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Abstract. Let E be an arbitrary graph, K be any field and A be the endomorphism ring of L := LK(E)
considered as a right L-module. Among the other results, we prove that: (1) if A is a von Neumann regular
ring, then A is dependent if and only if for any two paths in L satisfying some conditions are initial of each
other, (2) if A is dependent then LK(E) is morphic, (3) L is morphic and von Neumann regular if and only if
L is semisimple and every homogeneous component is artinian.

1. Introduction

Leavitt algebras LK(1,n) for 2 ≤ n and any field K were introduced and studied by W. G. Leavitt [10] in
1962 as universal examples of algebras not satisfying the IBN (invariant bases number) property. A ring
R is said to have the IBN property in case for any pair of positive integers m , n we have that the free
left R-modules Rm and Rn which are not isomorphic. If R = LK(1,n), then RR1 �R Rn which shows Leavitt
algebras fail to have the IBN property. A generalization of Leavitt algebras, the Leavitt path algebras LK(E)
for row-finite graphs E were independently introduced by P. Ara, M. A. Moreno-Frı́as and E. Pardo in [4],
and by G. Abrams and G. Aranda Pino in [1]. These LK(E) are algebras associated to directed graphs and
are the algebraic analogs of the Cuntz-Krieger graph C∗-algebras [15].

Let E be a graph and K a field. G. Aranda Pino, K. M. Rangaswamy and M. Siles Molina [5] studied
conditions on a graph E which are necessary and sufficient for the endomorphism ring A of the Leavitt path
algebra L : LK(E) considered as a right L-module to be von Neumann regular (recall that a ring R is von
Neumann regular if for every a ∈ R there exists b ∈ R such that a = aba). The algebra L embeds in A and
A = L if the graph E has finitely many vertices. The authors of [5] state that their focus is on the case when
the graph E has infinitely many vertices since some earlier works in the literature (for instance, [3]) contain
necessary and sufficient conditions on E for L to be von Neumann regular, and they show in [5, Theorem
3.5] that, if E is a row-finite graph, A is von Neumann regular if and only if E is cyclic and every infinite
path ends in a sink (equivalently, L is left and right self-injective and von Neumann regular if and only if L
is semisimple right L-module).

In the literature on von Neumann regular rings, various conditions have been shown to characterize
the subclass of unit regular rings (recall that a ring R is unit regular if for every a ∈ R there exists a unit
u ∈ R such that a = aua). We remark that the Leavitt path algebras that we look at will not necessary have a
unit. If E is a graph and K is a field, the Leavitt path algebra LK(E) is unital if and only if the vertex set E0 is
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finite, in which case
∑

v∈E0 v = 1LK(E). However, every Leavitt path algebra does have a set of local units (A
set of local units for a ring R is a set E ⊆ R of commuting idempotents with the property that for any x ∈ R
there exists t ∈ E such that tx = xt = x. If R is a ring with a set of local units E, then for any finite number of
elements x1, ..., xn ∈ R, there exists t ∈ E such that txi = xit = xi for all 1 ≤ i ≤ n.).

According to M. Henriksen [8], R is called a dependent ring if, for every a, b ∈ R, there are s, t ∈ R, not
both zero, such that sa+tb = 0. In [6, Theorem 6], Ehrlich showed that every unit regular ring R is dependent.
In [8, Corollary 10], Henriksen shows that not all dependent regular rings are unit regular. In view of this
useful fact, our aim is to understand and study dependent rings for the ring A of endomorphisms of LK(E)
(viewed as a right LK(E)-module). We prove that: (1) assume that A is a von Neumann regular ring. Then A
is dependent if and only if for any two paths in L satisfying some conditions are initial of each other, (2) if A
is dependent then LK(E) is morphic, (3) L is morphic and von Neumann regular if and only if L is semisimple
and every homogeneous component is an artinian ring, (4) if L is morphic and A is von Neumann regular
ring, then L is a morphic and a Rickart module, and if L is a morphic and a d-Rickart module, then A is
dependent.

2. Notations and key observations

We begin this section by recalling the basic definitions and examples of Leavitt path algebras. Also, we
will include some of the graph-theoretic definitions that will be needed later in the paper.

A (directed) graph E = (E0,E1, r, s) consist of a set E0 of vertices, a set E1 of edges, and maps r, s : E1
→ E0.

For each edge v, the vertex s(v) is the source of v, and r(v) is the range of v.
We say that a vertex v ∈ E0 is a sink if s−1(v) = ∅, and we say that a vertex v ∈ E0 is an infinite emitter if

|s−1(v)| = ∞. A singular vertex is a vertex that is either a sink or an infinite emitter, and we denote the set
of singular vertices by E0

sin1. We also let E0
re1 = E0

\ E0
sin1, and refer to the element of E0

re1 as regular vertices;
i.e., a vertex v ∈ E0 is a regular vertex if and only if 0 < |s−1(v)| < ∞. A graph is row-finite if it has no
infinite emitters. A graph is finite if both sets E0 and E1 are finite (or equivalently, when E0 is finite and E is
row-finite).

A path in a graph is a sequence p = e1...en r(ei) = s(ei+1) for 1 ≤ i ≤ n − 1. We say the path p has length
|p| = n, and we let En denote set of paths of length n. We consider the vertices in E0 to be paths of length
zero. We also let E∗ =

⋃
∞

n=0 En denote the paths of finite length in E, and we extend the maps r and s to
E∗ as follows: For p = e1...en ∈ En with n ≥ 1, we set s(p) = s(e1) and r(p) = r(en); for p = v ∈ E0, we set
s(v) = v = r(v). In this case, s(p) = s(e1) is the source of p, r(p) = r(en) is the range of p. If p = e1...en is a path
then we denote by p0 the set of its vertices, that is, p0 = {s(e1), r(ei) : 1 ≤ i ≤ n}.

A path p = e1...en is closed if r(en) = s(e1), in which case p is said to be based at the vertex s(e1). A closed
path p = e1...en based v is a closed simple path if r(ei) , v for every i < n, i.e., if p visits the vertex v only
once. A cycle is a path p = e1...en with length |p| ≥ 1 and r(p) = s(p). In other word, a cycle is a path that
begins and ends on the same vertex and does not pass through any vertex more than once. If p is a cycle
with s(p) = r(p) = v, then we say that p is based at v. A graph E is called acyclic if it does not have any
cycles. If p = e1...en is a cycle, an exit for p is an edge f ∈ E1 such that s( f ) = s(ei) and f , ei for some i.

The elements of E1 are called (real) edges, while for e ∈ E1 we call e∗ a ghost edge. The set {e∗ : e ∈ E1
}

will be denoted by (E1)∗. We let r(e∗) denote s(e), and we let s(e∗) denote r(e). Let E be a graph and K be a
field. The Leavitt path K−algebra LK(E) is defined to be the K−algebra generated by a set {v : v ∈ E0

} of
pairwise orthogonal idempotents, together with a set of variables {e, e∗ : e ∈ E1

}, which satisfy the following
conditions:

(1) s(e)e = e = er(e) for all e ∈ E1.
(2) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1.
(3) e∗ f = δe, f r(e) for all e, f ∈ E1.
(4) v =

∑
{e∈E1,s(e)=v} ee∗ whenever E0

re1.

The conditions (3) and (4) are called Cuntz-Krieger relations. If p = e1...en is a path, we define p∗ = e∗n...e∗1
of LK(E). One can show that

LK(E) = spanK{pq∗ : p and q are paths in E and r(p) = r(q)}



T. Özdin / Filomat 32:4 (2018), 1175–1181 1177

The Leavitt path algebras that we look at will not necessary have a unit. If E is a graph and K is a field,
the Leavitt path algebra LK(E) is unital if and only if the vertex set E0 is finite, in which case

∑
v∈E0 v = 1LK(E).

However, every Leavitt path algebra does have a set of local units.
In [7], Fuller proved a ring R has enough idempotents if there exists a collection of mutually orthogonal

idempotents {eα}α∈Λ such that R =
⊕

eαR =
⊕

Reα. Note that if we let S = {eα}α∈Λ be the mutually
orthogonal idempotents of above definition, then E = {

∑n
k=1 ek : e1, ..., en ∈ S} is set of local unit for R. Thus

rings with enough idempotents are rings with local units. If E is a graph and LK(E) is the associated Leavitt
path algebra, then

LK(E) =
⊕
v∈E0

vLK(E) =
⊕
v∈E0

LK(E)v

so LK(E) is a ring with enough idempotents. Furthermore, if we list the vertices of E as E0 = {v1, v2, ...}, let

Λ =

{
{1, 2, ..., |E0

|} if E0 is finite
{1, 2, ...} if E0 is infinite

and set tn =
∑n

k=1 vk, then {tn}n∈Λ is a set of local units for LK(E).
We will now outline some easily derivable basic facts about the endomorphism ring A of L := LK(E).

Let E be any graph and K be any field. Denote by A the unital ring End(LL). Then we may identify L with
subring of A, concretely, the following is a monomorphism of rings:

φ : L→ End(LL)
x 7→ λx

where λx : L→ L is the left multiplication by x, i.e., for every y ∈ L, λx(y) = xy which is a homomorphism
of right L−module. The map φ also a monomorphism because given a nonzero x ∈ L there exists an
idempotent u ∈ L such that xu = x, hence 0 , x = λx(u).

Fact 2.1. For any f ∈ A and x ∈ L, fλx = λ f (x) ∈ L. Moreover, L is a left ideal of A. (see [5, Lemma 2.3] and
[5, Corollary 2.4], respectively).

Fact 2.2. If E is a finite graph, then LK(E) is unital with
∑

v∈E◦ v = 1LK(E). Furthermore, we assume that E is a
finite graph, u is a unit element in A and e is an idempotent in LK(E). Then λu(e) is a unit element in LK(E).

Proof. Since u is an unit element in A there exist an element λb in A such that λbu = uλb = 1LK(E) and so
eb = b = be. Then we get

1LK(E) = uλb = uλeb = λu(e)b = λu(e)λb

which implies
λbλu(e) = λbuλe = uλbλe = uλbe = uλeb = uλeλb = λu(e)λb.

Fact 2.3. If E is a infinite graph, then LK(E) is a ring with a set of local units. Furthermore, we assume that
E is a infinite graph, u is a local unit element in A and e is an idempotent element in LK(E). Then λu(e) is a
local unit element in A.

Proof. Since u is an local unit element in A, there exist an element λb in A such that λbu = λb = uλb and so
eb = b = be. Then we get

λb = uλb = uλeb = λu(e)b = λu(e)λb

which implies
λbλu(e) = λbuλe = uλbλe = uλbe = uλeb = uλeλb = λu(e)λb.
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Fact 2.4. If E is an infinite graph, then LK(E) is a ring with a set of local units consisting of sums of distinct
vertices of the graph. On the other hand, LK(E) has plenty of idempotents (in fact, it is an algebra with local
units), and this is true also for A, Now we assume that E is an infinite graph, A is a unit regular ring and
a ∈ L. Since idempotents play a significant role in the theory of Leavitt path algebra, we remark that λa is
an idempotent in L.

Proof. For any a ∈ L, by the hypothesis, there is a local unit u ∈ A satisfying λau = λa = uλa such that
λa = λauλa. Then λa = λauλa = λaλa which implies that λa is an idempotent in L.

3. The Results

Let E be any graph and K be any field. In [5, Proposition 3.1], it is shown that if A is von Neumann
regular then LK(E) is von Neumann regular.

Lemma 3.1. Let E be an arbitrary graph, K be any field and A be the endomorphism ring of L := LK(E) considered
as a right L-module. If A is dependent so is L.

Proof. Suppose A is dependent. To show that L is dependent, let a, b ∈ L. By hypothesis, there are elements
f , 1 ∈ A, not both zero, such that fλa + 1λb = 0. If u1 and u2 are local units in L satisfying u1a = a = au1 and
u2b = b = bu2, then

fλa = fλu1a = fλu1λa = λ f (u1)λa

and
1λb = 1λu2b = 1λu2λb = λ1(u2)λb.

Now
0 = fλa + 1λb

= λ f (u1)λa + λ1(u2)λb,

and hence L is dependent.

In the literature on von Neumann regular rings, various conditions have been shown to characterize the
subclass of unit regular rings. In [6, Theorem 6], Ehrlich showed that every unit regular ring R is dependent.
In [8, Corollary 10], Henriksen shows that not all dependent regular rings are unit regular. The following
observation gives one more such condition for dependent rings.

Given paths p, q ∈ E, we say that q is an initial segment of p if p = qm for some path m ∈ E. It is well known
that, given nonzero paths pq∗ and mn∗ in LK(E), q is an initial segment of m if and only if (pq∗)(mn∗) , 0.

Theorem 3.2. Let E be a graph, K be any field and A be the endomorphism ring of L := LK(E) considered as a right
L-module. Assume that A is a von Neumann regular ring. Then the following conditions are equivalent.

(1) A is dependent.
(2) If, for all paths nq∗ and pm∗ in LK(E), An = Aq and Ap = Am imply q is an initial segment of p.

Proof. (1)⇒ (2) Let A be dependent. Then, for all paths nq∗, pm∗ ∈ LK(E), there exists both non zero u, v ∈ A
such that u(nq∗) + v(pm∗) = 0. By assumption, let n = f q and p = 1m for some f , 1 ∈ A. Assume that
(nq∗)(pm∗) = 0. Then

0 = u(nq∗) + v(pm∗)
= u(nq∗)(pm∗) + v(pm∗)(pm∗)
= v(pm∗)

which implies v = 0. Similarly, we also get u = 0, which is a contradiction. Hence (nq∗)(pm∗) , 0 and so q is
an initial segment of p.

(2) ⇒ (1) Let p, q ∈ A. Since A is a von Neumann regular ring, for p, q ∈ A, choose f , 1 ∈ A such that
p = p f p and q = q1q. Let f p = m and 1q = n for some m,n ∈ LK(E). Then, by (2), Ap = A f p = Am and
Aq = A1q = An imply q is an initial segment of p. So there exists a path r such that p = qr, hence A is
dependent.
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Theorem 3.3. Let E be any graph, K be any field and e be an idempotent in a Leavitt path algebra L = LK(E). If L is
dependent, so is eLe.

Proof. Let L dependent. Then for each a, b ∈ L there are s, t ∈ L, not both zero, such that sa + tb = 0. Now, let
e be an idempotent in L. Then

0 = esa + etb
= esae + etbe
= seae + tebe
= eseae + etebe
= ese︸︷︷︸

s′

eae︸︷︷︸
a′

+ ete︸︷︷︸
t′

ebe︸︷︷︸
b′

for some both nonzero a′ , b′ ∈ eLe and s′ , t′ ∈ eLe. Hence eLe is dependent.

Let R be a ring. For every element a, b ∈ R, if Ra = ann(b) and Rb = ann(a) then we say a ∼ b.

Proposition 3.4. Let E be a (finite) graph, K be any field and A be the endomorphism ring of L := LK(E) considered
as a right L-module.

1. If x ∼ y for all x, y in LK(E), then λx ∼ λy in A.
2. The following conditions are equivalent for all α, β ∈ A.

(a) α ∼ β
(b) uα ∼ βu−1

(c) αu ∼ u−1β

Proof. (1) Let E be a any graph and x ∼ y for all x, y in LK(E). We must show that Aλx = ann(λy) and
Aλy = ann(λx). Let f ∈ A. For some idempotent e in L, we can write x = λx(e) and y = λy(e). By
hypothesis, since x ∼ y, Lx = ann(y) and Ly = ann(x), then Lxy = 0 and Lyx = 0 so Lλx(e)λy(e) = 0 and
Lλy(e)λx(e) = 0. Then, by Fact 2.1, fλxλy = λ f (x)λy = λ f (e)λxλy = 0 and we get Aλx ⊆ ann(λy). Conversely,
ann(y) ⊆ Lx⇒ ann(λy) ⊆ Lλx ⊆ Aλx. So Aλx = ann(λy).

By Fact 2.1, fλyλx = λ f (y)λx = λ f (e)λyλx = 0 and we get Aλy ⊆ ann(λx). Conversely, ann(x) ⊆ Ly ⇒
ann(λx) ⊆ Lλy ⊆ Aλy. So Aλy = ann(λx).

(2)(a)⇒ (b) Let α ∼ β. Then we can write Aα = ann(β) and Aβ = ann(α). Take a local unit u in A. Clearly,
u−1 is a local unit element in A. Hence

A(uα) = Aα = ann(β) = ann(βu−1)

and
A(βu−1) = Aβ = ann(α) = ann(uα).

(b)⇒ (c) This is obvious.
(c)⇒ (a) Let αu ∼ u−1β. Then we can write A(αu) = ann(u−1β) and A(u−1β) = ann(αu). Take a local unit

u in A. We get
Aα = A(αu) = ann(u−1β) = ann(β)

and
Aβ = AA(u−1β) = ann(αu) = ann(β).

According to [14], an endomorphism α of a module M is called morphic if M/Mα � Ker(α), equivalently
there exists β ∈ End(M) such that Mβ = Ker(α) and Ker(β) = Mα by [14, Lemma 1]. The module M is called
a morphic module if every endomorphism is morphic. If R is a ring, an element a in R is called left morphic
if right multiplication ·a :R R →R R is a morphic endomorphism, that is if R/Ra � l(a). The ring itself is
called a left morphic ring if every element is left morphic, that is if RR is a morphic module.
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Corollary 3.5. Let E be any graph and K be any field. If A is dependent then LK(E) is morphic.

Proof. This follows from Proposition 3.4 and Lemma 3.1.

We continue to obtain some characterizations which are similar to Theorem 3.2.

Theorem 3.6. Let E be an arbitrary graph and A be the endomorphism ring of L = LK(E) as a right LK(E)-module.
Then

1. L is morphic and von Neumann regular if and only if L is semisimple and every homogeneous component is an
artinian ring, concretely, L �

⊕
i∈ΛMni (K), where every ni is an integer (the set of ni’s might not be bounded)..

2. If L is morphic and von Neumann regular, then A is dependent.

Proof. (1) See [2, Theorem 2.4].
(2) We show that A is dependent. Let α, β ∈ A. Since L has local units there are idempotents u, v ∈ L

such that
αλu = λα(u) = λαλu ∈ L

and
βλv = λβ(v) = λβλv ∈ L

Since L is morphic, if (αλu)α ∈ ann(β) then β(αλu)α = 0 and (βλv)β ∈ ann(α) which implies α(βλv)β = 0. So,
β(αλu)α + α(βλv)β = 0. Hence A is a dependent ring.

A module M is called kernel-direct if Ker(α) is a direct summand of M for every α ∈ End(M); and M
is called image-direct if Im(α) is a direct summand of M for each α ∈ End(M) (see [14]). Modules with
regular endomorphism ring (and hence all semisimple modules) have both properties. As pointed out of
the authors [14],a morphic module is kernel direct if and only if it is image direct by [14, Lemma 1].

Theorem 3.7. Let E be an arbitrary graph and A be the endomorphism ring of L = LK(E) as a right LK(E)-module.
Assume

1. L is morphic and kernel-direct,
2. L is morphic and image-direct,
3. A is dependent.

Then we have (1)⇒ (2)⇒ (3).

Proof. (1)⇒ (2) This follows from Proposition 3.4.
(2) ⇒ (3) Let α ∈ A. Then Lα is a direct summand of L as Ker(α) is a direct summand of L. By [16,

Corollary 3.2], A is von Neumann regular and so A is dependent.

A module M is called Rickart if the kernel of every endomorphism of M is a direct summand of M. M is
called a d-Rickart module if the image of every endomorphism of M is a direct summand of M (see [11, 12]
for details).

Theorem 3.8. Let E be an arbitrary graph and A be the endomorphism ring of L = LK(E) as a right LK(E)-module.
Assume

1. L is morphic and A is von Neumann regular ring.
2. L is a morphic and a Rickart module.
3. L is a morphic and a d-Rickart module.
4. A is dependent.

Then we have (1)⇒ (2)⇒ (3)⇒ (4).

Proof. (1)⇒ (2) Let L be morphic and A is von Neumann regular. By [13, Theorem 1.1], for all α ∈ A, Ker(α)
is direct summand of L. So L is a Rickart Module.

(2)⇒ (3) By [17, Proposition 7], L is a d-Rickart module.
(3)⇒ (4) Let L be a morphic and a d-Rickart module. Then the image of every endomorphism of L is a

direct summand of L. So, by Theorem 3.7, A is dependent.
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