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Abstract. Let A = (ank) be a Köthe matrix. In this paper, we introduce the space λbs(A) and we emphasize
on some topological properties of the spaces c0(A), λbs(A) and λp(A) together with some inclusion relations,
where 1 ≤ p ≤ ∞.

1. Introduction

Let ω be the vector space of all real or complex valued sequences. Any vector subspace of ω is called a
sequence space. A sequence space λ with linear topology is called a K−space if each of the maps Pn : λ→ C
defined by Pn(x) = xn is continuous for all x = (xn) ∈ λ and every n ∈ N, where C and N denote the
complex field and the set of natural numbers, respectively. A Fréchet space is a complete linear metric space.
A K-space λ is called an FK-space if λ is a complete linear metric space. A normed FK-space is called a
BK-space.

Given a BK-space λ we denote the nth section of a sequence x = (xk) ∈ λ by x[n] =
∑n

k=0 xkek and we
say that x is; AK (abschnittskonvergent) when limn→∞

∥∥∥x − x[n]
∥∥∥
λ
= 0, AB (abschnittsbeschränkt) when

supn∈N

∥∥∥x[n]
∥∥∥
λ
< ∞ and AD (abschnittsdicht) when φ is dense in λ, where en is a sequence whose only

non-zero term is 1 in nth place for each n ∈ N and φ is the set of all finitely non-zero sequences. If one of
these properties holds for every x ∈ λ, then we said that the space λ has that property. It is trivial that AK
implies AB and AD.

The α−, β−, γ− and f−duals λα, λβ, λγ and λ f of a sequence space λ are defined as follows;

λα =
{
x = (xk) ∈ ω : xy = (xkyk) ∈ `1 for all y = (yk) ∈ λ

}
,

λβ =
{
x = (xk) ∈ ω : xy = (xkyk) ∈ cs for all y = (yk) ∈ λ

}
,

λγ =
{
x = (xk) ∈ ω : xy = (xkyk) ∈ bs for all y = (yk) ∈ λ

}
,

λ f =
{
( f (ek)) : f ∈ λ′

}
,

where λ′ is the continuous dual of the space λ.
A matrix A = (ank) of non-negative numbers is called a Köthe matrix if it satisfies the following conditions:

(i) For each n ∈N there exists a k ∈N such that ank > 0.
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(ii) ank ≤ an,k+1 for all n, k ∈N.

The spaces λp(A) with 1 ≤ p < ∞, λ∞(A) and c0(A) are defined, as follows;

λp(A) :=

x = (xn) ∈ ω : ‖x‖k =

 ∞∑
n=0

|xnank|
p


1/p

< ∞ for each k ∈N

 ,
λ∞(A) :=

{
x = (xn) ∈ ω : ‖x‖k = sup

n∈N
|xnank| < ∞ for each k ∈N

}
,

c0(A) :=
{
x = (xn) ∈ λ∞(A) : lim

n→∞
xnank = 0 for each k ∈N

}
.

For every Köthe matrix A, the spaces λp(A) with 1 ≤ p ≤ ∞ and c0(A) are Fréchet spaces, [1, 8]. A Fréchet
sequence space λ is called a Köthe space if λ = λ1(A) for some Köthe matrix A. The spaces λp(A), 1 < p ≤ ∞
are called as generalized Köthe spaces by Bierstedt et al. [1]. In some sources, for example [3, 7], the spaces
λp(A) denoted by K`p (A) and called by `p−Köthe space for 1 ≤ p < ∞.

Let ` be a Banach space of scalar sequences with a norm ‖ · ‖` such that

(i) a = (an) ∈ `∞, x = (xn) ∈ `⇒ ax = (anxn) ∈ `, ‖ax‖` ≤ ‖a‖∞‖x‖`
(ii) ‖en

‖` = 1 for all n ∈N.

The space (`, ‖ · ‖`) is called admissible, [7]. With the usual dual norm, the space `α is also admissible.
For a given Banach sequence space ` and a Köthe matrix A, the `−Köthe space K`(A) is the space of all

scalar sequences x = (xn) such that

‖x‖k = ‖(xnank)‖` < ∞ for each k = 1, 2, . . . . (1)

Equipped with semi-norms given by (1) K`(A) is a Fréchet space, [3].
It is well-known that the space bs of bounded series is defined by

bs :=

x = (xk) ∈ ω : ‖x‖bs = sup
n∈N

∣∣∣∣∣∣∣
n∑

k=0

xk

∣∣∣∣∣∣∣ < ∞


and is an admissible space with the norm ‖ · ‖bs.
Following [3, 7], we define the new space λbs(A) by

λbs(A) :=

x = (xn) ∈ ω :
∥∥∥x

∥∥∥bs

k = sup
m∈N

∣∣∣∣∣∣∣
m∑

n=0

xnank

∣∣∣∣∣∣∣ < ∞ for each k ∈N

 .
One can easily see that the space λbs(A) is a Fréchet space with the norm ‖ · ‖bs

k .
A sequence space λ is called

(i) solid if λ̃ = {u = (un) ∈ ω : ∃x ∈ λ,∀n ∈N such that |un| ≤ |xn|} ⊂ λ.
(ii) monotone if ux = (ukxk) ∈ λ for every x = (xk) ∈ λ and u = (uk) ∈ χ,

where χ denotes the set of all sequences of zeros and ones, [2].
Obviously, each solid space is monotone.

Let λ be an FK−space. Then, λ is a conservative space if c ⊂ λ, [10].
A BK−space λ is said to have monotone norm if

∥∥∥x[m]
∥∥∥ ≥ ∥∥∥x[r]

∥∥∥ for m > r and ‖x‖ = sup
∥∥∥x[m]

∥∥∥, [10].
Let λ be a locally convex space. Then,

(i) λ is called bornological if every circled, convex subset A ⊂ λ that absorbs every bounded set in λ is a
neighborhood of 0, [6].

(ii) A subset is called barrel if it is absolutely convex, absorbing and closed in λ. Moreover, λ is called a
barrelled space if each barrel is a neighbourhood of zero, [2].
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Lemma 1.1. ([2, Theorem 7.1.10 (a), p. 343]) If λ is a solid sequence space, then λα = λβ = λγ.

Lemma 1.2. ([10, Theorem 7.2.7, p. 106]) Let λ ⊃ φ be an FK−space. Then, the following statements hold:

(i) λβ ⊂ λγ ⊂ λ f .
(ii) If λ has AK−property, then λβ = λ f

(iii) If λ has AD−property, λβ = λγ.

Lemma 1.3. ([6, Corollary 7.1, p. 60]) Every Banach space and every Fréchet space is a barrelled space.

Lemma 1.4. [6, p. 61] Every Fréchet space and hence every Banach space is bornological.

Lemma 1.5. Let yn = y(en) for each n ∈N. Then, the following statements hold:

(i) ([5, Lemma 27.11, p. 332]) λ′ = λα for every Köthe matrix A and λ = λp(A), 1 ≤ p < ∞, respectively,
λ = c0(A); where the duality is given by y(x) =

∑
n xnyn.

(ii) ([5, Proposition 27.13, p. 332]) For every Köthe matrix A and λ = λp(A), 1 ≤ p < ∞, respectively, λ = c0(A)
(‖ · ‖b)b∈λ∞(A) is a fundamental system of seminorms for λ′; where for y ∈ λ′ = λα we define

‖y‖b =

 ∞∑
n=0

|ynbn|
q


1/q

for λ = λp(A) with 1 < p < ∞, q =
p

p − 1
,

‖y‖b = sup
n∈N
|ynbn| for λ = λ1(A),

‖y‖b =
∞∑

n=0

|ynbn| for λ = c0(A).

Further we have,

λ′ = λα =
{
y ∈ ω : ‖y‖b < ∞ for all b ∈ λ∞(A)

}
. (2)

In this paper, we use standard terminology and notation due to [5] and [4].

2. Main Results

Theorem 2.1. Let 1 ≤ p ≤ ∞ and let ank ≥ K ∈ R+ for each n, k ∈N. Then, the spaces λp(A), c0(A) and λbs(A) are
BK−spaces.

Proof. Assume that there exists a K ∈ R+ such that ank ≥ K for each n, k ∈N.
Let x = (xn) ∈ λp(A) with 1 ≤ p < ∞. Then,

|Pn(x)| = |xn| ≤

 ∞∑
n=0

|xn|
p


1/p

≤
1
K

 ∞∑
n=0

|xnank|
p


1/p

≤
1
K
‖x‖k, (3)

where Pn : λp(A) → C for each n ∈ N. Hence, by (3) each of the linear maps Pn is bounded and so is
continuous. So, the spaces λp(A) with 1 ≤ p < ∞ are K−spaces.

Let p = ∞. Then, one can easily see for all x = (xn) ∈ λ∞(A) that

|Pn(x)| = |xn| ≤
1
K
|xnank| ≤

1
K

sup
n∈N
|xnank| =

1
K
‖x‖k, (4)

where Pn : λ∞(A) → C for each n ∈ N. Hence, by (4), each of the linear maps Pn is bounded and so is
continuous. Therefore, the space λ∞(A) is a K−space. With the similar way, we see that c0(A) is a K−space.
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It is easy to see that

sup
n∈N
|xnank| = sup

n∈N

∣∣∣∣∣∣∣∣
n∑

j=0

x ja jk −

n−1∑
j=0

x ja jk

∣∣∣∣∣∣∣∣ ≤ 2
∥∥∥x

∥∥∥bs

k

for all x ∈ λbs(A). So, we have

|Pn(x)| = |xn| ≤ sup
n∈N
|xn| ≤

1
K

sup
n∈N
|xnank| ≤

2
K

∥∥∥x
∥∥∥bs

k , (5)

where Pn : λbs(A) → C for each n ∈ N. Hence, by (5) each of the linear maps Pn is bounded and so is
continuous. Therefore, the space λbs(A) is a K−space.

In addition since these spaces are Fréchet spaces, they are FK−spaces and since their topology are
normable, they are BK−spaces.

Let {ank}n∈N be a bounded sequence for each k ∈N. Then, we have the following result:

Remark 2.2. The spaces λp(A) with 1 ≤ p ≤ ∞, λbs(A) and c0(A) are not K−spaces with every Köthe matrix
A.

Let z = θ and define the sequence x = (xn) and the matrix A = (ank) by xn = 2n and ank = 1/8n+1 for
all n, k ∈ N, respectively. Then, x ∈ λp(A). Suppose that there exists a δ > 0 for every ε > 0 such that for
x ∈ λp(A), 1 ≤ p ≤ ∞ the inequalities ‖x− z‖pk =

∑
∞

n=0 |xnank|
p
≤ 1/6 < δ and ‖x− z‖k = supn∈N |xnank| ≤ 1/8 < δ

hold. Also, we see that∣∣∣Pn(x) − Pn(z)
∣∣∣ = ∣∣∣xn

∣∣∣, (6)

where Pn : λp(A) → C, 1 ≤ p ≤ ∞. By (6), we have |Pn(x) − Pn(z)| = 2n
≥ K ∈ R+ for every n ∈ N. Hence,

each of the linear maps Pn is not continuous at 0. Therefore, the spaces λp(A) are not K−spaces with the
matrix A. Similarly, c0(A) is not a K−space.

With above choosing, we have x ∈ λbs(A) and ‖x− z‖pk = supm∈N

∣∣∣ ∑m
n=0 xnank

∣∣∣ ≤ 1/6 < δ. But, we conclude
by (6) that each of the linear maps Pn : λbs(A)→ C is not continuous at 0. Therefore, the space λbs(A) is not
a K−space.

Theorem 2.3. Let ank ≥ K ∈ R+ for each n, k ∈N. Then, the following statements hold:

(i) Let 1 ≤ p < ∞. Then, the spaces λp(A) are AK−spaces.
(ii) The space c0(A) is an AK−space.

(iii) The AK−section of the space λ∞(A) is the space c0(A).

Proof. Let ank ≥ K ∈ R+ for each n, k ∈N. Then, the spaces λp(A) and c0(A) are FK−spaces, where 1 ≤ p ≤ ∞.
(i) Let 1 ≤ p < ∞ and let x = (xn) ∈ λp(A). Then, we derive that

lim
m→∞

∥∥∥x − x[m]
∥∥∥p

k = lim
m→∞

 ∑
n≥m+1

|xnank|
p

 = 0.

Hence, the spaces λp(A) are AK−spaces.
(ii) Let x = (xn) ∈ c0(A). That is, xnank → 0, as n→∞, for each k ∈N. Therefore, we obtain that

lim
m→∞

∥∥∥x − x[m]
∥∥∥

k = lim
n→∞

(
sup

n≥m+1
|xnank|

)
= 0.

Hence, the space c0(A) is an AK−space.
(iii) For x = (xn) ∈ λ∞(A), we see that

lim
m→∞

∥∥∥x − x[m]
∥∥∥

k = lim
n→∞

(
sup

n≥m+1
|xnank|

)
. (7)
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If x ∈ c0(A), we have limm→∞

∥∥∥x − x[m]
∥∥∥

k = 0 for each k ∈N in the relation (7).
This completes the proof.

A direct consequence of the definition of the AB−property, we have the following result:

Corollary 2.4. Let ank ≥ K ∈ R+ for each n, k ∈N. Then, the space λbs(A) is an AB−space.

Theorem 2.5. The following inclusions hold:

(i) λ1(A) ⊂ λbs(A) ⊂ λ∞(A).
(ii) λp(A) ⊂ λr(A) for 1 ≤ p < r < ∞.

Proof. (i) Let us take any x ∈ λ1(A). Then, for each k ∈ N we have
∑

n |xnank| < ∞ and so from the triangle
inequality we have

∣∣∣ ∑m
n=0 xnank

∣∣∣ ≤ ∑m
n=0 |xnank|. By taking supremum over m ∈ N in this inequality, we

obtain x ∈ λbs(A), that is, the inclusion λ1(A) ⊂ λbs(A) holds.
Now, let x = (xn) ∈ λbs(A). Since there exists a L ∈ R+ such that

∣∣∣ ∑m
n=0 xnank

∣∣∣ ≤ L for each k ∈ N, we
obtain that

|xmamk| =

∣∣∣∣∣∣∣
m∑

n=0

xnank −

m−1∑
n=0

xnank

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
m∑

n=0

xnank

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣
m−1∑
n=0

xnank

∣∣∣∣∣∣∣ ≤ 2L (8)

for each k ∈N. Taking supremum over m ∈N in (8), we have x ∈ λ∞(A), as desired.
(ii) This follows applying Jensen’s inequality.

Also, Meise and Vogt [5] have the following result:

Lemma 2.6. ([5, Proposition 27.16, p. 334]) The following statements are equivalent for every Köthe matrix A:

(i) There are p, r ∈ [1,∞] with p , r, so that λp(A) = λr(A).
(ii) λp(A) = λr(A) as Fréchet spaces, for all p, r ∈ [1,∞].

(iii) For each k ∈N there exists an m ∈N such that
∑
∞

n=0 anka−1
nm < ∞.

Although Lemma 2.6 is nowhere used in this paper, we record it for the reader.

Theorem 2.7. Let 1 ≤ p < ∞. Then, the following statements hold:

(i) Let {ank}n∈N ∈ `p for each k ∈N. Then, `∞ ⊂ λp(A).
(ii) Let ank ≥ K ∈ R+ for each n, k ∈N. Then, λp(A) ⊂ c0.

Proof. Let 1 ≤ p < ∞.
(i) Let {ank}n∈N ∈ `p for each k ∈N and let x = (xn) ∈ `∞. Then, we have

∞∑
n=0

|xnank|
p
≤

∥∥∥x
∥∥∥p

∞

∞∑
n=0

|ank|
p < ∞,

i.e, x ∈ λp(A).
(ii) Let ank ≥ K ∈ R+ for each n, k ∈ N and let x = (xn) ∈ λp(A). Then, the series

∑
∞

n=0 |xnank|
p converges

for each k ∈ N. Hence, the general term of this series tends to zero, as n → ∞. Therefore, for each k ∈ N
there exists an ε > 0 and an n0(ε) ∈N such that |xn|K ≤ |xnank| < ε when n > n0. So, x ∈ c0.

Remark 2.8. For p = ∞, depending on the choice of the Köthe matrix A we have the following statements:
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(i) Define the Köthe matrix A = (ank) by ank = 1/2n for each n, k ∈ N and let x = (xn) ∈ `∞. Hence,
there exists a L ∈ R+ such that supn∈N |xn| ≤ L and so |xnank| = |xn/2n

| ≤ L for each n, k ∈ N, that
is, x ∈ λ∞(A). Therefore, the inclusion `∞ ⊂ λ∞(A) holds for the matrix A. Also, if we define the
unbounded sequence x = (xn) by xn = 2n for all n ∈ N then we obtain that supn∈N |xnank| = 1. Hence,
the inclusion `∞ ⊂ λ∞(A) is strict.

(ii) Define the Köthe matrix A = (ank) by ank = r ∈ R+ \ {1} for each n, k ∈N and let x = (xn) ∈ λ∞(A). Then,
we have r supn∈N |xn| = supn∈N |xnank| < ∞ and so the inclusion λ∞(A) ⊂ `∞ holds.

Since λ1(A) = λ∞(A) if and only if λ1(A) is nuclear (see Terzioğlu and Zahariuta [9]), Theorem 2.5 gives
the following:

Corollary 2.9. The equalities λ1(A) = λbs(A) = λ∞(A) hold if and only if λ1(A) is nuclear.

Theorem 2.10. Let λ denotes any of the spaces c0(A) or λp(A) with 1 ≤ p ≤ ∞. Then, the space λ is solid.

Proof. Let u = (un) ∈ λ̃. Then, there exists a sequence x = (xn) ∈ λ such that |un| ≤ |xn| for all n ∈ N. Since
ank ≥ 0 for all n, k ∈N by the definition of a Köthe matrix, we have

0 < |un|ank ≤ |xn|ank (9)

for all n, k ∈ N. If λ = c0(A), by letting n→ ∞ in the relation (9), we obtain u ∈ c0(A). Taking supremum or
sum over n ∈N in the relation (9) for each k ∈N, we have u ∈ λp(A) with 1 ≤ p ≤ ∞.

This completes the proof.

Corollary 2.11. Let λ be as in Theorem 2.10. Then, the space λ is monotone.

Corollary 2.12. Let λ be as in Theorem 2.10. Then, since the space λ is Fréchet, it is barrelled and bornological.

Remark 2.13. Consider the sequence x = (xn) and the Köthe matrix A = (ank) defined by xn = (−1)n and
ank = 1 for each n, k ∈N. Then, since

sup
m∈N

∣∣∣∣∣∣∣
m∑

n=0

xnank

∣∣∣∣∣∣∣ = sup
m∈N

1 + (−1)m

2
= 1

for each k ∈N, x ∈ λbs(A). Then, the following statements hold:

(i) Let u = (un) ∈ χ. Define the sequence u = (un) by

un :=
{

1 , n is even,
0 , n is odd

for every n ∈N. Therefore, we see for each k ∈N that

sup
m∈N

∣∣∣∣∣∣∣
m∑

n=0

unxnank

∣∣∣∣∣∣∣ = sup
m∈N

∣∣∣∣∣∣∣
m/2∑
n=0

u2nx2n

∣∣∣∣∣∣∣ = sup
m∈N

(m
2
+ 1

)
= ∞,

where m is even. Also, we derive same result when m is odd. Hence, ux < λbs(A). That is to say that
the space λbs(A) is not monotone.

(ii) Let u = (un) = (0, 1, 1, 1, . . .) ∈ λ̃bs(A). Then, |un| ≤ |xn| for all n ∈N. But u < λbs(A), since

sup
m∈N

∣∣∣∣∣∣∣
m∑

n=0

unank

∣∣∣∣∣∣∣ = sup
m∈N

∣∣∣∣∣∣∣
m∑

n=1

1

∣∣∣∣∣∣∣ = sup
m∈N

m = ∞.

Hence, the inclusion λ̃bs(A) ⊂ λbs(A) does not hold. So, the space λbs(A) is not solid.

Corollary 2.14. Let λα be as in (2) and let ank ≥ K ∈ R+ for each n, k ∈ N, and 1 ≤ p < ∞. Then, the following
statements hold:
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(i) Combining Lemma 1.1 and Theorem 2.10 gives that λα = λβ = λγ whenever λ ∈ {c0(A), λp(A)}.
(ii) Combining Lemma 1.2 and Part (i) of Theorem 2.3 gives that λ f = λα whenever λ = λp(A).

Corollary 2.15. The following statements hold:

(i) If {ank}n∈N ∈ `∞ for each k ∈N, then `1 ⊂ λ1(A).
(ii) If there exits a K ∈ R+ such that ank ≥ K for each n, k ∈N, then λ1(A) ⊂ `1.

Theorem 2.16. Let ank ≥ K ∈ R+ for each n, k ∈N. Then, the following statements hold:

(i) For 1 ≤ p < ∞ the spaces λp(A) have monotone norm.
(ii) The spaces λ∞(A) and c0(A) have not monotone norm.

Proof. Assume that there exits a K ∈ R+ such that ank ≥ K for each n, k ∈ N. Then, the spaces λp(A) and
c0(A) are BK−spaces, where 1 ≤ p ≤ ∞. Let m > r, where m, r ∈N.

(i) Let x ∈ λp(A) for 1 ≤ p < ∞. Then, we have

∥∥∥x[m]
∥∥∥p

k =

m∑
n=0

|xnank|
p =

r∑
n=0

|xnank|
p +

m∑
n=r+1

|xnank|
p

=
∥∥∥x[r]

∥∥∥p

k +

m∑
n=r+1

|xnank|
p. (10)

From (10), we obtain that
∥∥∥x[m]

∥∥∥
k ≥

∥∥∥x[r]
∥∥∥

k. Also,

∥∥∥x
∥∥∥p

k =

∞∑
n=0

|xnank|
p = sup

m∈N

m∑
n=0

|xnank|
p = sup

m∈N

∥∥∥x[m]
∥∥∥p

k ,

as desired.
(ii) Let x ∈ λ∞(A). Since

{|x1a1k|, |x2a2k|, . . . , |xrark|, 0, 0, . . .} ⊂ {|x1a1k|, |x2a2k|, . . . , |xmamk|, 0, 0, . . .}
⊂ {|x1a1k|, . . . , |xmamk|, |xm+1am+1,k|, . . .}, (11)

we have
∥∥∥x[m]

∥∥∥
k ≥

∥∥∥x[r]
∥∥∥

k. But, we obtain by the second part of the relation (11) that ‖x‖k ≥
∥∥∥x[m]

∥∥∥
k. Hence,

the space λ∞(A) does not have monotone norm. Since the spaces λ∞(A) and c0(A) are endowed with same
norm, c0(A) does not have monotone norm.

This step completes the proof.

Remark 2.17. Consider the sequence x = (xn) and the Köthe matrix A = (ank) defined by xn = 2 and
ank = n + k + 2 for each n, k ∈N. It is immediate that ank ≥ 2 ∈ R+ for each n, k ∈N. Then, the spaces λp(A),
c0(A) and λbs(A) are FK−spaces by Theorem 2.1, where 1 ≤ p ≤ ∞. Obviously, x ∈ c but

∞∑
n=0

|xnank|
p =

∞∑
n=0

[2(n + k + 2)]p = ∞,

sup
n∈N
|xnank| = sup

n∈N
2(n + k + 2) = ∞,

i.e., x < λp(A), where 1 ≤ p ≤ ∞. Hence, x does not belong to the spaces c0(A) and λbs(A) by the definition
of the space c0(A) and by Theorem 2.5. Therefore, the spaces λp(A) with 1 ≤ p ≤ ∞, c0(A) and λbs(A) are not
conservative for the matrix A. That is to say that the spaces λp(A), c0(A) and λbs(A) are not conservative for
every Köthe matrix A.
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