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Abstract. The problem of optimal control for time-varying linear systems with fixed endpoints of trajecto-
ries is considered. A corresponding quadratic objective functional depends on the control, the state of the
object and on its integral. New technique of designing the PI controller for the automatic control systems
with box constraints on values of control is proposed. The problem is solved by using Lagrange multipliers
of a special type.

1. Introduction

The construction of the automatic operation control of real and complex systems requires the use of
new information technologies, it is actually necessary to develop new principles of design the systems with
a high level of complexity. Actually, there are well-known two task statements for the optimal control
problem.

According to one of them, the optimal control is determined as a function of time and the initial state of
the system (programmed control). Another formulation of the problem involves the synthesis of optimal
control with feedback, i.e. control is determined as a function of the current state of the system and
time. The solving optimal control problem in the first statement is based on the Pontryagin maximum
principle (the solution is reduced to the corresponding two-point boundary value problem). The solving
of the same problem with the second task statement is based on the dynamic programming method (the
problem reduces to the solution of the Bellman equation). Works by Pontryagin and Bellman constitute the
mathematical basis of optimal control theory [3, 4, 9]. In the field of automatic control published works one
can find various examples of mathematical formulation and methods of solving optimal control problems
[1, 2, 5, 6]. But still, the development of various methods of constructing the PI and PID controllers with
the necessary properties is an urgent problem [8, 10].

In this paper, we propose a new approach of designing PI controller for the automatic control systems
based on feedback principle, with the constraints on the values of control.
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2. Problem Statement

Consider the controlled linear system which is described by the vector differential equation:

ẋ = A(t)x + B(t)u + f (t), t ∈ [t0,T], x(t0) = x0, x(T) = 0, (1)

u(t) ∈ U(t) = {u | α(t) ≤ u(t) ≤ β(t), t ∈ [t0,T]; α(·), β(·) ∈ C[t0,T]}, (2)

where x = x(t) is a n-vector of state of the controlled object; u(t) is a m-vector of piecewise continuous
controls; A(t), B(t) are (n× n) and (n×m)-matrices, respectively; f (t) is a piecewise continuous and α(t), β(t)
are continuous functions on the time interval [t0,T]; x0 is a given n-vector; t0, T are given initial and final
time values.

We shall assume that system (1) is controllable. Denote ∆(t0,T) the set of all permissible controls u(t),
satisfying the conditions u(t) ∈ U(t), t ∈ [t0,T], and the corresponding trajectories x(u, t) of system (1)
defined on the interval t0 ≤ t ≤ T.

Suppose that on the set ∆(t0,T) the functional J is given, which depends on the control, on the state of
the object and its integral:

J(y, x,u) =
1
2

T∫
t0

[y∗(t)D(t)y(t) + x∗(t)Q(t)x(t) + u∗(t)R(t)u(t)] dt, (3)

ẏ = C(t)x, t ∈ [t0,T], y(t0) = y0, y(T) = 0, (4)

where y(t) is a p-vector; C(t) is a (p × n)-matrix; R(t) is a positive definite (m × m)-matrix; Q(t) and D(t) are
positive semidefinite (n× n) and (p× p)-matrices, respectively. Symbol ∗ denotes a transposition. Here y0 is
a given p-vector which characterizes the integrated property of the system trajectory x(t):

T∫
t0

C(t)x(t) dt = −y0. (5)

It is required to find a synthesizing control u(y, x, t) such that the corresponding pair (x(t),u(t)) gives
the minimum to the functional (3), where the trajectory x(t), the solution of the differential equation (1),
satisfies the integrated restriction (5) and the constraints (2) are hold for the control u(t) = u(y(t), x(t), t).

A method based on the Lagrange multipliers of special type [7] is used to solve the optimal control
problem (1)-(4).

3. Solving the Problem

Consider the following functional to solve the problem

L(y, x,u) =

T∫
t0

{1
2

y∗D(t)y +
1
2

x∗Q(t)x +
1
2

u∗R(t)u + [K1(t)y + K2(t)x + q1(t)]∗[C(t)x − ẏ]

+
[
K∗2(t)y + K3(t)x + q2(t)

]∗ [
A(t)x + B(t)u + f (t) − ẋ

]
+ λ∗1(t) [α(t) − u] + λ∗2(t)

[
u − β(t)

]
+λ∗3

[
x −W∗

2(t,T)q1(t) −W3(t,T)q2(t) − z2(t)
]

+ λ∗4(t)
[
y −W1(t,T)q1(t) −W2(t,T)q2(t) − z1(t)

]}
dt,

(6)

where q1(t) and q2(t) are p and n-vectors, respectively; K1(t), K2(t) and K3(t) are (p × p), (p × n) and (n × n)-
matrices, respectively. Multipliers [K∗2(t)y+K3(t)x+q2(t)] and [K1(t)y+K2(t)x+q1(t)] eliminate the constraints
on (y, x,u) in the form of system of differential equations (1) and (4); multipliers λ1(t) and λ2(t) eliminate
the constraints (2) on control u; multipliers λ3(t) and λ4(t) are used to determine boundary conditions for



Z. Murzabekov / Filomat 32:3 (2018), 1091–1096 1093

vector-functions q1(t) and q2(t). Such design of the functional (6) allows to reduce the original conditional
extremum problem to the type of an unconditional extremum.

Using the optimality conditions, we obtain :

u = −R−1(t)B∗(t)[K∗2(t)y + K3(t)x + q2(t)] + R−1(t)[λ1(t) − λ2(t)]. (7)

Suppose that matrices K1(t), K2(t), K3(t) are solutions of Riccati equations:

K̇1(t) − K2(t)B(t)R−1(t)B∗(t)K∗2(t) + D(t) = 0. K1(t0) = K10, (8)

K̇2(t) − K2(t)B(t)R−1B∗(t)K3(t) + K2(t)A(t) + K1(t)C(t) = 0, K2(t0) = K20, (9)

K̇3(t) + K3(t)A(t) + A∗(t)K3(t) − K3(t)B(t)R−1(t)B∗(t)K3(t)
+K∗2(t)C(t) + C∗(t)K2(t) + Q(t) = 0, K3(t0) = K30,

(10)

and the vector-functions q1(t), q2(t), q3(t) satisfy the differential equations

q̇1 = K2(t)B(t)R−1(t)B∗(t)q2 −W−1
1 (t,T)W2(t,T)[W3(t,T) −W∗

2(t,T)W−1
1 (t,T)W2(t,T)]−1B(t)ϕ(t), (11)

q̇2 = −C∗(t)q1 −
[
A(t) − B(t)R−1(t)B∗(t)K3(t)

]∗
q2 +

[
W3(t,T)W∗

2(t,T) −W−1
1 (t,T)W2(t,T)

]−1
B(t)ϕ(t), (12)

where ϕ(t) = R−1(t)[λ1(t) − λ2(t)], and multipliers λ3(t), λ4(t) are determined as follows:

λ3(t) = −K3(t) f (t) − [K2(t) −W−1
1 (t,T)W2(t,T)][W3(t,T) −W∗

2(t,T)W−1
1 (t,T)W2(t,T)]−1B(t)ϕ(t),

λ4(t) = −K2(t) f (t) − {K2(t) −W−1
1 (t,T)W2(t,T)[W3(t,T) −W∗

2(t,T)W−1
1 (t,T)W2(t,T)]−1

}B(t)ϕ(t).

Note that we determine the initial conditions for the differential equations (11) and (12) from the
following equations:

y(t) = W1(t,T)q1(t) + W2(t,T)q2(t) + z1(t), (13)

x(t) = W∗

2(t,T)q1(t) + W3(t,T)q2(t) + z2(t), (14)

where matrices W1(t,T), W2(t,T), W3(t,T) satisfy to the following matrix differential equations:

Ẇ1(t,T) = W2(t,T)C∗(t) + C(t)W∗

2(t,T), W1(T,T) = 0,

Ẇ2(t,T) = −W1(t,T)K2(t)B1(t) + W2(t,T)A∗1(t) + C(t)W3(t,T), W2(T,T) = 0,

Ẇ3(t,T) = −W∗

2(t,T)K2(t)B1(t) − B1(t)K∗2(t)W2(t,T) + W3(t,T)A∗1(t) + A1(t)W3(t,T) − B1(t), W3(T,T) = 0,

and vector-functions z1(t), z2(t) are determined as the solution of the differential equations:

ż1 = C(t)z2, z1(T) = 0,

ż2 = −B1(t)K∗2(t)z1 + A1(t)z2 + f (t), z2(T) = 0,

from which we find z1(T0), z2(t0), and then determine the initial conditions using (13) and (14):

q1(t0) = W−1
1 (t0,T){I + W2(t0,T)

[
W3(t0,T) −W∗

2(t0,T)W−1
1 (t0,T)W2(t0,T)

]−1
W∗

2(t0,T)W−1
1 (t0,T)}

×
[
y(t0) − z1(t0)

]
−W−1

1 (t0,T)W2(t0,T)
[
W3(t0,T) −W∗

2(t0,T)W−1
1 (t0,T)W2(t0,T)

]−1
[x(t0) − z2(t0)] ,

(15)

q2(t0) =
[
W3(t0,T) −W∗

2(t0,T)W−1
1 (t0,T)W2(t0,T)

]−1
[x(t0) − z2(t0)]−W∗

2(t0,T)W−1
1 (t0,T)

[
y(t0) − z1(t0)

]
. (16)

Thus a differential equation which determines the law of motion of the system (1) with the control (7) is as
follows

ẋ = A1(t)x − B1(t)[K∗2(t)y + q2(t)] + B(t)ϕ(t) + f (t), x(t0) = x0, x(T) = 0,
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ẏ = C(t)x, y(t0) = y0, y(T) = 0,

where A1(t) = A(t) − B(t)R−1(t)B∗(t)K3(t), B1(t) = B(t)R−1(t)B∗(t).
Let

ω(y, x, t) = −R−1(t)B∗(t)[K∗2(t)y + K3(t)x + q2(t)].

Multipliers λ1(t) ≥ 0, λ2(t) ≥ 0, and control u(t) we determine so that they satisfy the following conditions:

R(t)[u(t) − ω(y, x, t)] − λ1(t) + λ2(t) = 0,

λ∗1(t)[α(t) − u(t)] = 0, λ∗2(t)[u(t) − β(t)] = 0.

Hence we obtain the following

Theorem 3.1. A pair (x(t),u(t)) ∈ ∆(t0,T) is optimal if and only if
1) the state vector x(t) satisfies the following differential equation:

ẋ = A1(t)x − B1(t)[K∗2(t)y + q2(t)] + B(t)ϕ(y, x, t) + f (t), x(t0) = x0, x(T) = 0;

2) the control vector u(t) is determined as

u(y, x, t) = −R−1(t)B∗(t)[K∗2(t)y + K3(t)x + q2(t)] + ϕ(y, x, t),

where matrices K2(t), K3(t) are solutions of equations (8)-(10), vector-function q2(t) satisfies equations (11), (12) with
initial conditions (15), (16), and ϕ(y, x, t) is determined as follows:

ϕ(y, x, t) = R−1(t)[λ1(y, x, t) − λ2(y, x, t)].

The theorem can be proved by using of a special type Lagrange multipliers [7].

4. Example

We consider as an example the optimal control problem: minimize the functional

J(y, x,u) =
1
2

T∫
t0

[y2 + 3x2
1 + 3x2

2 + u2] dt

subject to:

ẋ1 = x2, ẋ2 = u, ẏ = x1, x1(t0) = 2, x1(T) = 0, x2(t0) = 2, x2(T) = 0,
T∫

t0

x1(t) dt = 8, y(t0) = −8, y(T) = 0, α ≤ u(t) ≤ β, t ∈ [t0,T], α = −1.5, β = 1.5, t0 = 0, T = 7.

The desired optimal control can be written as

u(y, x, t) = ω(y, x, t) + ϕ(y, x, t),

where

ω(y, x, t) = −y − 3x1 − 3x2 − q3(t), ϕ(y, x, t) = max{0; α − ω(y, x, t)} −max{0; ω(y, x, t) − β}.

Optimal trajectories y(t), x1(t), x2(t) in the time interval [t0,T] are determined by the system of differential
equations

ẏ(t) = x1(t), y(t0) = −8; ẋ1(t) = x2(t), x1(t0) = 2;
ẋ2(t) = −y(t) − 3x1(t) − 3x2(t) − q3(t) + ϕ(y, x, t), x2(t0) = 2;

q̇1(t) = q3(t) + m3(t)ϕ(y, x, t), q1(t0) = q10,
q̇2(t) = −q1(t) + 3q3(t) + m5(t)ϕ(y, x, t), q2(t0) = q20,
q̇3(t) = −q2(t) + 3q3(t) + m6(t)ϕ(y, x, t), q3(t0) = q30.
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and the optimal control u(y, x, t) is obtained as following

u(y, x, t) =

{
−1.5, t ≤ t ≤ t1,
−y(t) − 3x1(t) − 3x2(t) − q3(t), t1 < t ≤ T,

where control switching is performed at time t1 ≈ 2.52, which is defined from the condition

−y(t1) − 3x1(t1) − 3x2(t1) − q3(t1) = −1.5.

Graphs of solutions y = y(t), x1 = x1(t), x2 = x2(t) and u = u(y, x1, x2, t) are shown on Figs. 1, 2.
The obtained control u provides a fairly accurate fulfillment of the final conditions y(T) = 0, x1(T) = 0,
x2(T) = 0 (in the numerical calculations were obtained the values: y(T) ≈ −0.314 · 10−8, x1(T) ≈ 0.244 · 10−8,
x2(T) ≈ −0.180 · 10−8).

Figure 1: Graph of the optimal trajectories

Figure 2: Graph of the optimal control

5. Conclusion

In this paper, we propose a constructive method PI controller design based on the principle of feedback
and transfers the system from the initial state to the desired final state during a given time interval with
constraints on the control values. The problem is solved using Lagrange multipliers of a special type,
depending on the phase coordinates and time. The proposed method for solving the optimal control
problem with fixed endpoints of trajectories and constraints on the values of the control was implemented
on the computer using the application package Maple 15 and tested using the model task example.
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