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Abstract. Current researches of incremental classification learning algorithms mainly focus on learning
from data in a stationary environment. The incremental learning in a non-stationary environment (NSE),
where the underlying data probability distribution changes over time, however, has received much less
attentions despite the abundant real applications have generated the long-term and cumulative big data in
NSE. Thus, the incremental learning in NSE has gradually received extensive attentions. Nevertheless, the
popular incremental classification learning algorithms currently for NSE such as SEA and DWM generally
place strict restrictions on the changes. These algorithms can only deal with gradual drift and noncyclical
and no new category situations. Therefore, it is highly necessary to develop a novel efficient incremental
classification learning algorithm for the gradually cumulative big data in complex NSE. The recently pro-
posed Learn++.NSE algorithm is an important research achievement in this field. However, the vote weight
of each base-classifier of the Learn++.NSE depends on its whole error rates in the environments experi-
enced. Therefore, the classification learning efficiency of the Learn++.NSE should be further improved. A
novel fast Learn++.NSE algorithm based on weighted moving average (WMA-Learn++.NSE) is presented
in this paper, which computes the weighted average of error rates using the sliding window technology to
optimize the weight calculation. By only using the recent classification error rates of each base-classifier
inside the sliding window to calculate the vote weight, the WMA-Learn++.NSE accelerates the compute
of vote weight and improves the efficiency of classification learning. The verification experiments and per-
formance analyses on both synthetic and real data set are presented in this paper. The experimental results
show that the WMA-Learn++.NSE can achieve a higher execution efficiency compared to the Learn++.NSE
in getting the equivalent classification correct rate.

1. Introduction

With the gradual accumulation of big data, the probability distribution of underlying data always
changes, causing the concept change problem of big data mining in a non-stationary environment. It
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is very common and typical in practice to do incremental classification mining of big data in the non-
stationary environment, like spam classification, weather forecast etc. However, there are relatively few
researches in this field. To the best of our knowledge, the current algorithms in literature always place strict
restrictions on the changes of non-stationary environments. These algorithms can only deal with gradual
drift and noncyclical and no new category situations. One of the important targets of classification learning
research is to analyze the big data generated by real applications. Since these data sets are often gradually
cumulative in the non-stationary environment, it is highly necessary to study the incremental classification
algorithm for these big data in such complex NSE. Recently, the proposed Learn++.NSE algorithm emerges
as one of the most important achievements in this field [1]. The Learn++.NSE algorithm is essentially
a multiple classifier ensemble algorithm that would set up a base-classifier for each data set in batches
respectively. At last, the final ensemble classification learning result is got by vote based on the error
rates of each base-classifier in all the environments experienced. In lots of synthetic and real data sets, the
Learn++.NSE algorithm has achieved remarkable effects, greatly improving the accuracy of classification
prediction. However, when calculating the vote weight of each base-classifier, the current Learn++.NSE
algorithm needs to take into account all its recent and past classification error rates. In addition, because
it is necessary to calculate the voting weights of so many base-classifiers for integrating, the algorithms
execution efficiency is in urgent need of being further improved. The recent literature [2, 3] on improving
the Learn++.NSE mainly focuses on the process of imbalance data rather than on improving the execution
efficiency.

Therefore, in this paper, on the basis of the Learn++.NSE algorithm, a fast Learn++.NSE classification
algorithm based on weighted moving average (WMA-Learn++.NSE) is proposed to solve the efficiency
problem of incremental classification mining of big data in NSE. Using the sliding window technology after
analyzing the characteristics of sigmoid function, the new algorithm considers only the recent classification
error rates of each base-classifier to get the vote weight, thus accelerating the weight calculation process of
the Learn++.NSE algorithm and improving the classification learning efficiency of the cumulative big data.

2. Review of Existing Approaches

2.1. Relevant algorithms

Due to the appearance of large number of relevant typical application scenarios, more and more at-
tentions have been paid to the research of the incremental classification learning in a non-stationary envi-
ronment for the cumulative big data. In such an environment, the probability distribution of underlying
data is constantly changing. The situation of concept drift and even the concept change would occur. This
kind of environment is called non-stationary environment in this paper and can be called NSE for short.
Generally, the treatments of the NSE by different algorithms can be divided into: (1) Active detection and
passive learning to environment changes. (2) Single classifier and multiple classifiers. (3) Online learning
and batch learning.

The active detection algorithms that contain the environment state detection mechanism can identify
the changes of environment and then change the learning model. The passive learning algorithms assume
the environment is changing all the time and it does not need to be detected. However, the learning model
needs to be changed from time to time as the data sets change.

The single classifier algorithms adjust the sole classifier learned from the data to adapt to the changes
of environment. The multiple classifiers algorithms gradually establish many base-classifiers in batches
according to the changes of environment and then obtain the final classification learning result by integrating
these base-classifiers.

The online learning algorithms handle one instance at a time, while the batch algorithms handle a
batch of data at a time. The online algorithms have the ability to adapt to the changes of environment
more quickly, but have a poor stability. Such algorithms are generally vulnerable to the influence of noise
data and the sequence of data. The batch algorithms are more stable than the online learning algorithms
but slower in their perception to environmental changes. The quantity of data handled at a time is very
important to batch algorithms. If the quantity is too small, the algorithm efficiency is greatly affected. If
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the quantity is too large, the sensitivity to the environment is decreased. If a batch of data is generated
from a variety of environments at the same time, the algorithms are more difficult to handle them. Some
of the batch algorithms have utilized the sliding window mechanism, such as the single classifier and
passive batch algorithms ”STAGGER and FLORA” [4, 5]. These algorithms have set up the dynamic
window adjustment mechanism. The size of the window enlarges or shrinks with the different speed of
environment change. These algorithms assume that the data outside the window have nothing to do with
the current environment, so the information carried by these data can be forgotten. Recently, the batch
algorithms are being continuously improved. Some of them try to choose different base-classifiers, such
as Decision Tree, Fuzzy Rule, K-nearest neighbor and so on [6–8]. Some of them try to choose different
window error thresholds to improve the classification accuracy [9]. However, the main drawbacks of these
algorithms lie in that they are not purely incremental and require reading previous data to learn again at a
certain time (such as the classification accuracy drops to a preset threshold). Besides, they cannot well deal
with periodic environmental changes.

In addition, the newly proposed single classifier and active detection algorithms generally contain
a novel detection mechanism for environment changes, such as CUSUM algorithm [10, 11] based on
control charts and OLIN algorithm [12] based on the error confidence interval and other methods based on
statistical techniques [13]. These algorithms regard the classification learning problem in the non-stationary
environment as a kind of prediction problem of environment changes [14] or as the minimization problem
of the errors penalty function of classifier [15, 16].

The multiple classifiers ensemble method is an important branch of incremental classification learning
algorithms in NSE. Kuncheva divided the multiple classifiers ensemble methods into three categories [17].
(1) Whenever a new batch of data set is learned, a set of fixed classifiers update the combination rules
or voting weights [18]. (2) Whenever a new batch of data set is learned, all the existing online classifiers
update the parameters [19]. (3) Whenever a new batch of data set is learned, a new classifier is trained using
the new data set and is added to the existing integration [1]. In general, these algorithms have a set of base-
classifiers with a fixed capacity and use a passive learning mechanism, such as Streets Streaming Ensemble
Algorithm (SEA) [20] and Chens Recursive Ensemble Approach (REA) [21]. These algorithms use the
newest trained base-classifier to replace the oldest one in the set to construct a new ensemble [22, 23]. Some
of the algorithms use the newest trained base-classifier to replace the weakest one in the set to construct a
new ensemble, such as the Kolters Dynamic Weighted Majority online algorithm (DWM) [24]. The multiple
classifiers ensemble methods mentioned above use their own special vote weight mechanisms.

The Learn++.NSE proposed by Ryan Elwel, et al in 2011 [1] introduces a new voting weight mechanism.
It gets the vote weight and the final ensemble result based on each base-classifier’s error rates in all the
environments experienced. The algorithm is able to deal with a variety of complex environmental changes.
In addition, it allows the emergence of new categories. The algorithm is a pure incremental learning
algorithm that doesnt need to access the processed data again. Hence, it is particularly useful for the
classification learning of cumulative big data, which is not suitable for long-term online storage, such as the
video surveillance data and so on. The experimental results of literature [1] prove that the Learn++.NSE
algorithm achieves a higher classification accuracy than the single classifier algorithm and the SEA and the
DWM. Furthermore, the Learn++.NSE algorithm is able to deal with the complex changes of NSE including
the periodical changes that the above algorithms cannot handle very well.

2.2. Learn++.NSE algorithm
The Learn++.NSE algorithm is the latest member of the Learn++ family algorithms. The unique vote

mechanism makes this algorithm suitable for the classification learning of gradually cumulative big data
from the NSE. Research results of the Learn++.NSE have shown that the algorithm has the following
characteristics. (1) Pure incremental learning that means need not access the analyzed data again. (2)
A suitable base-classifier can be selected independently according to different applications. (3) A higher
classification correct rate can be achieved if the ensemble classifier is not pruned. (4) The classification
accuracy is inversely proportional to the speed of environment changes.

The details of the Learn++.NSE algorithm is interpreted below. The input of the Learn++.NSE algorithm
includes: the training data set dt, which is to be processed in the t(th) time. dt is composed of the instances
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xt(i) and the size of the xt(i) is mt, i = 1, ...,mt. A base classifier is required in order to construct the final
ensemble result, which is a strong classifier. Parameters a and b are used to adjust the shape of the sigmoid
weight function.

When t = 1, the instance weight w1
i and penalty weight D1

i are set to be equal weights, D1
i = w1

i = 1/mt,∀i.
In the subsequent t(th) time point, parameters wt

i and Dt
i are determined according to the classification

accuracy of the ensemble classifier on the new data set. A new base-classifier ht
t would be trained on the

new data set at t(th) time point. Then, all the existing base-classifiers require computing the classification
error rates on the new data set, εt

k =
∑mt

i=1 Dt
i[[h

t
k(xt(i) , yt(i))]] for k = 1, ..., t. The error rate is computed

through the penalty weight Dt
i , Dt

i = ωt
i/
∑mt

i=1 ω
t
i . The process method of base-classifiers with different

error rates in different periods is distinct. For the current generated base-classifier, if the error rate εt
k=t

is greater than 0.5, then the base-classifier is invalid and a new base-classifier is to be learned to replace
the invalid one. For the base-classifier generated previously at time point k, k < t, if the error rate εt

k<t is
greater than 0.5, then its error rate εt

k<t is set to be 0.5. ht
k indicates that the base-classifier generated at

time point k is used at time point t. At last, all the base-classifiers are integrated with different weights to
construct the final ensemble classifier Ht(xt(i)) = arg maxc

∑
k Wt

k · [[h
t
k(xt(i) = c)]]. The vote weight of each

base-classifier is determined by its weighted average error rate βt
k, Wt

k = lg(1/βt
k). In order to reduce the

fluctuation of the average error rate, the average error rate βt
k is computed through the weighted average

of all normalized error rates of base-classifier in the experienced environments using the sigmoid weight
function, ωn

k = 1/(1 + e−a(−t+n+b)),n = k, ..., t, (ωn
k )′ = ωn

k/
∑n=t

n=k ω
n
k , β

t
k =
∑t−k

j=0(ωt− j
k )′βt− j

k , f ork = 1, ..., t . This
method can let the base-classifier with a lower average error rate so far have a larger vote weight and play
a more significant role in the final ensemble result.

The experimental results show that, compared to the single classifier algorithm and SEA and DWM algo-
rithm, the Learn++.NSE algorithm improves the classification correct rate a lot. However, the classification
learning process of the Learn++.NSE is relatively slow. Its execution efficiency still needs to be further
improved especially when mining the big data. The analysis of its time complexity reveals that the most
time-consuming phases mainly include: (1) Training the base-classifier for each batch of data. (2) Comput-
ing the average error rate βt

k for each base-classifier. (3) Integrating multiple base-classifiers to obtain the
final ensemble result Ht(xt(i)) = arg maxc

∑
k Wt

k · [[h
t
k(xt(i) = c)]]. For phase 1, the training time depends on

the data characteristics and the choice of base-classifier. For phase 3, the integrated base-classifiers can be
pruned. The research results of literature [1] have proved that directly pruning classifiers based on timeli-
ness or error rate will reduce the classification correct rate of the ensemble classifier. Therefore, the current
researches mainly aim at phase 2. This paper argues that it is not necessary to consider all the error rates
but only the recent error rates, when calculating the weighted average error rate of each base-classifier. A
fast Learn++.NSE classification algorithm based on the weighted moving average (WMA-Learn++.NSE) is
proposed to speed up the calculation of vote weights when base-classifiers are integrated, which improves
the classification learning efficiency of the Learn++.NSE.

3. A Fast Learn++.NSE Classification Algorithm Based on Weighted Moving Average

First of all, when dealing with the new data set, the Learn++.NSE algorithm needs to calculate the
error rate Et of the current ensemble classifier on the new data set. According to the error rate Et, the
penalty weights Dt

i can be obtained, which are required to calculate the error rate εt
k of each base-classifier.

However, when Et = 0, the process method is not explained in literature [1]. It is worth noting that when
Et = 0, according to step 2 of the original algorithm flow, the divisor is 0 now, Dt

i cannot be calculated,

ωt
i = 1

mt

{
Et, Ht−1(xt(i) = yt(i))
1, otherwise ,Dt

i = ωt
i/
∑mt

i=1 ω
t
i . It is revised by the WMA-Learn++.NSE algorithm

here. When When Et = 0 , it indicates that the current ensemble classifier can classify the new data set
completely right and the current ensemble classifier has completely contained the information of the data
set so far. Therefore, the WMA-Learn++.NSE algorithm does not do any incremental learning for the new
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data set at this moment. That means there is no new base-classifier generated and the ensemble classifier
remains unchanged. Only when Et , 0, would WMA-Learn++.NSE do incremental learning.

Secondly, when calculating the vote weight of each base-classifier, the Learn++.NSE algorithm needs
to compute the average error rate of each base-classifier. In the calculation of the average error rate,
the Learn++.NSE algorithm must consider each base-classifiers current and past error rates in all the
environments experienced. Additionally, in order to prevent the fluctuation of the average error rate,
the error rate is given a weighting using the sigmoid function, ωn

k = 1/(1 + e−a(−t+n+b)),n = k, ..., t, (ωn
k )′ =

ωn
k/
∑n=t

n=k ω
n
k . This method can make the recent classification performance of the base-classifier play a more

significant role. Take a weighted calculation process of a real experiment for example, as illustrated in Fig.1.
Here the parameters are a = 0.5 and b = 20. It can be found that the sigmoid function declines very fast
on the left and the left side of it are almost zero. Therefore, it is not very useful to distinguish the different
performances of base-classifiers when giving a weighting to the error rates of each base-classifier utilizing
the values in this interval of sigmoid function. Instead, it would increase the computation complexity of
vote weight and reduce the execution efficiency of the Learn++.NSE.

In fact, when calculating the average error rate of each base-classifier, it will be more efficient to only
consider the recent classification error rates of it. Furthermore, the recent performances of the base-classifier
can better predict its performance in the immediate following environment. After analyzing the shape of
the sigmoid function, it can be found that its interval with larger weights is mainly concentrated in [t−2b, t]
when fixing the parameter a. Therefore, the sliding window is set to be 2b. The weighted average error rate
of each base-classifier is obtained by giving a weighting using the value between [t − 2b, t] of the sigmoid
function after moving the window to the time point t. Therefore, step 5 of the original algorithm can be
modified to ωn

k = 1/(1 + e−a(−t+n+b)),n = max[t − 2b, k], ..., t, (ωn
k )′ = ωn

k/
∑

n ω
n
k , β

t
k =
∑

n(ωn
k )′βn

k . The average
error rates is calculated by giving a weighting to the error rates of each base-classier inside the sliding
window. This method can speed up the weight calculation of each base-classifier.

To optimize the Learn++.NSE’s execution efficiency, a fast Learn++.NSE classification algorithm based
on the weighted moving average (WMA-Learn++.NSE) is presented in this paper. On the basis of the
Learn++.NSE, the calculation process of weighted average of base-classifiers’ error rates is accelerated by
integrating the sliding window technology. This reduces the computation complexity of average error rate
of each base-classifier and improves the efficiency of ensemble learning. This novel method makes the
WMA-Learn++.NSE more suitable for classification learning aiming at the accumulated big data over a
long period of time.

4. Experimental results and analysis

The performance of the WMA-Learn++.NSE proposed was tested and analyzed by the data set used
in literature [1]. The WMA-Learn++.NSE was compared with the Learn ++ NSE algorithm on the
classification accuracy and the training time respectively.

The experimental environment included the ThinkPad 20FWA00VCD notebook, the Core i7-6700@2.6GHz
CPU, 8GB memory capacity and the Win10 64bit OS. All experiments followed the following settings. (1)
The experiment started at time point t = 0 nd stopped at t = 1 logically. The base-classifiers were trained
by the T batches data set gradually arrived at during this period. These T batches of data set were gen-
erated by the non-stationary environments. The characteristics of the environments and the distributions
changes of the data were all unknown in advance. The value of T represents the change speed of the
environment. The larger value of T represents the relatively slow environmental change, while the smaller
value of T represents the great environmental change. Because the smaller T value is, the longer interval
is when the base-classifier is trained after a batch of data set arrives. (2) During the experiments, the
WMA-Learn++.NSE and the Learn++.NSE used the same parameters a = 0.5, b = 20 and also used the
same base-classifier, which is SVM. SVM was implemented by Weka API. All the parameters of the base
classifier SVM were the same. The kernel function was PolyKernel k(x, y) =< x, y > ∧p. The exponential
was 1 and the cut-off error was ε = 1.0 × 10−12 and the other parameters used the default values of Weka.
(3) Each algorithm carried out 50 independent experiments and recorded the classification accuracy at each
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time point and the entire running time to calculate the average value. A single classifier-SVM algorithm
also included for comparative analysis. The comparisons are very important. Because the single classifier
is trained by the latest batch of data without using an ensemble method, this kind of algorithm can track
the changes of environment more quickly. This comparison can find out, in a non-stationary environ-
ment, whether the Learn++.NSE family algorithms based on learned knowledge, which is contained in the
previous base-classifiers, can benefit from the ensemble learning.

4.1. Rotating Checkerboard Dataset
A non-Gaussian data set representing a rotating checkerboard was used in this experiment, as shown

in literature [1]. It was a challenging classification problem owing to the increase of the different rotating
speeds in this experiment. This was a classification learning problem under the non-stationary periodic
environment. The classification scene appeared repeatedly at every π rotating angle. In order to increase
the diversity and complexity of classification learning process, 10% noise data were added to the training
data set. Each batch of data was composed of 25 instances extracted from the sampling window and each
test data set was composed of 1024 instances with the true class labels in the corresponding sampling
window by a resolution of 32 ∗ 32, which is the same as literature [1].

The most challenging part of this classification learning problem was the change in the rotating speed of
the checkerboard. The T value was set to be 400 in all the experiments. That means there were 400 equal time
steps from time 0 to time 1 and 400 batches of data were processed continuously. The checkerboard rotated
2π radians totally with different rotating speeds. Three different rotating speeds were tested respectively.
(1) Constant speed. The checkerboard rotated 2π/400 radians constantly. (2) Sinusoidal speed. The rotating
speed conformed to the sinusoidal function. (3) Pulse speed. The rotating speed conformed to the pulse
Gaussian function. The function curves of the checkerboard rotating speed were shown in Fig.2.
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Figure 1: Weighted error rate based on sigmoid function
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Figure 2: Rotate rate of checkerboard

It can be concluded from the experimental results from Fig.3 to Fig.5 that the Learn++.NSE and the
WMA-Learn++.NSE algorithm, which use multiple classifiers ensemble method, both achieved a higher
classification accuracy compared to the single classifier algorithm. This conclusion also can be supported
by Table 1(a). In addition, it can be found that the accuracy of the ensemble classifier was inversely
proportional to the rotating speed of the checkerboard. For example, in the middle part of the sinusoidal
rotating and both ends of the pulse rotating, when the checkerboard both rotated slowly, the Learn++.NSE
and the WMA-Learn++.NSE algorithm both achieved a higher classification accuracy. Besides, it can be
found that the classification accuracy of the ensemble classifier in the second part of the learning scene
(π˜2π) was better than that in the first half (0˜π). This result proved that the method of multiple classifiers
integrating can benefit from the classification knowledge contained in the previous classifiers and can better
handle the scene reproduction and periodic environment. When observing the classification accuracy of
the Learn++.NSE and the WMA-Learn++.NSE at different time points from Fig.3 to Fig.5, it can be found
that the classification accuracy of the two algorithms were basically the same. It can also be concluded from
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Figure 3: Classification correct rate of constant
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Figure 4: Classification correct rate of sinusoidal
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Figure 5: Classification correct rate of pulse
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Table 1(a) that there was no significant difference on the classification accuracy between the two algorithms.
In contrast, it can be concluded from Fig.6 that when getting the equal classification accuracy, the WMA-
Learn++.NSE can improve the execution efficiency a lot compared to the Learn++.NSE. The experimental
results had shown the optimization effects of the WMA-Learn++.NSE.

4.2. Weather forecast data set
The U.S. National Oceanic and Atmospheric Administration has compiled and released a partial weather

data set from over 9000 weather stations worldwide. These weather data records can be dated back to 1930,
providing long-term and wide weather trends. Each weather record contains many attributes, such as
temperature, air pressure and wind speed etc. Besides, each weather record contains a category tag to
indicate whether it rains. This is a real world data set to test the classification performance of different
algorithms. It is different to the data sets above, which were generated artificially. The weather data set
in 50 years (1949˜1999) of the Offutt Air Force Base in Bellevue, Nebraska was chosen from the entire
data set to test the classification performance of different algorithms. This is a long-term and gradually
accumulated big data set. 8 attributes of it were selected according to the attribute availability and the
remaining attributes with a loss rate more than 15% were not selected. The data set contains 18159 records,
in which 5698(31%) records classification label is rain and the other 12461(69%) records classification label
is no rain. Each time the first 30 records were selected for training and the subsequent 30 records for testing,
which formed totally 605 batches of data set in different time points to execute the incremental classification
learning. The experimental results are shown in Fig.7 and Fig.8. It can be found from Fig.7 that the
classification accuracy of the three algorithms all showed a strong periodicity, which revealed the natural
annual cycle characteristics of the weather data. Among the three algorithms, the Learn++.NSE algorithm
and the WMA-Learn++.NSE algorithm both greatly improved the classification accuracy compared to the
single classifier algorithm (Table 1(b)). The promotion degree was more significant especially when the
single classifier’s classification accuracy was low.
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Figure 7: Weather predict data set of 50 years
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Table 1: The 95% confident interval of average accuracy rates of the three algorithms

(a) Checkerboard data set

CB(Constant) CB(Pulse) CB(Sin)

Learn++.NSE 0.591 ± (0.002) 0.627 ± (0.003) 0.633 ± (0.003)
WMA-Learn++.NSE 0.592 ± (0.002) 0.627 ± (0.003) 0.635 ± (0.003)
Single SVM 0.532 ± (0.006) 0.516 ± (0.005) 0.531 ± (0.005)

(b)Weather data set

Weather

Learn++.NSE 0.777 ± (0.003)
WMA-Learn++.NSE 0.778 ± (0.003)
Single SVM 0.724 ± (0.011)

It can be found from the different running times of the Learn++.NSE and the WMA-Learn++.NSE
in Fig.8 that the WMA-Learn++.NSE algorithm greatly improved the execution efficiency compared to
the Learn++.NSE on the premise of getting the equivalent classification accuracy (Table 1(b)). Compared
with the experimental results on the previous data sets, this experiment can better show the performance
improvement by the WMA-Learn++.NSE. Because the weather forecast data set contains 605 batches of
data in succession and this is a long-term accumulated big data set. For this data set, the Learn++.NSE must
consider the error rates of each base-classifier in all experienced environments (605 different situations at
most). However, the WMA-Learn++.NSE only needed to consider the error rates falling within the sliding
window whose size was 2b at most (2 ∗ 20 = 40 different situations at most in this experiment), thus greatly
improving the execution efficiency.

It can be inferred from Table 1 that the Learn++.NSE and the WMA-Learn++.NSE can get a higher
classification correct rate compared to the single SVM significantly. In addition, there is no significant
difference between the Learn++.NSE and the WMA-Learn++.NSE on the classification accuracy. However,
according to the experimental results above, it can be found that the WMA-Learn++.NSE can improve
the classification learning efficiency a lot through a sliding window technology to compute the weighted
moving average, which is compared to the Learn++.NSE.
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5. Conclusion

On the basis of the Learn++.NSE algorithm, a fast Learn++.NSE classification algorithm based on the
weighted moving average (WMA-Learn++.NSE) is proposed in this paper by using the sliding window
technique. It can improve the efficiency of classification learning for big data accumulated gradually and
generated by batch. Theoretical analysis and experimental results based on both artificially generated and
real world data sets have shown that the WMA-Learn++.NSE algorithm is more efficient for long-term and
accumulated big data under the premise of obtaining an equivalent classification accuracy compared with
the Learn++.NSE algorithm.
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