed. The third section
proceeds with the general case of (1)–(2). The estimates of its Green’s function are followed by the proof
of the equiconvergence result and further by the statement on the basis property for root functions of L in
L2(−1, 1).

2. The Unperturbed Case

Consider the self-adjoint operator L0 related to the problem

−u′′(−x) = λu(x), −1 < x < 1,
u(−1) = u′(−1) = 0. (4)

Let λ = ρ2. AsL0 is self-adjoint, the parameter ρ is either real or pure imaginary. Since only the identical
zero among the linear functions suits the initial data in (4), λ = 0 is not the eigenvalue of L0.

Let λ , 0. The general solution of the equation in (4),

u(x) = A sinhρx + B cosρx, (5)

produces the following condition for the eigenvalues of (4):

ω(ρ) ≡ ρ(coshρ cosρ + sinhρ sinρ) = 0. (6)
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Suppose that ρ is a negative real number. Then (6) yields the equation

tanρ + cothρ = 0 (7)

which has infinitely many roots {ρk}k≤−1. The first root ρ−1 belongs to (−3π/4,−π/2) and ρk →∞ as k→ −∞.
Since cothρk → −1 we have tanρk → 1 and it is reasonable to put ρk = (π/4) + πk + δk. Then (7) transforms
into the equation tan((π/4) + δk) = (1 + exp(2ρk))/(1 − exp(2ρk)) whence tan δk = exp(2ρk). Therefore δk is
the infinitesimal which behaves like exp(2ρk) ∼ exp((π/2) − 2π|k|) as k→ −∞.

The roots of (7) are simple since (tanρ + cothρ)′ = 2 + tan2 ρ − coth2 ρ which equals 2 when ρ = ρk.
The case when ρ = iν, ν ∈ R+, is treated similarly. The condition (6) transforms into tan ν − coth ν = 0

whence ν = νk = (π/4) +πk + δk, k = 0, 1, 2, . . . (the first root ν0 belongs to (π/4, π/2)). This easily implies the
behavior δk ∼ exp(−(π/2) − 2πk) as k→ +∞ and the simplicity of the roots νk.

Lemma 1. The operator L0 is not bounded below and has simple eigenvalues λk = ρ2
k , k ∈ Z, which have the

asymptotics

ρk = (π/4) + πk + δk, k = −1,−2, . . . , δk ∼ exp((π/2) − 2π|k|), k→ −∞, (8)
ρk = i((π/4) + πk + δk), k = 0, 1, 2, . . . , δk ∼ exp(−(π/2) − 2πk), k→ +∞. (9)

Now the eigenfunctions uk(x) of L0 could be easily constructed from the general solution (5).
For k = −1,−2, . . ., we put

uk(x) = −2 exp(ρk)
(
sinhρk cosρkx + cosρk sinhρkx

)
, (10)

and, for k = 0, 1, 2, . . .,

uk(x) = 2i exp(ρk)
(
cos(iρk) sinh(iρkx) + sinh(iρk) cos(iρkx)

)
. (11)

The choice of constants in (10) and (11) becomes clear from the following lemma.

Lemma 2. The eigenfunctions (10) satisfy the estimate (with αk = (π/4) + πk)

uk(x) = cosαkx − (−1)k
√

2 exp(−|αk|) sinhαkx + O(exp(−2π|k|)), k→ −∞, (12)

and the eigenfunctions (11) — the estimate

uk(x) = sinαkx + (−1)k
√

2 exp(−αk) coshαkx + O(exp(−2πk)), k→ +∞. (13)

The estimates (12) and (13) are proved by the direct substitution of (8) and (9) into (10) and (11).
It is clear from (12) and (13) that the eigenfunctions uk(x) of L0 are uniformly bounded with respect to

k ∈ Z and x ∈ [−1, 1]. Moreover, their L2[−1, 1]-norms are estimated as follows
– for k→ −∞,

‖uk‖
2
2 = ‖ cosαkx‖22 + 2 exp(−2|αk|)‖ sinhαkx‖22 + O(exp(−2π|k|)) =

= (1 + α−1
k /2) + α−1

k exp(−2|αk|) sinh(2αk) + O(exp(−2π|k|)) = 1 + O(exp(−2π|k|)), (14)

– for k→ +∞,

‖uk‖
2
2 = ‖ sinαkx‖22 + 2 exp(−2|αk|)‖ coshαkx‖22 + O(exp(−2π|k|)) =

= (1 − α−1
k /2) + α−1

k exp(−2αk) sinh(2αk) + O(exp(−2π|k|)) = 1 + O(exp(−2π|k|)). (15)

It follows from (14) and (15) and the self-adjointness of L0 that the system {uk(x)}k∈Z forms the almost
normalized orthogonal basis in L2(−1, 1).
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The estimates (12) and (13) give the temptation to treat the eigenfunctions uk(x) of L0 as a perturbation
of the system

u0
k(x) =

{
cos((π/4) + πk), k = −1,−2, . . . ,
sin((π/4) + πk), k = 0, 1, 2, . . . (16)

The known properties of the system {u0
k(x)}k∈Z show that such an approach is faulty. The results in [22]

and the symmetry of functions in (16) show that this system does not form the basis in L2(−1, 1)1) (though
it is complete there).

Instead of the system (16) one could more likely consider the system {ũ0
k(x)}k∈Z that differs from (12)–(13)

by the absence of O-terms in the right-hand sides. Clearly
∑

k∈Z

∥∥∥uk − ũ0
k

∥∥∥
2
< ∞ and it is possible to apply

results on stability of bases in Banach spaces [31, Chapter I §10].

The eigenfunction expansion of an arbitrary function f (x) ∈ L2(−1, 1) could be rewritten using the
resolvent of the considered operator. If G0(x, t;λ) is the integral kernel of the resolvent of L0 (i.e., it is the
Green’s function of L0) and Sm(x, f ) is the partial sum of the eigenfunction expansion for f :

Sm(x, f ) =
∑
|k|≤m

‖uk‖
−2
2 ( f ,uk) uk(x), (17)

then the following relation holds

Sm(x, f ) = −
1

2πi

∫
Lm


1∫
−1

G0(x, t;λ) f (t) dt

 dλ (18)

where Lm = {λ ∈ C | |λ| = R2
m} and this circle of radius Rm contains only the eigenvalues λk with |k| ≤ m. The

asymptotics in Lemma 1 show that, for large m, the radius Rm could be taken as (π/2) + πm.

Let us construct the Green’s function of L0. By its definition, for any function f (x) ∈ L1(−1, 1), the
Green’s function G0(x, t;λ) gives the almost everywhere (a. e.) solution of the problem

−u′′(−x) = λu(x) + f (x), −1 < x < 1,
u(−1) = u′(−1) = 0, (19)

in the form

u(x) =

1∫
−1

G0(x, t;λ) f (t) dt. (20)

The straightforward calculation proves the following assertion.

1)The same property actually holds for any space Lp(−1, 1), p > 1.
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Theorem 1. If λ = ρ2 is not the eigenvalue of L0 then the unique solution of (19) is given by the formula2)

u(x) =
1

2ω(ρ)

[
(coshρ sinρ + sinhρ cosρ)

1∫
−1

f (t) sinhρt dt −

1∫
−1

f (t) cosρt dt
]

sinhρx+

+
1

2ω(ρ)

[
(coshρ sinρ − sinhρ cosρ)

1∫
−1

f (t) cosρt dt −

1∫
−1

f (t) sinhρt dt
]

cosρx+

+
1

2ρ

[ −x∫
−1

−

1∫
x

]
(cosρx sinρt + sinhρx coshρt) f (t) dt −

1
2ρ

x∫
−x

(sinρx cosρt + coshρx sinhρt) f (t) dt.

(21)

Hence the Green’s function has the form

G0(x, t;λ) =
1

2ω(ρ)

[
(coshρ sinρ + sinhρ cosρ) sinhρt sinhρx − cosρt sinhρx+

+ (coshρ sinρ − sinhρ cosρ) cosρt cosρx − sinhρt cosρx
]
−

1
2ρ
10(x, t;λ) (22)

where

10(x, t;λ) =

{
sgn x (sinρx cosρt + coshρx sinhρt) if |t| ≤ |x|,
sgn t (cosρx sinρt + sinhρx coshρt) if |t| ≥ |x|. (23)

The properties of the Green’s function G0(x, t;λ) can be easily extracted from its explicit form (22)–(23).

Lemma 3. If λ = ρ2 is not the eigenvalue of L0 then
a) G0(x, t;λ) is symmetric: G0(x, t;λ) = G0(t, x;λ);
b) G0(x, t;λ) is continuous in the rectangle −1 ≤ x, t ≤ 1;
c) G0(x, t;λ) has the derivative ∂xG0(x, t;λ) which is continuous in each triangle {(x, t) | −1 ≤ x ≤ 1,−1 ≤ t < −x},

{(x, t) | − 1 ≤ x ≤ 1,−x < t ≤ 1}, has the limit values on the diagonal x = −t and satisfies the relation

∂xG0(x, t;λ)|t=−x+0 − ∂xG0(x, t;λ)|t=−x−0 = 1;

d) G0(x, t;λ) has the second derivative ∂2
xG0(x, t;λ) which is continuous inside the triangles of c), and satisfies

there the equation
−∂2

xG0(−x, t;λ) = λG0(x, t;λ)

and the initial conditions G0(−1, t;λ) = ∂0G0(−1, t;λ) = 0.

The formula (20) readily implies that properties b)–d) could be taken as an alternative definition of the
Green’s function G0(x, t;λ) as these properties provide the integral in (20) gives the solution to the problem
(19).

Our next step is obtaining the estimate of G0(x, t;λ) for λ ∈ C outside the spectrum of L0.
Let Dε be the collection of the balls centered at ρk, k ∈ Z, with sufficiently small radius ε.

2)The formula (21) also contains the solution of (19) in the case λ = 0: u(x) = −
∫ 1
−x(t + x) f (t) dt.
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Lemma 4. For λ = ρ2 with ρ laying outside the balls Dε and |ρ| ≥ 1, the Green’s function G0(x, t;λ) satisfies the
uniform with respect to −1 ≤ x, t ≤ 1 estimate

|G0(x, t;λ)| ≤ Cε|ρ|−1r(x, t, ρ) (24)

where

r(x, t, ρ) = exp
(
−ρ∗||x| − |t||

)
+ exp

(
−ρ∗(2 − |x| − |t|)

)
, ρ∗ = min

(
|Reρ|, |Imρ|

)
. (25)

Proof. Due to the property a) in Lemma 3 it is sufficient to prove (24) only for |t| ≤ |x|. Let us rewrite the
relation (22) in the different form

G0(x, t;λ) =
1

2ω(ρ)

[
− cosρt sinhρx − sinhρt cosρx − sgn x sinhρt

(
sinρ sinhρ(1 − |x|)+

+ cosρ coshρ(1 − |x|)
)

+ cosρt
(
coshρ sinρ(1 − |x|) − sinhρ cosρ(1 − |x|)

)]
. (26)

The estimate (24) readily follows from (26), the lower estimate

| coshρ cosρ + sinhρ sinρ| ≥ cε exp
(
|Reρ| + |Imρ|

)
and the usual upper estimates for trigonometric and hyperbolic functions.

3. The General Case

Let us consider the general case of the complex-valued coefficient q(x) ∈ L2(−1, 1) in (1).
The operator L is not self-adjoint in general. If L is the closure in L2(−1, 1) of the minimal operator

related to (1) and (2) then its adjoint L∗ could be similarly defined by the operation

l∗[u] = −u′′(−x) + q(x)u(x) (27)

with the same initial data (2).
In order to study the spectral properties of L let us construct the Green’s function G(x, t;λ) of L.
The Green’s function G(x, t;λ) should deliver the solution to the problem

l[u] = λu(x) + f (x), −1 < x < 1,
u(−1) = u′(−1) = 0, (28)

in the form

u(x) =

1∫
−1

G(x, t;λ) f (t) dt. (29)

Mimicking the considerations in the unperturbed case it is easy to show that if
– the function G(x, t;λ) is absolutely continuous in the rectangle −1 ≤ x, t ≤ 1,
– the derivative ∂xG(x, t;λ) is absolutely continuous in each triangle {(x, t) | − 1 ≤ x ≤ 1,−1 ≤ t < −x},

{(x, t) | − 1 ≤ x ≤ 1,−x < t ≤ 1} and has the limit values on the diagonal x = −t which match the condition

∂xG(x, t;λ)|t=−x+0 − ∂xG(x, t;λ)|t=−x−0 = 1;

– G(x, t;λ) satisfies the equation

−∂2
xG(−x, t;λ) + q(x)G(x, t;λ) = λG(x, t;λ)
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a. e. in each above mentioned triangle and matches the initial conditions G(−1, t;λ) = ∂xG(−1, t;λ) = 0,
then the integral in (29) is the solution to (28).

In other words, it means that these three conditions could be taken as the definition of the Green’s
function G(x, t;λ) for L.

The symmetric property a) for G0(x, t;λ) in Lemma 3 transforms here into the condition G(t, x;λ) =

G(x, t;λ) that could be derived from the definition of the adjoint operator L∗ by (27).
The properties of G0(x, t;λ) and G(x, t;λ) yield that the difference G(x, t;λ)−G0(x, t;λ) is the a.e. solution

(with respect to x) of the equation

−w′′(−x) = λw(x) + q(x)G(x, t;λ) (30)

which satisfies the initial data (2).
Using (20) we rewrite (30) in the form

G(x, t;λ) − G0(x, t;λ) = −

1∫
−1

G0(x, s;λ)q(s)G(s, t;λ) ds (31)

and obtain the existence of its solution.

Lemma 5. For sufficiently large ρ laying outside Dε (with any small ε > 0), the equation (31) has a unique absolutely
continuous solution G(x, t, λ).

Proof. We apply the method of successive approximations. Let us introduce the functions

G(0)(x, t;λ) ≡ 0, G(p+1)(x, t;λ) = G0(x, t;λ) −

1∫
−1

G0(x, s;λ)q(s)G(p)(s, t;λ) ds

and, for any t ∈ [−1, 1], the related constants

γ0 = max
−1≤x≤1

∣∣∣G(1)(x, t;λ)
∣∣∣ |ρ|r−1(x, t, ρ), γp = max

−1≤x≤1

∣∣∣G(p+1)(x, t;λ) − G(p)(x, t;λ)
∣∣∣ |ρ|r−1(x, t, ρ).

We prove that, for sufficiently large ρ laying outside Dε, the estimate

γp ≤ 2−pCε (32)

holds with the constant Cε in the estimate (24) of Lemma 4.
In fact, the estimate (32) with p = 0 repeats (24). Then, by induction, we deduce the relations:

γp+1 ≤ max
−1≤x≤1

{
|ρ|r−1(x, t, ρ)

1∫
−1

|G0(x, s;λ)| |q(s)|
∣∣∣G(p+1)(s, t;λ) − G(p)(s, t;λ)

∣∣∣ ds
}
≤

≤ Cεγp|ρ|
−1 max
−1≤x≤1

r−1(x, t, ρ)

1∫
−1

r(x, s, ρ)r(s, t, ρ)|q(s)| ds. (33)

It follows from (25) that r(x, s, ρ)r(s, t, ρ) ≤ 3r(x, t, ρ) and, therefore, the estimate (33) yields

γp+1 ≤ 3Cεγp|ρ|
−1

1∫
−1

|q(s)| ds.
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The latter inequality delivers the estimate (32) if

6Cε|ρ|−1

1∫
−1

|q(s)| ds ≤ 1.

Estimate (32) provides that the series
∑
∞

p=1

(
G(p+1)(x, t;λ)−G(p)(x, t;λ)

)
converges uniformly for x ∈ [−1, 1].

As its m-th partial sum equals G(m+1)(x, t;λ) − G0(x, t;λ), the sequence G(m)(x, t;λ) also converges uniformly
and its limit G(x, t;λ) satisfies (31).

Remark 1. It follows from Lemma 5 that the Green’s function G(x, t;λ) ofL could have poles (and, therefore,
the operator L could have eigenvalues) that are asymptotically close to the eigenvalues λk = ρ2

k of L0.

Corollary 1. Under the assumptions of Lemma 5, the Green’s function G(x, t;λ) satisfies the estimate

|G(x, t;λ)| ≤ 2Cε|ρ|−1r(x, t, ρ). (34)

Let us consider the biorthogonal eigenfunction expansion related to L

f (x) ∼
∑
k∈Z

( f , ṽk) ũk(x) (35)

where ũk(x) are the root functions of L, ṽk(x) form the biorthogonal system (they are the root functions of
L
∗). Denote by σm(x, f ) the partial sum of (35) that includes all the root functions ũk(x) corresponding to the

eigenvalues λ̃k = ρ̃2
k that satisfy the condition |ρ̃k| < Rm.

Then, for the same sequence of contours Lm and sufficiently large m, the partial sums σm(x, f ) have the
integral representation

σm(x, f ) = −
1

2πi

∫
Lm


1∫
−1

G(x, t;λ) f (t) dt

 dλ

and therefore, due to (18),

σm(x, f ) − Sm(x, f ) = −
1

2πi

∫
Lm


1∫
−1

[
G(x, t;λ) − G0(x, t;λ)

]
f (t) dt

 dλ. (36)

Theorem 2. For an arbitrary function f (x) ∈ L1(−1, 1), the eigenfunction expansions of f (x) related to L and L0
equiconverge and the estimate (3) holds uniformly with respect to x ∈ [−1, 1].

Proof. It follows from the estimates (24) and (34) that, for sufficiently large m and ρ2
∈ Lm, we have

∣∣∣G(x, t;ρ2) − G0(x, t;ρ2)
∣∣∣ ≤ 4C2

ε|ρ|
−2r(x, t, ρ)

1∫
−1

|q(s)| ds.

Hence relation (36) yields

|σm(x, f )−Sm(x, f )| ≤
1
π

∫
ρ2∈Lm


1∫
−1

∣∣∣G(x, t;ρ2) − G0(x, t;ρ2)
∣∣∣ | f (t)| dt

 |ρ dρ| ≤ C1

∫
ρ2∈Lm


1∫
−1

r(x, t, ρ)| f (t)| dt


∣∣∣∣dρρ ∣∣∣∣
(37)



L. Kritskov, A. Sarsenbi / Filomat 32:3 (2018), 1069–1078 1077

where C1 = 4C2
επ
−1

∫ 1

−1 |q(s)| ds.
Taking sufficiently small δ > 0, we split the interval (−1, 1) into two parts:

∆1 = (−1, 1) \ ∆2, ∆2 = (−1,−1 + δ) ∪ (−x − δ,−x + δ) ∪ (x − δ, x + δ) ∪ (1 − δ, 1).

Therefore, the estimate (37) turns into the relation

|σm(x, f )−Sm(x, f )| ≤ C1

∫
ρ2∈Lm

∫
∆1

(
exp(−ρ∗||x|− |t||)+exp(−ρ∗(2−|x|− |t|))

)
| f (t)| dt

∣∣∣∣dρρ ∣∣∣∣+2C1π

∫
∆2

| f (t)| dt. (38)

Due to Lebesgue Theorem, for any ε0 > 0, there exists δ > 0 such that the second term in the right-hand
side of (38) is less than ε0/2. The first term satisfies the estimate

∫
ρ2∈Lm

∫
∆1

(
exp(−ρ∗||x| − |t||) + exp(−ρ∗(2 − |x| − |t|))

)
| f (t)| dt

∣∣∣∣dρρ ∣∣∣∣ ≤ 3

1∫
−1

| f (t)| dt
∫

ρ2∈Lm

exp(−ρ∗δ)
∣∣∣∣dρρ ∣∣∣∣.

Since ∫
ρ2∈Lm

exp(−ρ∗δ)
∣∣∣∣dρρ ∣∣∣∣ = 4

π/4∫
0

exp(−δRm| sin τ|) dτ + 2

3π/4∫
π/4

exp(−δRm| cos τ|) dτ ≤ C2R−1
m .

Therefore, the second term in the right-hand side of (38) could be also made less than ε0/2 provided m
is sufficiently large.

As the equiconvergence property (3) is obtained uniformly on [−1, 1] for any integrable function f (x)
and the orthogonal series (17) converges for any function f (x) ∈ L2(−1, 1) in the metric of L2(−1, 1), Theorem
2 directly provides that, for any function f (x) ∈ L2(−1, 1),∥∥∥σm(x, f ) − f (x)

∥∥∥
2

= o(1), m→∞.

Theorem 3. The system of root functions of L with an arbitrary complex-valued coefficient q(x) ∈ L2(−1, 1) forms a
basis in L2(−1, 1).
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