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Available at: http://www.pmf.ni.ac.rs/filomat

Complete Moment Convergence for Sung’s Type
Weighted Sums of ρ∗-Mixing Random Variables

Wei Lia, Pingyan Chenb, Soo Hak Sungc

aCollege of Computation Science, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P.R. China
bDepartment of Mathematics, Jinan University, Guangzhou, 510632, China

cDepartment of Applied Mathematics, Pai Chai University, Taejon, 302-735, South Korea

Abstract. In this paper, the authors study a complete moment convergence result for Sung’s type weighted
sums of ρ∗-mixing random variables. This result extends and improves the corresponding theorem of Sung
[S.H. Sung, Complete convergence for weighted sums of ρ∗-mixing random variables, Discrete Dyn. Nat.
Soc. 2010 (2010), Article ID 630608, 13 pages].

1. Introduction and Main Result

Let {Xn,n ≥ 1} be a sequence of random variables and {ank, 1 ≤ k ≤ n,n ≥ 1} an array of real numbers.
The limiting behaviors for weighted sums

∑n
i=1 aniXi have been studied by many authors. We refer to Bai

and Cheng [1], Chen and Gan [6], Chen et al. [9], Cuzick [11], Sung [18, 19], Wu [26], and Zhang [28],
and so on. Since many useful linear statistics, such as least squares estimators, nonparametric regression
function estimators and jackknife estimators, are of the form of the weighted sums, so it is interesting and
meaningful to study the limiting behaviors for them.

Recently, Sung [19] obtained a complete convergence result for weighted sums of identically distributed
ρ∗-mixing random variables (we call Sung’s type weighted sums).

Theorem A. Let p > 1/α and 1/2 < α ≤ 1. Let {X,Xn,n ≥ 1} be a sequence of identically distributed
ρ∗-mixing random variables with EX = 0 and E|X|p < ∞. Assume that {ani, 1 ≤ i ≤ n,n ≥ 1} is an array of
real numbers with

sup
n≥1

n−1
n∑

i=1

|ani|
q < ∞ (1.1)

for some q > p. Then
∞∑

n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > εnα
 < ∞, ∀ ε > 0. (1.2)
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Conversely, if (1.2) holds for any array {ani, 1 ≤ i ≤ n,n ≥ 1} satisfying (1.1) for some q > p, then E|X|p < ∞.

Set ani = 1 for all 1 ≤ i ≤ n and n ≥ 1. Then (1.1) holds for any q > 0 and therefore the weighted sums
include the partial sums. Set ani = 1 if 1 ≤ i ≤ n − 1 and ann = n1/q for some q > 0. Then (1.1) holds,
meanwhile (1.1) does not hold for any q′ > q, and obviously the weights are unbounded in this case. So
the weights satisfying (1.1) are very general. But very few authors continue to study the kind of weighted
sums except Zhang [28] who obtained Theorem A for END random variables.

In this paper, we will continue to discuss the complete moment convergence for Sung’s type weighted
sums of ρ∗-mixing random variables, which is more exact than Theorem A.

Firstly, we introduce some concepts.

Definition 1.1. (1) A sequence {Yn,n ≥ 1} of random variables is said to converge completely to a constant
θ if

∞∑
n=1

P{|Yn − θ| > ε} < ∞, ∀ ε > 0.

(2) A sequence {Yn,n ≥ 1} of random variables is said to converge completely to a constant θ in the mean
of q-th moment for some q > 0, if

∞∑
n=1

E{|Yn − θ| − ε}
q
+ < ∞, ∀ ε > 0,

where and in the following, x+ means max{0, x}.

The concept of complete convergence was introduced by Hsu and Robbins [13] and the one of complete
moment convergence is due to Chow [10]. It is easy to show that the complete moment convergence implies
the corresponding complete convergence. The complete convergence and complete moment convergence
have attracted many authors. We refer to Bai and Su [2], Baum and Katz [3], Deng et al. [12], Li and
Spătaru [14], Katz [15], Rosalsky et al. [17], Wang et al. [22], Wang and Hu [23], Wang and Su [25], and their
references.

Definition 1.2. Let {Xn,n ≥ 1} be a sequence of random variables defined on a probability space (Ω,F ,P).
For any S ⊂ N = {1, 2, · · · }, define FS = σ(Xi, i ∈ S). Given two σ-algebraA and B in F , put

ρ(A,B) = sup

 EXY − EXEY√
E(X − EX)2E(Y − EY)2

: X ∈ L2(A),Y ∈ L2(B)

 .
Define the ρ∗-mixing coefficients by

ρ∗n = sup{ρ(FS,FT) : S,T ⊂ N with dist(S,T) ≥ n},

where dist(S,T) = inf{|s − t| : s ∈ S, t ∈ T}. Obviously, 0 ≤ ρ∗n+1 ≤ ρ
∗
n ≤ ρ

∗

0 = 1. Then the sequence {Xn,n ≥ 1}
is called ρ∗-mixing if there exists k ∈ N such that ρ∗k < 1.

A number of limit results for ρ∗-mixing sequence of random variables have been established by many
authors. We refer to Bradley [4] for the central limit theorem, Bryc and Smolenski [5], Peligrad and Gut
[16], and Utev and Peligrad [21] for the moment inequalities, Chen and Liu [8] (see Remak 1 on page 289)
for the complete moment convergence, and Sung [19], Wang et al. [24], and Wu et al. [27] for the complete
convergence of weighted sums.

Now we state the main result. Some auxiliary lemmas and the proof of the main result will be detailed
in the next section.
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Theorem 1.1. Let p > 1/α, 1/2 < α ≤ 1 and 0 < v < p. Let {X,Xn,n ≥ 1} be a sequence of identically
distributed ρ∗-mixing random variables with EX = 0 and E|X|p < ∞. Assume that {ani, 1 ≤ i ≤ n,n ≥ 1} is an
array of real numbers with (1.1) for some q > p. Then

∞∑
n=1

n(p−v)α−2E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ − εnα


v

+

< ∞, ∀ ε > 0. (1.3)

Conversely, if (1.3) holds for any array {ani, 1 ≤ i ≤ n,n ≥ 1} satisfying (1.1) for some q > p, then EX = 0 and
E|X|p < ∞.

Remark 1.1. Theorem A and Theorem 1.1 do not discuss the very interesting case of p = 1/α.We guess that
Theorem A and Theorem 1.1 are also true when pα = 1. But, we can not prove them by using the method
of the proof of Theorem A or Theorem 1.1.

Remark 1.2. For the case v ≥ p, it is still unknown whether Theorem 1.1 holds or not under the correspond-
ing moment conditions of Lemma 2.2.

Remark 1.3. Sung [20] gave a generalized method to prove the complete moment convergence. But
Theorem 1.1 can not follow from the results in Sung [20].

Throughout this paper, C always stands for a positive constant which may differ from one place to
another.

2. Lemmas and Proofs

To prove the main result, we need the following lemmas. The first one is due to Utev and Peligrad [21].

Lemma 2.1. Let r ≥ 2, {Xn,n ≥ 1} be a sequence of ρ∗-mixing random variables with EXn = 0 and E|Xn|
r < ∞

for every n ≥ 1. Then for all n ≥ 1,

E max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣
r

≤ Cr


n∑

i=1

E|Xi|
r +

 n∑
i=1

E|Xi|
2


r/2

 ,
where Cr > 0 depends only on r and the ρ∗-mixing coefficients.

Lemma 2.2. Let p > 1/α, 1/2 < α ≤ 1 and v > 0. Let {X,Xn,n ≥ 1} be a sequence of identically distributed
ρ∗-mixing random variables with EX = 0 and

E|X|p < ∞, if v < p,
E|X|p log(1 + |X|) < ∞, if v = p,
E|X|v < ∞, if v > p.

Assume that {ani, 1 ≤ i ≤ n,n ≥ 1} is an array of real numbers with |ani| ≤ 1 for 1 ≤ i ≤ n and n ≥ 1. Then
(1.3) holds.

Proof. The proof is similar to that of Chen and Liu [8]. So we omit the detail. �

Checking the arguments of (2.15)-(2.17) and (2.21)-(2.23) in Sung [19] carefully, we have the following
two lemmas.
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Lemma 2.3. Let p > 1/α and 1/2 < α ≤ 1. Let Y be a random variable with E|Y|p < ∞. Assume that
{ani, 1 ≤ i ≤ n,n ≥ 1} is an array of real numbers with

sup
n≥1

n−1
n∑

i=1

|ani|
q
≤ 1 (2.1)

for some q > p and ani = 0 or |ani| > 1. Then there exists a positive constant C0 without depending on Y such
that

∞∑
n=1

npα−2
n∑

i=1

P(|aniY| > nα) ≤ C0E|Y|p.

Lemma 2.4. Let p > 1/α and 1/2 < α ≤ 1. Let Y be a random variable with E|Y|p < ∞. Assume that
{ani, 1 ≤ i ≤ n,n ≥ 1} is an array of real numbers with (2.1) for some q > p and ani = 0 or |ani| > 1. Then there
exists a positive constant C1 without depending on Y such that

∞∑
n=1

npα−rα−2
n∑

i=1

E|aniY|rI(|aniY| ≤ nα) ≤ C1E|Y|p,

where r > max{2(pα − 1)/(2α − 1), q} if p ≥ 2 and r = 2 if p < 2.

Lemma 2.5. Let p > 1/α, 1/2 < α ≤ 1 and 0 < v < p. Let {X,Xn,n ≥ 1} be a sequence of identically distributed
ρ∗-mixing random variables with EX = 0 and E|X|p < ∞. Assume that {ani, 1 ≤ i ≤ n,n ≥ 1} is an array of
real numbers with (2.1) for some q > p and ani = 0 or |ani| > 1. Then

∞∑
n=1

npα−2
∫
∞

1
P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > nαx1/v

 dx < ∞. (2.2)

Proof. Set Yni(x) = XiI(|aniXi| ≤ nαx1/v) for 1 ≤ i ≤ n and n ≥ 1. It is easy to show that

P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > nαx1/v

 ≤ P
(
max
1≤i≤n

|aniXi| > nαx1/v
)

+ P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniYni(x)

∣∣∣∣∣∣∣ > nαx1/v

 .
Therefore, in order to (2.2) it is enough to prove that

I1 =

∞∑
n=1

npα−2
∫
∞

1
P(max

1≤i≤n
|aniXi| > nαx1/v)dx < ∞

and

I2 =

∞∑
n=1

npα−2
∫
∞

1
P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniYni(x)

∣∣∣∣∣∣∣ > nαx1/v

 dx < ∞.

We first prove that I1 < ∞. Taking Y = X/x1/v in Lemma 2.3, we have

I1 ≤

∞∑
n=1

npα−2
∫
∞

1

n∑
i=1

P(|aniX| > nαx1/v)dx

=

∫
∞

1

 ∞∑
n=1

npα−2
n∑

i=1

P(|aniX| > nαx1/v)

 dx

≤ C
∫
∞

1
E|X/x1/v

|
pdx = CE|X|p

∫
∞

1
x−p/vdx < ∞.
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Now we prove that I2 < ∞. Note that by EX = 0, E|X|p < ∞, (2.1) and Hölder’s inequality,

sup
x≥1

n−αx−1/v max
1≤ j≤n

|

j∑
i=1

aniEYni(x)| ≤ sup
x≥1

n−αx−1/v
n∑

i=1

E|aniX|I(|aniX| > nαx1/v)

= sup
x≥1

n−αx−1/v
n∑

i=1

E[(|aniX|p · |aniX|1−p)I(|aniX| > nαx1/v)]

≤ E|X|p · sup
x≥1

n−αpx−p/v
n∑

i=1

|ani|
p

≤ E|X|p · n1−pα
→ 0

as n→∞. Therefore, to prove I2 < ∞, it is enough to prove that

I∗2 =

∞∑
n=1

npα−2
∫
∞

1
P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

ani[Yni(x) − EYni(x)]

∣∣∣∣∣∣∣ > nαx1/v/2

 < ∞.
By Markov’s inequality and Lemma 2.1, we have that for any r ≥ 2,

I∗2 ≤ C
∞∑

n=1

npα−rα−2
∫
∞

1
x−r/v(

n∑
i=1

|ani|
2E|Yni(x)|2)r/2dx + C

∞∑
n=1

npα−rα−2
∫
∞

1
x−r/v

n∑
i=1

|ani|
rE|Yni(x)|rdx

= CI∗21 + CI∗22.

If p ≥ 2, we choose r such that r > max{2(pα − 1)/(2α − 1), q}. Then E|X|2 < ∞ and hence we have

I∗21 ≤ (E|X|2)r/2
∞∑

n=1

npα+r/2−rα−2
∫
∞

1
x−r/vdx < ∞.

Taking Y = X/x1/v in Lemma 2.4, we also have

I∗22 =

∫
∞

1

 ∞∑
n=1

npα−rα−2
n∑

i=1

|ani|
rE|Ynk(x)/x1/v

|
r

 dx

≤ C
∫
∞

1
E|X/x1/v

|
pdx

= CE|X|p
∫
∞

1
x−p/vdx < ∞.

If p < 2, we choose r = 2. In this case, I∗21 = I∗22. By Lemma 2.4 again, I∗21 = I∗22 < ∞. So we complete the
proof. �

Proof of Theorem 1.1. Sufficiency. Without loss of generality, we can assume that
∑n

i=1 |ani|
q
≤ n for all

n ≥ 1. Set a′ni = aniI(|ani| ≤ 1) and a′′ni = aniI(|ani| > 1) for 1 ≤ i ≤ n and n ≥ 1. Then ani = a′ni + a′′ni. By the
monotonicity of x+ and the elementary inequality (|a| + |b| − 2ε)+ ≤ (|a| − ε)+ + (|b| − ε)+, we havemax

1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ − 2εnα


+

≤

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a′niXi

∣∣∣∣∣∣∣ + max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a′′niXi

∣∣∣∣∣∣∣ − 2εnα


+

≤

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a′niXi

∣∣∣∣∣∣∣ − εnα


+

+

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a′′niXi

∣∣∣∣∣∣∣ − εnα


+

.
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Hence, by the Cr-inequality and Lemma 2.2, to prove (1.3), it is enough to prove that

∞∑
n=1

n(p−v)α−2E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a′′niXi

∣∣∣∣∣∣∣ − εnα


v

+

< ∞, ∀ ε > 0.

Note that

∞∑
n=1

n(p−v)α−2E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a′′niXi

∣∣∣∣∣∣∣ − εnα


v

+

=

∞∑
n=1

npα−2
∫
∞

0
P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a′′niXi

∣∣∣∣∣∣∣ − εnα > nαx1/v

 dx

=

∞∑
n=1

npα−2
∫ 1

0
P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a′′niXi

∣∣∣∣∣∣∣ − εnα > nαx1/v

 dx +

∞∑
n=1

npα−2
∫
∞

1
P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a′′niXi

∣∣∣∣∣∣∣ − εnα > nαx1/v

 dx

≤

∞∑
n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a′′niXi

∣∣∣∣∣∣∣ > εnα
 +

∞∑
n=1

npα−2
∫
∞

1
P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a′′niXi

∣∣∣∣∣∣∣ > nαx1/v

 dx.

Hence, we have the desired result by Theorem A and Lemma 2.5.
Necessity. Note that

∞ >
∞∑

n=1

n(p−v)α−2E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ − εnα


v

+

≥

∞∑
n=1

n(p−v)α−2
∫ εvnvα

0
P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ − εnα > x1/v

 dx

= εv
∞∑

n=1

n(p−v)α−2
∫ nvα

0
P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ − εnα > εx1/v

 dx (2.3)

≥ εv
∞∑

n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > 2εnα
 .

Thus, we have E|X|p < ∞ by Theorem A. It remains to show that EX = 0. Set ani = 1 for 1 ≤ i ≤ n and n ≥ 1.
Then {ani} satisfies (1.1). We have by (2.3) that

∞∑
n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣ > εnα
 < ∞, ∀ ε > 0. (2.4)

Since E|X|p < ∞, we also have by the sufficiency and (2.3) that

∞∑
n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

(Xi − EXi)

∣∣∣∣∣∣∣ > εnα
 < ∞, ∀ ε > 0. (2.5)

Combining (2.4) and (2.5) gives EX = 0. �
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