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Abstract. Let G = (V, E) be a simple connected graph of order n with m edges. Also let eG(vi) be the
eccentricity of a vertex vi in G. We can assume that eG(v1) ≥ eG(v2) ≥ · · · ≥ eG(vn−1) ≥ eG(vn). The average
eccentricity of a graph G is the mean value of eccentricities of vertices of G,

avec(G) =
1
n

n∑
i=1

eG(vi) .

Let γ = γG be the largest positive integer such that

eG(vγG ) ≥ avec(G).

In this paper, we study the value of γG of a graph G. For any tree T of order n, we prove that 2 ≤ γT ≤ n− 1
and we characterize the extremal graphs. Moreover, we prove that for any graph G of order n, 2 ≤ γG ≤ n
and we characterize the extremal graphs. Finally some Nordhaus-Gaddum type results are obtained on γG

of general graphs G.

1. Introduction

We consider finite, simple, undirected, and connected graphs G = (V(G), E(G)) with vertex set
V(G) = {v1, v2, . . . , vn} and edge set E(G) , where |V(G)| = n and |E(G)| = m. The degree of a vertex vi ∈ V(G)
is dG(vi), i.e., the cardinality of the set of its neighbors, for i = 1, 2, . . . , n. The maximum degree of a graph
G is denoted by ∆(G) and the minimum degree of a graph G is written as δ(G).

The set of vertices adjacent to vi ∈ V(G), denoted by NG(vi), refers to the neighborhood of vi. The distance
between two vertices vi, v j ∈ V(G), denoted by dG(vi, v j), is defined as the length of a shortest path between
vi and v j in G. The eccentricity eG(vi) of a vertex vi in V(G) is defined to be eG(vi) = max

{
dG(vi, v j)|v j ∈ V(G)

}
.

The radius of a graph G is denoted by r(G) and defined by r = r(G) = min {eG(vi)|vi ∈ V(G)}. Also, the
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diameter of G, denoted by d(G), is the maximum distance between vertices of a graph G and hence d =
d(G) = max {eG(vi)|vi ∈ V(G)}. The center C(G) and the periphery P(G) consist of the vertices of minimum
and maximum eccentricity, respectively. Vertices within C(G) and P(G) are called central and peripheral,
respectively. A set S ⊆ V(G) in a graph G is dominating if every vertex from V(G) \ S has a neighbor in S. A
dominating set S in a graph G with |S| = k is called a k-dominating set of G. For any graph G, we denote by
G the complement of G.

The average eccentricity of a graph G is the mean value of eccentricities of vertices of G,

avec(G) =
1
n

n∑
i=1

eG(vi) . (1)

From the above definition, we have r(G) ≤ avec(G) ≤ d(G). If avec(G) is equal to r(G) or d(G), then the
graph G is called self-centered. Almost self-centered graphs (ASC) were recently introduced in [4] as the graphs
with exactly two non-central vertices. Moreover, we say a graph G is almost-peripheral ([5]), AP for short, if
all but one of its vertices lie in the periphery, that is, if |P(G)| = |V(G)| − 1 holds. Moreover, very recently
weak almost-peripheral (WAP for short) graph G is introduced in [10] with |P(G)| = |V(G)| −2. For some recent
results on the distance of graphs and related topics can be seen in [3, 6]. The eccentricity sequence of a graph
G is just a set E(G) = {eG(vi) : vi ∈ V(G)} of eccentricities of its vertices with their multiplicity listed in a
non-increasing order, that is,

eG(v1) ≥ eG(v2) ≥ · · · ≥ eG(vn−1) ≥ eG(vn). (2)

If eG(vi) appears li ≥ 1 times in E(G), we write eG(vi)(li) in it for short. The disjoint union of (vertex-disjoint)
graphs G1 and G2 will be denoted with G1 ∪ G2, while the join of G1 and G2 will be denoted by G1 ⊕ G2,
which is obtained from G1 ∪ G2 by adding an edge between every vertex of G1 and every vertex of G2.

Now, for a graph G, we define γ as follows: Let γ = γG be the largest positive integer such that

eG(vγ) ≥ avec(G). (3)

From the above, we conclude that 1 ≤ γ ≤ n. A tree containing exactly two non-pendant vertices is
called a double-star. A double-star of order n with degree sequence (p + 1, q + 1, 1, . . . , 1︸  ︷︷  ︸

n−2

) is denoted by

DS(p, q) (p ≥ q, p + q = n − 2). As usual, the path of order n is denoted by Pn, and the star of order n by
K1,n−1.

The paper is organized as follows. In Section 2, some useful lemmas are listed. In Section 3, we give a
lower and an upper bound on γG for any tree. In Section 4, we present a lower and upper bound on γG for
general graphs G and we characterize the graphs G of order n with γG = n − 1 or n − 2. In Section 5, some
upper bounds with the extremal graphs are determined on γG + γG for any graph G.

2. Some lemmas

In this section, we shall give some results that will be needed in the next sections. Firstly we denote by
d the diameter of G for a graph G.

Lemma 2.1. [11] Let G be a connected graph whose complement is connected.
(i) If d > 3, then d = 2.
(ii) If d = 3, then G has a spanning subgraph which is a double star.

We now have the following result:
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Lemma 2.2. [2] Let G be a connected graph of order n. Then eG(vi) − eG(vi+1) ≤ 1 for any i, i = 1, 2, . . . , n − 1.

Lemma 2.3. [9] Let G be a connected graph with diameter d and radius r. For any integer k with r < k ≤ d, there
exist at least two vertices in G with eccentricity k.

From Lemma 2.3, the following corollary can be easily obtained.

Corollary 2.4. Let G be a connected non-self-centered graph with radius r. Then there are at least two vertices in G
with eccentricity r + 1.

3. Distribution of eccentricities of trees

If T is a tree of order 3, then T � P3 with γ = 2 = n − 1. So in the following theorem, we assume that
n > 3. Let T∗ be a tree of order n with a vertex v ∈ V(T) such that T∗ − v = 2 K2 ∪ (n − 5) K1 .

Theorem 3.1. Let T be a tree of order n > 3. Then 2 ≤ γ ≤ n − 1. Moreover, the left equality holds if and only if
T � P4 or T � T∗, and the right equality holds if and only if T � K1,n−1.

Proof. Let d be the diameter of tree T. Since n > 3, we have d ≥ 2. Let Pd+1 : vi1 vi2 . . . vid vid+1 be a diametral
path in T. Then we have eT(vi1 ) = eT(vid+1 ) = d. By (2), we have eT(v1) = eT(v2) = d ≥ avec(T) and hence γ ≥ 2.
Since d(T) ≥ 2, then there exist two vertices vi and v j in T such that eT(vi) = r < d = eT(v j) where r is the
radius of T. For any vertex vk ∈ V(T), eT(vk) ≥ r, k , i, j. Therefore eT(vi) = r < avec(T) and hence γ ≤ n − 1.
The first part of the proof is done.

Suppose that γ = 2. Therefore eT(v1) = eT(v2) ≥ avec(T) > eT(v3). Then we have

eT(v1) = eT(v2) ≥
1
n

n∑
i=1

eT(vi) > eT(v3), that is,

(eT(v1) − eT(v3)) + (eT(v2) − eT(v3)) >
n∑

i=3

(eT(v3) − eT(vi)). (4)

First we assume that eT(v3) = eT(vn). Then we have eT(v1) = eT(v2) > eT(v3) = eT(v4) = · · · = eT(vn−1) = eT(vn).
We have d ≥ 2. For d = 2, T � K1,n−1, a contradiction as eT(vn−1) = 2 > 1 = eT(vn) with n > 3. For d = 3,
T � DS(p, q) (p ≥ q, p + q = n − 2) and hence the above inequality holds for P4 with eT(v1) = eT(v2) = 3 >
2 = eT(v3) = eT(v4). Otherwise, d ≥ 4. There are at least three distinct eccentricities in T and we get a
contradiction.

Next we assume that eT(v3) , eT(vn). If eT(v3) > eT(vn−2), then by Lemma 2.2,

eT(v3) >
1
n

n∑
i=1

eT(vi) = avec(T) > eT(v3), a contradiction.

Otherwise, eT(v3) = eT(v4) = · · · = eT(vn−2). Again, by Lemma 2.2, we have
(
eT(vn−1), eT(vn)

)
is just one

of the following triples:
(
eT(v3), eT(v3) − 1

)
,
(
eT(v3) − 1, eT(v3) − 1

)
,
(
eT(v3) − 1, eT(v3) − 2

)
as eT(v3) , eT(vn).

When
(
eT(vn−1), eT(vn)

)
=

(
eT(v3) − 1, eT(v3) − 1

)
, one can easily see that avec(T) = eT(v3) and hence γ > 2, a

contradiction. Moreover, the subcase
(
eT(vn−1), eT(vn)

)
=

(
eT(v3)− 1, eT(v3)− 2

)
cannot occur from Corollary

2.4. The remaining case is
(
eT(vn−1), eT(vn)

)
=

(
eT(v3), eT(v3) − 1

)
. In this case we have E(T) =

{
(eT(v3) +

1)(2), eT(v3)(n−3), (eT(v3) − 1)(1)
}
. If eT(vn) = 1, then ∆(T) = n − 1 and we get a contradiction as eT(v1) = 3.

Otherwise, eT(vn) ≥ 2, that is, eT(v3) ≥ 3. When eT(v3) = 3, E(T) = {4(2), 3(n−3), 2(1)
}. Hence G � T∗. When
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eT(v3) = 4, we have d = 5 and n ≥ 6. In this case we have eT(vn−1) = 3 , eT(v3), a contradiction. When
eT(v3) ≥ 5, we have d = eT(v3) + 1 ≥ 6 and hence we have at least four distinct eccentricities in T, a
contradiction.

Suppose that γ = n − 1. Then we have eT(v1) ≥ · · · ≥ eT(vn−1) ≥ avec(T) > r = eT(vn). Therefore T has one
center vn and hence d is even. If d = 2, then T � K1,n−1. Otherwise, d ≥ 4. Then

avec(T) =
1
n

n∑
i=1

eT(vi) > r + 1 = eT(vn−2) = eT(vn−1).

Thus we have γ ≤ n − 3, a contradiction.

Conversely, one can easily see that γ = 2 holds for P4 or for T∗, and γ = n − 1 holds for K1,n−1.

Theorem 3.2. Let T be a tree of order n > 3. Then γ = n − 2 if and only if T � DS(p, q) (p ≥ q, p + q = n − 2).

Proof. Let d be the diameter of tree T. For any tree T of order n > 3, d ≥ 2. For d = 2, T � K1,n−1 with
γ = n − 1. For d = 3, T � DS(p, q) (p ≥ q, p + q = n − 2). Thus we have

eT(v1) = eT(v2) = · · · = eT(vn−2) ≥ avec(T) =
1
n

n∑
i=1

eT(vi) > eT(vn−1) = eT(vn)

and hence γ = n − 2. Otherwise, d ≥ 4. When d is even, that is, T has one central vertex. Then we have
eT(vn) = r and eT(vn−1) = eT(vn−2) = r + 1 < avec(T), and hence γ ≤ n − 3. When d is odd, that is, T has two
central vertices. Then we have eT(vn) = eT(vn−1) = r and eT(vn−2) = eT(vn−3) = r + 1 < avec(T), and hence
γ ≤ n − 4. This completes the proof.

4. Distribution of eccentricities of general graphs

Let Γ1 be the class of graphs H1 = (V, E) such that H1 is a graph of order n with eccentricity sequence
{4(2), 3(n−3), 2}. Denote by Γr be the class of graphs Hr = (V, E) such that Hr is a graph of order n with
eccentricity sequence {(r + 2)(2), (r + 1)(n−4), r(2)

}, where r ≥ 2 is an integer. Denote by C′4 the graph obtained
by attaching two pendant edges to the non-adjacent vertices in C4. For r = 2, C′4 ∈ Γ2 and r = 3, P6 ∈ Γ3.
For n = 2 or 3, there is a unique connected graph Pn, for which the eccentricity sequence is {1(2)

} or {2(2), 1(1)
}

with γPn = 2. So in the following we always assume that n > 3.

Theorem 4.1. Let G be a graph of order n > 3. Then 2 ≤ γG ≤ n. Moreover, the left equality holds if and only if G
is almost-self-centered or G ∈ Γ1, and the right equality holds if and only if G is self-centered.

Proof. For d = 1, we have G � Kn. Then eG(v1) = eG(v2) = · · · = eG(vn−1) = eG(vn) = 1 and hence γ = n.
Otherwise, d ≥ 2. Let Pd+1 : vi1 vi2 . . . vid vid+1 be a diametral path in G. Then we have eG(vi1 ) = eG(vid+1 ) = d.
By (2), we have eG(v1) = eG(v2) ≥ avec(G) and hence 2 ≤ γG ≤ n. The first part of the proof is done.

Suppose that γ = 2. Therefore eG(v1) = eG(v2) ≥ avec(G) > eG(v3), that is,

(eG(v1) − eG(v3)) + (eG(v2) − eG(v3)) >
n∑

i=3

(eG(v3) − eG(vi)). (5)

First we assume that eG(v3) = eG(vn). Then we have eG(v1) = eG(v2) > eG(v3) = eG(v4) = · · · = eG(vn−1) = eG(vn).
Therefore G is almost-self-centered.

Next we assume that eG(v3) , eG(vn). If eG(v3) > eG(vn−2), then

eG(v3) < avec(G) =
1
n

n∑
i=1

eG(vi) < eG(v3), a contradiction.
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Otherwise, eG(v3) = eG(v4) = · · · = eG(vn−2). By Lemma 2.2, we have(
eG(vn−1), eG(vn)

)
=

(
eG(v3), eG(v3) − 1

)
,

or
(
eG(vn−1), eG(vn)

)
=

(
eG(v3) − 1, eG(v3) − 1

)
, or

(
eG(vn−1), eG(vn)

)
=

(
eG(v3) − 1, eG(v3) − 2

)
.

When
(
eG(vn−1), eG(vn)

)
=

(
eG(v3) − 1, eG(v3) − 1

)
or

(
eG(v3) − 1, eG(v3) − 2

)
, we have avec(G) ≤ eG(v3) with

γ > 2, a contradiction. It follows that
(
eG(vn−1), eG(vn)

)
=

(
eG(v3), eG(v3) − 1

)
. Thus E(G) = {(eG(v3) +

1)(2), eG(v3)(n−3), (eG(v3) − 1)(1)
}. If eG(vn) = 1, then ∆(G) = n − 1 and we get a contradiction as eG(v1) = 3.

Otherwise, eG(vn) ≥ 2, that is, eG(v3) ≥ 3.

Case (i): d = 4. We have three distinct eccentricities {4, 3, 2} in G. Since eG(v1) = eG(v2) = 4 > 3 = eG(v3) =
· · · = eG(vn−1) > 2 = eG(vn), we have a diametral path P5 : vi1 vi2 vi3 vi4 vi5 in G and eG(vi1 ) = eG(vi5 ) = 4,
eG(vi2 ) = eG(vi4 ) = 3, eG(vi3 ) = 2. Then all other vertices have same eccentricity 3. Then G ∈ Γ1.

Case (ii): d ≥ 5. Three distinct eccentricities are {r + 2, r + 1, r} in G with r ≥ 3. If d ≥ 6, then there are at
least four distinct eccentricities in G, a contradiction. Otherwise, d = 5. In this case 3 appears twice in E(G),
contradicting the structure of E(G) shown above.

Suppose that γ = n. If eG(v1) = eG(vn), then eG(vi) = avec(G) for i = 1, 2, . . . , n. Therefore G is self-centered.
Otherwise, eG(v1) , eG(vn). Thus we have eG(vn) < avec(G) and hence γ < n, a contradiction.

Conversely, one can see easily that the left equality holds for almost-self-centered graph or for graphs in Γ1,
and the right equality holds for self-centered graph.

Remark 4.2. If G is a self-centered graph, then G is not necessarily a self-centered graph. For n ≥ 5, Pn is self-centered
graph as ePn

(vi) = 2, but Pn is not self-centered.

Theorem 4.3. Let G be a graph of order n > 3. Then γ = n − 1 if and only if G is almost-peripheral.

Proof. Since γ = n − 1, we have

eG(vn−1) ≥
1
n

n∑
i=1

eG(vi) > eG(vn). (6)

By Lemma 2.2, we have eG(vn−1) = eG(vn) + 1. By (2), we have eG(v1) = eG(v2). If eG(v1) = eG(vn−1) + 1, then
avec(G) > eG(vn−1), a contradiction as γ = n − 1. Otherwise, eG(v1) = eG(v2) = · · · = eG(vn−1) = eG(vn) + 1. So
G is almost-peripheral.

Clearly, we have γ = n − 1 if G is almost-peripheral.

Theorem 4.4. Let G be a graph of order n > 3. Then γG = n− 2 if and only if G is weak almost-peripheral or G ∈ Γr
with r ∈ {2, 3}.

Proof. Since γG = n − 2, we have

eG(vn−2) ≥
1
n

n∑
i=1

eG(vi) > eG(vn−1). (7)

By Lemma 2.2, we have eG(vn−2) = eG(vn−1)+1. By (2), we have eG(v1) = eG(v2). Since γ = n−2, we claim that
eG(v1) = eG(vn−2) + 1 or eG(v1) = eG(vn−2). Otherwise, we have eG(v1) ≥ eG(vn−2) + 2. Assume that eG(vn−2) = a.
Then, by Lemma 2.3, we have eG(vn) = eG(vn−1) = a − 1, eG(vn−2) = eG(vn−3) = a and eG(v1) = eG(v2) ≥ a + 2.

Therefore, n ≥ 8 and avec(G) = 1
n

n∑
i=1

eG(vi) ≥ a + 1
2 . Thus we have γG = n − 5 as a contradiction.

Case (i): eG(v1) = eG(vn−2). If eG(vn) = eG(vn−1), then eG(v1) = eG(v2) = · · · = eG(vn−2) = eG(vn−1) + 1 = eG(vn) + 1
and hence G is weak almost-peripheral. Otherwise, eG(v1) = eG(v2) = · · · = eG(vn−2) = eG(vn−1)+1 = eG(vn)+2.
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In this subcase, we have eG(vn) = r and |E(G)| = 3. Now there is only one vertex vn−1 in G with eG(vn−1) = r+1.
This is a contradiction from Corollary 2.4.

Case (ii): eG(v1) = eG(vn−2)+1. In this case we have two possibilities: (a) eG(v1)−1 = eG(v2)−1 = eG(v3) = · · · =
eG(vn−2) = eG(vn−1)+1 = eG(vn)+1, (b) eG(v1)−1 = eG(v2)−1 = eG(v3)−1 = eG(v4) = · · · = eG(vn−2) = eG(vn−1)+1 =
eG(vn) + 2. By Corollary 2.4, the subcase (b) cannot occur. Now we characterize the graphs satisfying the
subcase (a). Assume that eG(vn) = eG(vn−1) = r. Then eG(v1) = eG(v2) = r + 2, eG(v3) = · · · = eG(vn−2) = r + 1.
Note that r ≥ 2. By the definition of Γr, we have G ∈ Γr.

Clearly, it can be easily checked that γ = n−2 if G is weak almost-peripheral or G ∈ Γr with r ∈ {2, 3}.

In the following theorem we present the existence of graph G with γG = k for any positive integer k.

Theorem 4.5. Let n > 3 and k be an integer with 2 ≤ k ≤ n. Then there exists a graph G with γG = k.

Proof. From Theorems 4.1 and 4.3, it suffices to consider the case when k ∈ [3,n − 2] with n > 3.

For any k ∈ [3,n− 2], let G = Kn−k ⊕Kk. Then E(G) = {1(n−k), 2(k)
}. By definition, we have γG = k, finishing

the proof of this theorem.

5. Nordhaus-Gaddum type results

For a graph G, the chromatic number χ(G) is the minimum number of colors needed to color the vertices
of G in such a way that no two adjacent vertices are assigned the same color. In 1956, Nordhaus and
Gaddum [8] gave the lower and the upper bounds involving the chromatic number χ(G) of a graph G and
its complement G as follows: 2

√
n ≤ χ(G) + χ(G) ≤ n + 1. A graph G is strong self-centered if both G and its

complement G are self-centered. For example, the cycle Cn is strong self-centered.
Motivated by the above result, we now obtain analogous conclusions for γG + γG.

Theorem 5.1. Let G be a connected graph of order n with connected complement G. If d ≥ 4, then

γG + γG ≤ 2n (8)

with the equality holding if and only if G is a strong self-centered graph.

Proof. By Lemma 2.1 (i), we have d = 2. Then γG = n. If not, we have γG < n. Then G has at least one vertex
with degree n − 1, which implies that G contains at least one isolated vertex. This is a contradiction to the
fact that G is connected. By Theorem 4.1, γG ≤ n. Hence γG + γG ≤ 2n.

By Theorem 4.1, again, we deduce that γG + γG = 2n if and only if G is a strong self-centered graph.

Lemma 5.2. Let G be a graph with exactly two eccentricities 2, 3. If vi ∈ V(G) with eG(vi) = 3, then eG(vi) = 2.

Proof. The set V(G) \ vi can be partitioned into: V(G) \ vi = NG(vi)
⋃

Ecc2(vi)
⋃

Ecc3(vi) where Ecc j(vi) is the
set of vertices in G with the distance j to vi with j ∈ {2, 3}. And NG(vi) = Ecc2(vi)

⋃
Ecc3(vi). Thus we have

dG(vi, vk) = 2 for any vertex vk ∈ NG(vi), since vk is adjacent to each vertex in Ecc3(vi) in G. So this claim
holds immediately.

Theorem 5.3. Let G be a connected graph of order n with connected complement G. If d = 3, then

γG + γG ≤


2n if d = 2,

n if d = 3.

(9)

The first equality holds if and only if G is a strong self-centered graph. The second equality holds if and only if, for
any central vertex in G, there is another central vertex as its neighbor such that they form a 2-dominating set of G.
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Proof. By Lemma 2.1 (ii), we have 2 ≤ d ≤ 3. If d = 2, from a similar reasoning as that in the proof of
Theorem 5.1, G must be a self-centered graph. Clearly, γG = n. Then, in view of Theorem 4.1, the first
inequality holds. Moreover, the equality holds if and only if G is a strong self-centered graph.

For any graph with d = d = 3, let k be the number of vertices in G of eccentricity 3. Then the number of
vertices of eccentricity 2 in G is exactly n − k as both G and G are connected. Moreover, by Lemma 5.2, the
number of vertices of eccentricity 2 in G are at least k. Then the total number of vertices of eccentricity 2 in
G and G is at least n. Hence γG + γG ≤ n as there are only two types of eccentricities in G and G.

Now we determine the graphs for which the second equality holds. Let G be a graph of order n with
d = d = 3 and γG + γG = n. For t ∈ {2, 3} we denote by nt and nt the numbers of vertices with eccentricity t
in G and G, respectively. By Lemma 5.2, considering that γG + γG = n, we have n2 = n3 and n3 = n2. Thus it
suffices to prove the following claim.

Claim 1. Any vertex in G with eccentricity 2 has eccentricity 3 in G.

If, for any central vertex vi in G, there is another central vertex v j adjacent to vi such that {vi, v j} forms
a 2-dominating set of G, then dG(vi, v j) = 3. Otherwise, considering that viv j ∈ E(G), we have dG(vi, v j) = 2,
that is, there exists a vertex vk ∈ V(G) with vivk, vkv j ∈ E(G). Now we have vk ∈ V(G) \ (NG(vi)

⋃
NG(v j)),

contradicting to the fact that {vi, v j} is a 2-dominating set of G. So eG(vi) = 3. By the arbitrary choice of
central vertex vi, Claim 1 holds clearly.

Conversely, now Claim 1 holds for G. Then, for any central vertex in G, there is another central vertex
as its neighbor such that they form a 2-dominating set of G. Otherwise, there exists a vertex vi in G with
eG(vi) = 2 such that {vi, v j} cannot be a 2-dominating set of G for any central neighbor v j of vi. Then there
is a vertex vk ∈ V(G) with vkvi < E(G), vkv j < E(G). Moreover, vkvi, vkv j ∈ E(G). Thus dG(vi, v j) = 2. If there
is a neighbor vm of vi with eG(vm) = 3, by Lemma 5.2, we have eG(vm) = 2. Therefore dG(vi, vm) = 2. In
conclusion, eG(vi) = 2, which contradicts to Claim 1. This completes the proof of this theorem.
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