
Filomat 35:2 (2018), 1703–1710
https://doi.org/10.2298/FIL1805703C

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Top-k Sequence Pattern Mining with Non-overlapping Condition

Xin Chaia,c, Dan Yanga,c, Jingyu Liua,c, Yan Lib, Youxi Wua,b,c

aSchool of Computer Science and Engineering, Hebei University of Technology, Tianjin 300401, China
bSchool of Economics and Management, Hebei University of Technology, Tianjin 300401, China

cHebei Province Key Laboratory of Big Data Calculation, Tianjin 300401, China

Abstract. Pattern mining has been widely applied in many fields. Users often mine a large number of
patterns. However, most of these are difficult to apply in real applications. Top-k pattern mining, which
involves finding the most frequent k patterns, is an effective strategy, because the more frequently a pattern
occurs, the more likely they are to be important for users. However, top-k mining can only mine short
patterns in mining applications with the Apriori property. It is well-known that short patterns contain less
information than long patterns. In this paper, we focus on mining top-k sequence patterns of each pattern
length. We propose an effective algorithm, named NOSTOPK (non-overlapping sequence pattern mining
for top-k). The algorithm calculates the support of a pattern using a Nettree data structure, which has been
introduced to tackle various types of pattern matching and sequence pattern mining issues. We find the
top k patterns of length len, and calculate the supports of the corresponding k× |Σ| super-patterns of length
len + 1 to discover the new top k super-patterns with len + 1. Experimental results demonstrate that the
algorithm achieves a better performance than comparable algorithms.

1. Introduction

The core idea of data mining is to mine frequent patterns [1]. To effectively mine frequent patterns
have been afforded much consideration by researchers. Sequence pattern mining [2,3] has played an
important role in many mining tasks, such as author characteristics [4], prediction HAS QoE [5], sequential
classification [6], time series analysis [7], and multivariate temporal data [8]. In order to avoid mining a
lot of unrelated patterns, gap-constrained sequence pattern mining algorithms have been proposed. For
example, Zhang et al. [9] studied the problem of gap pattern mining with no-condition. Min et al. [10]
redefined the problem in [9], where the Apriori property can be used. Wang et al. [11] designed the
algorithm MDSP-CGC to avoid improper settings of the gap constraint, where useful patterns cannot be
found. However, sequence pattern mining with gap constraints is a tough problem, since not only many
strategies are involved in such as pattern matching strategy to calculate the support of a pattern [12] and

2010 Mathematics Subject Classification. 68T10.
Keywords. Sequence pattern mining; Gap constraint; Top-k; Non-overlapping condition; Nettree.
Received: 10 October 2017; Accepted: 27 October 2017
Communicated by Hari M. Srivastava
Research supported in part by the National Natural Science Foundation of China under Grant 61673159, in part by the Natural

Science Foundation of Hebei Province under Grant F2016202145, in part by the Natural Science Foundation of Heilongjiang Province
under Grant F2017019, and in part by the Science and the Technology Project of Hebei Province under Grant 15210325. Corresponding
author: Yan Li

Email addresses: chaixin@scse.hebut.edu.cn (Xin Chai), 1694990193@qq.com (Dan Yang), liujingyu@scse.hebut.edu.cn
(Jingyu Liu), lywuc@163.com (Yan Li), wuc@scse.hebut.edu.cn (Youxi Wu)

X. Chai et al. / Filomat 35:2 (2018), 1703–1710 1704

Apriori [10] or Apriori-like [9] property to reduce the space of candidate patterns, but also various the state-
of-the-art mining methods were proposed including no-condition [9], the one-off condition [13], and the
non-overlapping condition [14]. Previous studies [15, 16] had shown that the non-overlapping condition
is a constraint that lies between the one-off condition and no- condition, which makes the result more
consistent with the avoidance of redundancy. For example, the algorithm NOSEP [16], which is designed
to mine frequent patterns, can effectively balance the completeness of the mining with the Apriori property.
As we know, it is difficult to set the minimum support threshold, minsup, without a priori knowledge. The
higher the minsup is, the fewer mined patterns there tend to be. However, some useful patterns may be
missed. On the contrary, when minsup decreases, more patterns will be frequent patterns. However, when
using all these excessive patterns it is more difficult to draw real life conclusions. Therefore, an important
issue is how to effectively compress frequent patterns and mine more valuable and meaningful patterns.

Top-k pattern mining can greatly reduce the number of frequent patterns, and effectively avoid the
coverage of high frequency patterns when using the frequent closed pattern [17] algorithm. Therefore, this
method is a more efficient technique for compressing frequent patterns [18]. Traditional top-k algorithms
are designed to obtain the top-k of all frequent patterns. Sometimes users want to know the top-k patterns
of length L, but traditional algorithms cannot satisfy such requirements. Wu et al. [19] proposed the
algorithm MAPBOK, which is designed to obtain the top-k patterns with a support ratio larger than a
support threshold ρ for each length. However, MAPBOK deals with no-condition. The latest research
shows that sequence pattern mining with the non-overlapping condition can solve the shortcomings of the
one-off condition and no-condition, and that it has good prospects [16]. However, the proposed NOSEP
algorithm is used to mine all frequent patterns. Therefore, the algorithm NOSTOPK for top-k sequence
pattern mining with the non-overlapping condition is proposed here. In this algorithm, the minimum
support threshold ρ does not need to be specified. NOSTOPK is convenient, fast, and most importantly is
able to satisfy the requirements of users.

The main contributions of this paper are threefold: (1) in algorithm NOSTOPK, the minimum support
threshold ρ does not need to be specified, which effectively solves the problem that the minimum support
threshold ρ is difficult to set for frequent pattern mining; (2) traditional top-k algorithms are to mine the
top-k patterns of all frequent patterns. We deal the issue which can mine the top-k items in each length.
Moreover, the required pattern length L and the number of patterns k are determined by users; (3) we
propose an effective algorithm NOSTOPK and extensive experimental results verify the feasibility and
effectiveness of our algorithm.

2. Problem Definition

Definition 1. A collection of different events (namely characters) is called an event set, denoted by Σ. A sequence S
of length n is an ordered list of events, denoted as S=s1s2 · · · sn, where si ∈ Σ. A sequence database is a set of multiple
sequences S, expressed as SDB={S1,S2,· · · ,SN}.

Definition 2. The number of characters that can separate two characters in a pattern is called a gap constraint,
denoted as 1ap=[min1ap, max1ap], where min1ap and max1ap are nonnegative integers and represent the minimum
and maximum gap constraints, respectively.

Definition 3. A pattern P=p1[min1,max1]p2 · · · [minm−1,maxm−1]pm is called a pattern with gap constraints, where
p j ∈ Σ and Σ is the set of events. In particular, given a gap constraint 1ap=[min1ap, max1ap] (0 ≤ min1ap < max1ap),
if min1 = · · · = minm−1 = min1ap and max1 = · · · = maxm−1 = max1ap, then the pattern P is a pattern with periodic
gap constraints.

Example 1. Suppose that the pattern P=p1[min1,max1]p2[min2,max2]p3=C[0,2]G[0,2]C is given, where the gap
constraint [0,2] indicates that between each character C, G, and C there can be zero, one, or two characters. Because
min1 = min2 = 0 and max1 = max2 = 2, P is a pattern with periodic gap constraints.

Definition 4. Given the pattern P of length m and a sequence S of length n, if there are m integers l1, l2, · · · , lm with
1 ≤ l1 < l2 < · · · < lm ≤ n, min j ≤ l j+1 − l j − 1 ≤ max j, and p1 = sl1 , p2 = sl2 ,· · · , pm = slm , then the location index
〈l1, l2, · · · , lm〉 represents an occurrence of P in S.

X. Chai et al. / Filomat 35:2 (2018), 1703–1710 1705

Example 2. Suppose the sequence S=s1s2s3s4s5=ATATA and pattern P=A[0,2]T[0,2]A are given. The occurrences
of P in S are 〈1, 2, 3〉, 〈1, 2, 5〉, 〈1, 4, 5〉, and 〈3, 4, 5〉, while the occurrences of ATA with 1ap=[0,1] in S are 〈1, 2, 3〉
and 〈3, 4, 5〉.

Definition 5. Given length constraints len=[minlen, maxlen], where minlen and maxlen are the minimum and the
maximum length constraints, respectively, if L=〈l1, l2, · · · , lm〉 satisfy minlen ≤ lm − l1 + 1 ≤ maxlen, then L is an
occurrence with length constraints.

Example 3. The only occurrences with length constraints len=[1,4] of P=A[0,2]T[0,2]A in S are 〈1, 2, 3〉 and 〈3, 4, 5〉
in Example 2. For example, for the occurrence 〈1, 2, 3〉, 3 - 1 + 1 = 3 satisfies len=[1,4].

Definition 6. For two occurrences L=〈l1, l2, · · · , lm〉 and L′=〈l′1, l
′

2, · · · , l
′
m〉, if ∀1 ≤ j ≤ m : l j , l′j, then L and L′

are two non-overlapping occurrences. If all occurrences of an occurrence set are non-overlapping, then the occurrence
set is a non-overlapping occurrence set. The support of P in S is the size of the maximum non-overlapping occurrence
set, which is denoted by sup(P,S).

Example 4. In Example 2, under the condition of the length constraint len = [1,4], the largest non-overlapping
occurrence set of P=A[0,2]T[0,2]A in sequence S is {〈1, 2, 3〉, 〈3, 4, 5〉}, so sup(P,S)=2.

Definition 7. The support of the pattern P in the sequence database SDB is the sum of the supports of P in
S1,S2, · · · ,SN, respectively, denoted by sup(P,SDB) =

∑n
i=1 sup(P,Si).

Definition 8. For top-k sequence pattern mining with the non-overlapping condition, the goal of solving the problem
is to mine the top-k patterns of each length with gap constraints and length constraints in a sequence S or sequence
database SDB under the non-overlapping condition.

3. NOSTOPK Algorithm

NOSTOPK, proposed in this paper, is a heuristic algorithm. Using a heuristic algorithm to solve the
top-k pattern mining problem can significantly improve the efficiency, and provide results that have a small
deviation. Because the result of the heuristic algorithm is only an approximate solution, NOSTOPK can
use the Apriori property rather than an Apriori-like property to prune candidate patterns. If a sub-pattern
P is a top-k pattern with length L, then there is a high probability that its super-pattern Q is a top-k pattern
with length (L + 1). Thus, the basic idea of this algorithm is that if the pattern length is L, choose the top-k
patterns to mine, then generate the corresponding k × |Σ| patterns with length (L + 1). From these patterns,
select the top-k output patterns, and continue to mine (note that if |Σ| is less than k, all characters are seen
as frequent patterns with length 1). An illustrative example is provided as follows.

Example 5. Suppose that we have a sequence S=s1s2s3s4s5s6s7s8s9s10 =GAATTCATCA, with length constraint
len=[1,5], gap constraint 1ap=[0,1], L=2, and k=3. By scanning the sequence S, we can obtain the candidate C={A,
C, G, T} with length 1, for which the supports are sup(A)=4, sup(T)=3, sup(C)=2, and sup(G)=1. Because k=3, {A,
T, C}are put into the array TopkArr and output. Now, we generate the candidate patterns with length 2 using the
three patterns with length 1. Thus, the candidate C with length 2 is {AA, AT, AC, TA, TT, TC, CA, CT, CC}. After
calculating and sorting the supports, the results are sup(AT)=3, sup(TA)=2, sup(TC)=2, sup(CA)=2, sup(AA)=1,
sup(AC)=1, sup(TT)=1, sup(CT)=1, and sup(CC)=0. Because k=3, {AT, TA, TC} are placed in the array TopkArr
(note that there are three patterns whose sup(P,S) are 2, and any of these is correct). If L is greater than 2, we can
iterate the above process.

The NETGAP algorithm [16], which employs Nettree, a specially designed data structure, calculates the
support effectively.

Definition 9. Nettree is a tree-like data structure. It has root nodes, leaf nodes, children, parents, depth, and other
concepts of the tree, but also has its own characteristics, such as that it can have multiple root nodes. In addition to
the root node, other nodes can have multiple parent nodes. A node may have multiple paths to root nodes. It uses ni

j
to indicate the pattern in which layer j is labeled as i. Thus, the nodes of the same tag can appear in different levels
[15, 16, 20].

X. Chai et al. / Filomat 35:2 (2018), 1703–1710 1706

An illustrative example is presented to show the principles of NETGAP.

Example 6. Given a sequence S=s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15=AATTCATCAGCCATG and a pattern P =
p1p2p3p4 =A[0,3]T[0,3]C[0,3]G, the Nettree shown in Figure 1 (a) can be created according to the pattern and
sequence.

(a) (b)

Figure 1: The Nettree for P in S

(1) In Figure 1 (a), n5
3 , which is a third level leaf, can be pruned according to NETGAP, because there is no path

to reach a fourth level leaf via node n5
3. Then, n3

2 can also be deleted after pruning node n5
3. Similarly, nodes n14

2 , n13
1 ,

and n9
1 are pruned. The final Nettree is shown in Figure 1 (b).

(2) It is easy to obtain the first occurrence 〈1, 4, 8, 10〉 in the updated Nettree, marked in light grey in Figure 1 (b).
Then, all four light grey nodes are pruned according to the non-overlapping condition. After pruning the four nodes,
n2

1 is also pruned, because there is no path to reach a fourth level leaf via node n2
1. By iterating this process, the second

occurrence 〈6, 7, 11, 15〉, marked in dark grey, can be found. Therefore, we know that there are two non-overlapping
occurrences, 〈1, 4, 8, 10〉 and 〈6, 7, 11, 15〉, for P in S. Hence, sup(P,S)=2.

The algorithm NOSTOPK is presented as follows.

Algorithm 1. NOSTOPK
Require: Sequence S or sequence database SDB, len = [minlen,maxlen], 1ap = [a, b],L, k
Ensure: The top-k patterns of each length in array TopkArr

1: Scan sequence S or sequence database SDB, calculate the support of each character and sort them, get the top-k
characters, store them in array TopkArr;

2: level← 1;
3: while level ≤ L − 1 do
4: C = gen candidate (level − 1); // generate candidate set and store the result in C
5: for each cand in C do
6: pro.value← NETGAP(cand);
7: if (pro.value <> 0) then
8: queue.push(pro);
9: end if

10: while !queue.empty() && i ≤ k do
11: Store the top-k patterns in array TopArr;
12: end while
13: end for
14: level++;
15: end while
16: return TopkArr;

X. Chai et al. / Filomat 35:2 (2018), 1703–1710 1707

Table 1: Protein sequence datasets
Sequence Database Number of Sequences Length

SDB1 507 91875
SDB2 338 62985
SDB3 169 32503
SDB4 590 109424
SDB5 400 73425
SDB6 200 37327

4. Experimental Results and Analysis

As a benchmark dataset, the data used in this paper has been investigated in previous studies, such
as [16] and [19], and consists of six protein sequences. The first three protein sequences SDB1, SDB2, and
SDB3 can be obtained from ASTRAL95 1 161, and the last three SDB4, SDB5, and SDB6 can be obtained
from ASTRAL95 1 171. The features of the protein sequences are shown in Table 1. All experiments are run
on a computer with the Intel Core i3-2350M 2.30GHz CPU, 6 GB RAM, and Windows 7 operating system.
Dev-C++ is used to develop all algorithms.

For the top-k mining problem with the non-overlapping condition, we use the ratio calculation formula
with a weight to measure the precision of the top-k mining results. The equation is given in the text as Eq.
(1).

Precision = (
d∑

i=1

(i × ai))/(
d∑

i=1

(i × bi)) (1)

where ai and bi are the numbers of correct top-k frequent patterns and total top-k frequent patterns with
length i, respectively, and d is equal to the length L. In general, bi is equal to k, but when c is less than k, bi
becomes c, where c is the number of length i frequent patterns. According to Definition 8, suppose we want
to find top k patterns with length L that means we will find L × k patterns and NOSTOPK mines the same
amount of patterns. Therefore, the number of false positives is the same as that of false negatives. Hence,
the precision and the recall are the same.

4.1. Running Time Evaluation
In order to illustrate how L, k, and the length of a sequence affect the running time of NOSTOPK, the

results of protein sequences mined with different values for L, k, and the lengths of sequences are shown in
Figure 2. (Note: L is the layer number and the maximum length of generated patterns.)

(a) For top-10 (b) For top-20 (c) For top-30

Figure 2: The running time on protein sequences

As we can see from Figure 2, the longer the sequence is, the greater L and k are, and the longer the
running time is.

X. Chai et al. / Filomat 35:2 (2018), 1703–1710 1708

(1) When L and k are the same, the longer the length of the sequence is, the longer the running time is.
(2) When the lengths of sequences and k remain the same, the larger the L is, the greater the number of

patterns at each layer is, and the number of candidate patterns increases. Thus, the running time increases.
For example, for the top-30 patterns on each layer mined on SDB1, shown in Figure 2 (c), the running time
is 62.1s when L = 4, while the running time is 126.3s when L = 6, which obtains more than two layers of the
patterns, but the running time is more than twice as long.

(3) Clearly k also has a significant effect on the running time. The running time will be longer as k
increases, because the number of candidate patterns also increases. We can clearly see that SDB4 is the
longest protein sequence. When mining the top-10 on it, the running time for L=6 in Figure 2 (a) is 27.4s,
the running time for the top-20 mining under the same condition in Figure 2 (b) is 96.6s, and the running
time for the top-30 under the same condition in Figure 2 (c) is 143.9s.

4.2. Running Time Contrast Evaluation
The algorithm NOSTOPK is compared with NOSEP-k (NOSEP for top-k), based on the algorithm NOSEP

[16], to verify its efficiency. The algorithm NOSEP-k mines the top-k patterns in all frequent patterns with
support greater than or equal to ρ at each length. The main difference between NOSTOPK and NOSEP-k is
that the candidate set is generated differently. NOSEP-k generates the candidate set by the pattern growth,
generating candidate patterns using frequent patterns with support greater than or equal to ρ. However,
NOSTOPK generates a candidate set using the top-k patterns, which improves efficiency considerably.

A comparison of the running times of the two algorithms for the top-10, top-20, and top-30 on the
protein sequences is given in Figure 3.

(a) For top-10 (b) For top-20 (c) For top-30

Figure 3: Comparison of the running time under different L on protein sequences

(1) As the sequence length and k increase, the running times of NOSTOPK and NOSEP-k steadily increase
with a little fluctuation.

(2) As L increases, the running time of NOSEP-k increases more than that of NOSTOPK, which remains
short with little fluctuation. When L = 4, the running time of NOSEP-k is over hundred seconds than that
of NOSTOPK. The gap increases when L = 5, where the running time of NOSEP-k can be over 3000s greater
than that of NOSTOPK. The longest running time for NOSTOPK was for the top-30 mining on SDB4 in
Figure 3 (c), requiring about 144s, while NOSEP-k required almost 16,000s, which is 100 times greater than
the running time of NOSTOPK. The difference in running time between the two algorithms is greatest when
L = 6. The shortest time for NOSEP-k is between 2000s and 3000s, and the longest is between 15000s and
16000s, which is more than four hours, while NOSTOPK is completed within 144s.

Thus, the NOSTOPK algorithm has a high efficiency.

4.3. Precision evaluation
In order to illustrate how L, k, and the length of a sequence affect the precision of NOSTOPK concisely,

the results of protein sequences mined with different L and k values and lengths of sequences are shown in
Figure 4.

(1) We can see from Figure 4 that the precision is higher when k is larger, while the precision is lower
when L is larger.

X. Chai et al. / Filomat 35:2 (2018), 1703–1710 1709

(a) For top-10 (b) For top-20 (c) For top-30

Figure 4: Comparison of the precision on protein sequences

(2) Regardless of the lengths of sequences and how large k is, the precision is almost the lowest when L
= 6 in Figure 4. This is because when L = 6, there are significantly more candidate patterns than when L =
5. As protein sequences contain more characters, while NOSTOPK generates patterns of length 6, only the
top-k patterns of length 5 are used. Thus, there will be significantly fewer generating patterns, and there is
a certain deviation from the correct patterns. We use the average precision to reflect this effect. Taking the
mining from SDB1 to SDB6, for example, when L = 4 the average precision of NOSTOPK is 98%, when L = 5
the average precision is 95.6%, and when L = 6 the average precision is 92%. Since when L = 4, we consider
the instances for Top-10, Top-20, and Top-30 on Datasets from SDB1 to SDB6, there are 18 instances and
1380 patterns in total will be discovered according to Definition 8. Similarly, we know that we will discover
1740 patterns and 2100 patterns in total for L = 5 and L = 6, respectively. The experimental results show
that 18, 64, and 140 patterns are lost in NOSTOPK when L = 4, L =5, and L = 6, respectively. Therefore,
the smaller L is, the higher the precision is. However, as k increases, the overall precision also increases.
For example, when k = 10 the average precision of NOSTOPK is 93%, when k = 20 it is 96%, and when k
= 30 it reaches 97%. We know that we will find 900 patterns, 1800 patterns, and 2520 patterns, while the
lost patterns are 70, 71, and 81 for k = 10, k = 20, and k = 30, respectively. Thus, the larger k is, the higher
the precision is. Therefore, the effect of k on the precision is very important. In summary, the algorithm
NOSTOPK achieves a higher precision within a short period of time.

To improve the precision, an effective method is enlarging the searching space. We mine top e × k
patterns with length j and output top k patterns in them at first. Then we use e × k patterns to generate
the candidate patterns with length j + 1 and find top e × k patterns. We iterate this process to tackle this
issue. We can see that NOSTOPK is the special case with e=1. To report how e affects the precision and the
running time, the results with L=4 and Top 10 are shown in Figure 5.

(a) The precision for top-10 (b) The running time for top-10

Figure 5: The precision and running time for Top-10 and L=4 mining on protein sequences

From Figure 5, the large the e is, the higher the precision is, but the longer the running time is. The
reason lies that the larger the e is, the more the number of candidate patterns will be and the higher the
precision of the results is. For example, when e=1.5, the precision on SDB1 to SDB4 all are 100%, but the
running time is about twice greater than that when e=1.

X. Chai et al. / Filomat 35:2 (2018), 1703–1710 1710

5. Conclusion

In this paper, we analyze the shortcomings of existing algorithms, and propose a top-k sequence pattern
mining algorithm with the non-overlapping condition, named NOSTOPK. This algorithm does not produce
a large number of superfluous candidate patterns, and will not lose the patterns that the user is interested
in. Furthermore, this algorithm is more effective in satisfying the needs of users than traditional top-k
algorithms. The efficiency of NOSTOPK is verified by a large number of experiments on protein sequences.

References

[1] O. K. Alkan, P. Karagoz , CRoM and HuspExt: Improving efficiency of high utility sequential pattern extraction , IEEE Transactions
on Knowledge and Data Engineering 27 (2015) 2645–2657.

[2] C. Li, Q. Yang, J. Wang, M. Li, Efficient mining of gap constrained subsequences and its various applications, ACM Transactions
on Knowledge Discovery from Data 6 (2012) 2.

[3] L. Zhang, P. Luo, L. Tang, et al. Occupancy-based frequent pattern mining, ACM Transactions on Knowledge Discovery from
Data 10 (2015) 14.

[4] H. Jiang, J. X. Zhang, H. J. Ma, et al. Mining authorship characteristics in bug repositories, Science China Information Sciences
60 (2017) 12107.

[5] F. Wang, Z. S. Fei, J. Wang, et al. HAS QoE prediction based on dynamic video features with data mining in LTE network, Science
China Information Sciences 60 (2017) 042404.

[6] E. Egho, D. Gay, M. Boull, et al. A user parameter-free approach for mining robust sequential classification rules, Knowledge
and Information Systems 52 (2017) 53–81.

[7] C. Tan, F. Min, M. Wang, et al. Discovering patterns with weak-wildcard gaps, IEEE Access 4 (2016) 4922–4932.
[8] I. Batal, G. F. Cooper, D. Fradkin, et al. An efficient pattern mining approach for event detection in multivariate temporal data,

Knowledge and information systems 46 (2016) 115–150.
[9] M. Zhang, B. Kao, D. W. Cheung, et al. Mining periodic patterns with gap requirement from sequences, ACM Transactions on

Knowledge Discovery from Data 1 (2007) 7.
[10] F. Min, Y. Wu, X. Wu, The Apriori property of sequence pattern mining with wildcard gaps, International Journal of Functional

Informatics and Personalised Medicine 4 (2012) 15–31.
[11] H. F. Wang, L. Duan, J. Zuo, et al. Efficient mining of distinguishing sequential patterns without a predefined gap constraint,

Chinese Journal of Computers 39 (2016) 1979–1991.
[12] Y. Wu, S. Fu, H. Jiang, et al. Strict approximate pattern matching with general gaps, Applied Intelligence 42 (2015) 566–580.
[13] H. Lam, F. Morchen, D. Fradkin, et al. Mining compressing sequential patterns, Statistical Analysis and Data Mining 7 (2013)

34–52.
[14] B. Ding, D. Lo, J. Han, et al. Efficient mining of closed repetitive gapped subsequences from a sequence database, In: Proceedings

of IEEE International Conference on Data Engineering (2009) 1024–1035.
[15] Y. Wu, C. Shen, H. Jiang, et al. Strict pattern matching under non-overlapping condition, Science China Information Sciences 60

(2017) 012101.
[16] Y. Wu, Y. Tong, X. Zhu, et al. NOSEP: Non-overlapping sequence pattern mining with gap constraints, IEEE Transactions on

Cybernetics 42017 DOI: 10.1109/TCYB.2017.2750691
[17] H. Yang, L. Duan, B. Hu, et al. Mining top-k distinguishing sequential patterns with gap constraint, Journal of Software 26 (2015)

2994–3009.
[18] Y. M. Chai, Z. Zhang, L. M. Wang, An algorithm for mining global closed frequent itemsets based on distributed frequent concept

direct product, Chinese Journal of Computers 35 (2012) 990–1001.
[19] Y. Wu, L. Wang, J. Ren, et al. Mining sequential patterns with periodic wildcard gaps, Applied Intelligence 41 (2014) 99–116.
[20] Y. Wu, Z. Tang, H. Jiang, et al. Approximate pattern matching with gap constraints, Journal of Information Science 42 (2016)

639–658.

