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Abstract. The primary goal of this paper is to develop fuzzy stabilizer theory in BL-algebras. Two types
of fuzzy stabilizers are introduced and their related properties are given. Also, the relationships between
fuzzy stabilizers and several fuzzy filters are discussed. Finally, by means of fuzzy stabilizers, it is proven
that the collection of all fuzzy filters in BL-algebras forms a residuated lattice. These results will provide a
solid algebraic foundation for the consequence connectives in fuzzy logic.

1. Introduction

BL-algebras [6] are the corresponding algebraic structures for Hájek basic logic. The interval [0, 1] with
the structure induced by a continuous t-norm is an important example for a BL-algebra. It is well known
that MV-algebras [5] are one of most important subclasses of BL-algebras. Moreover, MV-algebras and
lattice implication algebras [14], bounded commutative BCK-algebras [12] are categorically equivalent,
respectively.

In BL-algebras, the focus is deductive systems also called filters. From the viewpoint of Logic, diverse
filters correspond to diverse collections of provable formulas. So far, the filter theory in BL algebras has been
extensively researched and related important results have been gained [7, 13]. Especially, Turunnen [13]
investigated some properties of (prime) filters of BL-algebras. Inspired by this, Haveshki [7] systematically
studied filter theory in BL-algebras including the relations of various kinds of filters and their charac-
terizations. At present, many authors studied a variety of fuzzy filters of BL-algebras [9–11, 13, 15, 16].
For instance, Liu and Li [9, 10] introduced the concepts of fuzzy Boolean (positive implicative) filters of
BL-algebras and some characterizations of them were derived.

The notion of stabilizers is from analytic theory, which is helpful for studying structures and properties
of algebraic systems. Haveshki [8] first introduced the notion of stabilizers in BL-algebras and investigated
some basic properties of them. Also, they discuss the relations between stabilizers and filters in BL-algebras.
Inspired by this, Borzooei [4] introduced some new types of stabilizers and determined the relations among
stabilizers in BL-algebras, they also showed that fantastic filters and (semi) normal filters are equivalent via
stabilizers. Based on the above, we introduce and study two types of fuzzy stabilizers in BL-algebras.
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2. Preliminaries

In the present section, we review some contents that will be used below.

Definition 2.1. [6] A BL-algebra is a structure (Q,�,→,∨,∧, 0, 1) of type (2, 2, 2,
2, 0, 0) with the below axioms: for all x, y, z ∈ Q,

(1) (Q,∧,∨, 0, 1) is a bounded lattice;
(2) (Q,�, 1) is an abelian monoid;
(3) y ≤ x→ z iff y � x ≤ z;
(4) 1 = (x→ y) ∨ (y→ x);
(5) y ∧ x = y � (y→ x).

Throughout this paper, a BL-algebra (Q,�,→,∨,∧, 0, 1) will be written by Q, unless otherwise stated.
For any y ∈ Q, denote y0 = 1, yn = y � yn−1, where n ≥ 1.

Proposition 2.2. [6] In a BL-algebra Q, for any x, y, z ∈ Q,

(1) y ≤ x iff y→ x = 1;
(2) y ≤ x implies y � z ≤ x � z, x→ z ≤ y→ z, z→ y ≤ z→ x;
(3) y ≤ x→ y, 1→ y = y, y � x ≤ y ∧ x;
(4) y→ x = y ∨ x→ x, y→ x = y→ y ∧ x;
(5) y→ x ∧ z = (y→ x) ∧ (y→ z);
(6) y ∨ x→ z = (y→ z) ∧ (x→ z), y ∧ x→ z = (y→ z) ∨ (x→ z);
(7) y ∨ x = ((y→ x)→ x) ∧ ((x→ y)→ y).

Definition 2.3. [6] For any x, y ∈ Q, a BL-algebra Q is called a (an)

(1) Gödel algebra provided that y = y � y;
(2) MV-algebra provided that (y→ x)→ x = (x→ y)→ y.

Definition 2.4. [9, 10] A fuzzy set λ of Q is said to be a fuzzy filter provided that for all x, y ∈ Q,

(1) λ(1) ≥ λ(y);
(2) λ(y � x) ≥ λ(y) ∧ λ(x);
(3) y ≤ x implies λ(y) ≤ λ(x).

Set x, y ∈ Q. A fuzzy set λ of Q is a fuzzy filter iff λ(1) ≥ λ(x), λ(y) ≥ λ(x) ∧ λ(x → y). Denote by the
collection of all fuzzy filters in Q F (Q) and define the fuzzy filter generated by λ as 〈λ〉 =

⋂
ν∈F (Q),λ⊆ν ν.

Furthermore 〈λ〉(x) = ∨{∧λ(ak)|b1, · · · bn ∈ Q, x ≥ b1 � b2 · · · bn}. In F (Q), define λ1 ≤ λ2 iff λ1 ⊆ λ2, λ1 ∨ λ2 =
〈λ1 ∪ λ2〉, λ1 ∧ λ2 = λ1 ∩ λ2. Then (F (Q),∧,∨, ∅,Q) is a complete distributive lattice [10, 17].

Definition 2.5. [9, 10] Set x, y, z ∈ Q. A fuzzy filter λ of Q is called a

(1) fuzzy Boolean filter provided that λ((y→ x)→ y) ≤ λ(y);
(2) fuzzy prime filter provided that λ(y ∨ x) = λ(y) ∨ λ(x);
(3) fuzzy fantastic filter provided that λ(y→ x) ≤ λ(((x→ y)→ y)→ x)).

Definition 2.6. [17] A fuzzy equivalent relation R on Q is said to be a fuzzy congruence provided that for
any w, t,u, v ∈ Q, R(w, t) ∧ R(u, v) ≤ R(wΞu, tΞv), where Ξ ∈ {→,∧,�,∨}.

Proposition 2.7. [17] Given a fuzzy congruence R on Q, R(y, x) = R(1, y ↔ x) whence y ⇔ x = (y →
x) ∧ (x→ y), x, y ∈ Q.

Proposition 2.8. [17] (1) Given a fuzzy congruence R on Q, R(1, ·) is a fuzzy filter of Q.
(2) Given a fuzzy filter λ of Q with λ(1) = 1, R(y, x) = λ(y↔ x) where y, x ∈ Q, is a fuzzy congruence, which
is called the fuzzy congruence generated by λ.
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3. Fuzzy stabilizers in BL-algebras

Definition 3.1. Given a fuzzy set λ of Q and a fuzzy congruence R on Q, the fuzzy left and right stabilizer
of λ w.r.t. R are defined as follows: for x ∈ Q,

Xl
R(λ)(x) =

∧
y∈Q{λ(y)→ R(y→ x, x)},

Xr
R(λ)(x) =

∧
y∈Q{λ(y)→ R(x→ y, y)},

where→ is the residuum implication w.r.t. a continuous t-norm.

Notation 3.2. From Definition 3.1, one can see that if S is a classic subset of Q and R is the identity relation
Id on Q. Then

Xl
Id(S) = {c ∈ Q|c→ x = x, for all x ∈ S},

Xr
Id(S) = {c ∈ Q|x→ c = c, for all x ∈ S},

are left and right stabilizers of X defined in [8], respectively.

Example 3.3. Set Q = {0, x, y, z,u, 1}with 0 ≤ u ≤ x ≤ 1, 0 ≤ z ≤ y ≤ 1. Consider �,→ on Q below:

� 0 x y z u 1
0 0 0 0 0 0 0
x 0 x u 0 u x
y 0 u z z 0 y
z 0 0 z z 0 z
u 0 u 0 0 u u
1 0 x y c u 1

→ 0 x y z u 1
0 1 1 1 1 1 1
x z 1 y z y 1
y u x 1 y x 1
z x x 1 1 x 1
u y 1 1 y 1 1
1 0 x y z u 1

Then (Q,�,→,∧,∨, 0, 1) is a BL-algebra. The fuzzy set λ is defined by λ(1) = 1, λ(y) = λ(z) = 0.7, λ(0) =
λ(x) = λ(u) = 0.3 and the fuzzy congruence R is generated by λ. Therefore one can compute that Xl

R(λ)(y) =

Xl
R(λ)(1) = 0.8,Xl

R(λ)(0) = Xl
R(λ)(x) == Xl

R(λ)(z) = Xl
R(λ)(u) = 0.5; Xr

R(λ)(y) = Xr
R(λ)(z) = Xr

R(λ)(1) =
0.9,Xr

R(λ)(0) = Xr
R(λ)(x) = Xr

R(λ)(u) = 0.4.

Proposition 3.4. Given a fuzzy congruence R on Q and fuzzy sets µ1, µ2 of Q,

(1) Xl
R(χ1) = Xr

R(χ1) = Q;
(2) Xl

R(χ0) = R(1, ·);
(3) If µ1 ⊆ µ2, then Xl

R(µ2) ⊆ Xl
R(µ1), Xr

R(µ2) ⊆ Xr
R(µ1);

(4) Xl
R(µ1 ∪ µ1) = Xl

R(µ1) ∩ Xl
R(µ2), Xr

R(µ1 ∪ µ2) = Xr
R(µ1) ∩ Xr

R(µ2);
(5) Xl

R(µ1 ∩ µ2) = Xl
R(µ1) ∪ Xl

R(µ2), Xr
R(µ1 ∩ µ2) = Xr

R(µ1) ∪ Xr
R(µ2).

Proof. (1) From Xl
R(χ1)(x) =

∧
z∈L{χ1(z) → R(z → x, x)} = 1 → R(1 → x, x) = 1, we have Xl

R(χ1) = L.
Moreover, by Xr

R(χ1)(x) =
∧

z∈L{χ1(z)→ R(x→ z, z)} = 1→ R(1, 1) = 1. Thus Xr
R(χ1) = L.

(2) Xl
R(χ0) =

∧
z∈L{χ0(z)→ R(z→ x, x)} = 1→ R(1, x).

(3) If µ1 ⊆ µ2, that is, for any z ∈ L, we have µ1(z) ≤ µ2(z). From Proposition 2.2, we have Xl
R(µ2) =∧

z∈L{µ2(z) → R(z → x, x)} ≤
∧

z∈L{µ1(z) → R(z → x, x)} = Xl
R(µ1) and Xr

R(µ2) =
∧

z∈L{µ2(z) → R(x →
z, z)} ≤

∧
z∈L{µ1(z)→ R(x→ z, z)} = Xl

R(µ1). Therefore, ifµ1 ⊆ µ2, then Xl
R(µ2) ⊆ Xl

R(µ1), Xr
R(µ2) ⊆ Xr

R(µ1).
(4) From Proposition 2.2, we have Xl

R(µ1 ∪ µ2) =
∧

z∈L{µ1(z) ∨ µ2(z) → R(z → x, x)} =
∧

z∈L{µ1(z) → R(z →
x, x)} ∩

∧
z∈L{µ2(z) → R(z → x, x)} = Xl

R(µ1) ∩ Xl
R(µ2). Moreover, one can prove that Xr

R(µ1 ∪ µ2) =∧
z∈L{µ1(z) ∨ µ2(z) → R(x → z, z)} =

∧
z∈L{µ1(z) → R(x → z, z)} ∩

∧
z∈L{µ2(z) → R(x → z, z)} = Xr

R(µ1) ∩
Xr

R(µ2).
(5) Similar to (4).
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Proposition 3.5. Given a fuzzy congruence R on Q and a fuzzy set µ of Q, Xr
R(µ) is a fuzzy filter of Q.

Proof. (1) Xr
R(µ1)(1) =

∧
y∈Q{µ(y)→ R(y, 1→ y)} =

∧
y∈Q{µ(y)→ R(y, y)} = 1 ≥ Xr

R(µ1)(x).
(2) Let x ≤ y. It follows from Proposition 2.2,2.7,2.8 that Xr

R(µ)(x) =
∧

z∈Q{µ(z)→ R(x→ z, z)} =
∧

z∈Q{µ(z)→
R(1, (x → z) ⇔ z)} =

∧
z∈Q{µ(z) → R(1, (x → z) → z)} ≤

∧
z∈Q{µ(z) → R(1, (y → z) → z)} =

∧
z∈Q{µ(z) →

R(1, (y→ z)⇔ z)} =
∧

z∈Q{µ(z)→ R(z, y→ z) = Xr
R(µ)(y).

(3) For x, y ∈ Q, Xr
R(µ)(x � y) =

∧
z∈Q{µ(z) → R(z, (x � y) → z)} =

∧
z∈Q{µ(z) → R(((x � y) → z) ⇔ z, 1)} =∧

z∈Q{µ(z) → R((x → (y → z)) ⇔ z, 1)} =
∧

z∈Q{µ(z) → R(((x � y) → z) → z, 1)} ≥
∧

z∈Q{µ(z) → R(((x →
z)→ z) � ((y→ z)→ z), 1) ≥

∧
z∈Q{µ(z)→ R((x→ z)→ z, 1) ∧ R((y→ z)→ z, 1)} ≥

∧
z∈Q{µ(z)→ R((x→

z)→ z, 1)} ∧
∧

z∈Q{µ(z)→ R((y→ z)→ z, 1)} =
∧

z∈Q{µ(z)→ R((x→ z, z)} ∧
∧

z∈Q{µ(z)→ R((y→ z, z)} =
Xr

R(µ)(x) ∧ Xr
R(µ)(y).

The below example reveals that Xl
R(µ) is not a fuzzy filter of Q in general.

Example 3.6. Considering the Example 3.2, easy to verify that Xl
R(µ) is not a fuzzy filter of Q by Xl

R(µ)(y�y) =

Xl
R(µ)(z) = 0.5 ≤ 0.8 = Xl

R(µ)(y) ∧ Xl
R(µ)(y).

Proposition 3.7. Given an MV-algebra and a fuzzy set µ of Q, Xr
R(µ) and Xl

R(µ) are fuzzy filters of Q.

Proof. (1) Xl
R(µ)(1) =

∧
y∈Q{µ(y)→ R(1, y→ 1)} = 1 ≥ Xl

R(µ1)(x).
(2) Let x ≤ y. Then from Proposition 2.2 Xl

R(µ)(x) =
∧

z∈Q{µ(z) → R(z → x, x)} =
∧

z∈Q{µ(z) → R(1, (z →
x) ⇔ x)} =

∧
z∈Q{µ(z) → R((z → x) → x, 1)} =

∧
z∈Q{µ(z) → R(1, z ∨ x)} ≤

∧
z∈Q{µ(z) → R(1, z ∨ y)} =∧

z∈L{µ(z) → R(1, (z → y) → y)} =
∧

z∈Q{µ(z) → R(1, (z → y) ⇔ y)} =
∧

z∈Q{µ(z) → R(z → y, y)} =

Xl
R(µ)(y).

(3) For any x, y ∈ Q, Xl
R(µ)(x � y) =

∧
z∈Q{µ(z) → R(1, (z → (x � y)) ⇔ (x � y))} =

∧
z∈Q{µ(z) → R(1, (z →

(x � y))→ (x � y))} =
∧

z∈Q{µ(z)→ R(1, z ∨ (x � y))} =
∧

z∈Q{µ(z)→ R(1, (z ∨ x) � (z ∨ y))} ≥
∧

z∈Q{µ(z)→
R(1, z ∨ x)} ∧

∧
z∈Q{µ(z) → R(1, z ∨ y)} =

∧
z∈Q{µ(z) → R(z → x, x)} ∧

∧
z∈G{µ(z) → R(y, z → y)} =

Xl
R(µ)(x) ∧ Xl

R(µ)(y).

Definition 3.8. Given two fuzzy sets λ1, λ2 of Q, define fuzzy stabilizer of λ1 w.r.t. λ2 by

X(λ1, λ2)(x) =
∧

y∈Q[λ1(y)→ λ2((x→ y)→ y)],

where→ is the residuum implication w.r.t. a continuous t-norm.

Example 3.9. Considering the BL-algebra from Example 3.3 and fuzzy sets λ1, λ2 of Q whereλ1(0) = λ1(x) =
λ1(u) = 0.4, λ1(y) = λ1(z) = 0.8; λ2(0) = λ2(x) = λ2(u) = 0.3, λ2(y) = µ2(z) = λ2(1) = 0.9. Easy to calculate
that X(λ1, λ2)(0) = X(λ1, λ2)(x) = X(λ1, λ2)(y) = 0.9,X(λ1, λ2)(y) = X(λ1, λ2)(z) = X(λ1, λ2)(1) = 1.

In what follows, we discuss the relation between these fuzzy stabilizers and other types of fuzzy filters
in Q.

Proposition 3.10. Let µ1, µ2, λ1, λ2, µ2i(i ∈ I) be fuzzy sets and λ be a fuzzy filter of Q. We have:

(1) If X(µ1, µ2)(x) = Q, then µ1 ⊆ µ2;
(2) If µ1 ⊆ λ, then X(µ1, λ)(x) = Q;
(3) λ ⊆ X(µ1, λ);
(4) If λ(1) = 1, then X(χ1, λ) = Q;
(5) If µ1 ⊆ λ1 and µ2 ⊆ λ2, then X(λ1, µ2) ⊆ X(µ1, λ2);
(6) X(µ1,∩i∈Λµ2i) = ∩i∈Λ(µ1, µ2i);
(7) X(∪i∈Λµ2i, µ1) = ∩i∈Λ(µ1, µ2i).
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Proof. (1) For all x ∈ Q,X(µ1, µ2)(x) =
∧

y∈Q[µ1(y) → µ2((x → y) → y)] = 1. This implies µ1(x) → µ2((x →
x)→ x) = 1 and hence µ1(x) ≤ µ2(x), that is, µ1 ⊆ µ2.

(2) Considering X(µ1, λ)(x) =
∧

y∈Q[µ1(y) → λ((x → y) → y)] ≥
∧

y∈Q[µ1((x → y) → y) → λ((x → y) →
y)] = 1, hence X(µ1, λ) = Q.

(3) Since µ1(z) → λ((x → z) → z) ≥ λ((x → z) → z) ≥ λ(x), we have X(µ1, λ)(x) =
∧

z∈Q[µ1(z) → λ((x →
z)→ z)] ≥ λ(x). Therefore λ ⊆ X(µ1, λ).

(4) X(χ1, λ) = Q follows from X(χ1, λ)(x) =
∧

z∈Q[χ1(z)→ λ((x→ z)→ z)] = 1 for all x ∈ Q.
(5) By X(λ1, µ2)(x) =

∧
z∈Q[λ1(z) → µ2((x → z) → z)] ≤

∧
z∈Q[λ1(z) → λ((x → z) → z)] for any x ∈ Q,

X(λ1, µ2) ⊆ X(µ1, λ2).
(6) For x ∈ Q, X(µ1,∩i∈Λµ2i)(x) =

∧
z∈Q[µ1(z) →

∧
i∈Λ µ2i((x → z) → z)] =

∧
z∈Q
∧

i∈Λ[µ1(z) → µ2i((x → z) →
z)] =

∧
i∈Λ
∧

z∈Q[µ1(z)→ µ2i((x→ z)→ z)] = ∩i∈Λ(µ1, µ2i)(x).
(7) For x ∈ Q, X(∪i∈Λµ2i, µ1)(x) =

∧
z∈Q[
∨

i∈Λ µ2i(z) → µ2((x → z) → z)] =
∧

z∈Q
∨

i∈Λ[µ2i(z) → µ2((x → z) →
z)] = µ2i(z)→ µ2((x→ z)→ z)] = ∩i∈Λ(µ1, µ2i)(x).

Proposition 3.11. Let µ1, µ2 be fuzzy sets of Q.

(1) If µ2 is a fuzzy filter of Q, then X(µ1, µ2) is also a fuzzy filter of Q;
(2) If µ2 is a fuzzy prime filter of Q, then X(µ1, µ2) is also a fuzzy prime filter of Q;
(3) If µ2 is a fuzzy fantastic filter of Q, then X(µ1, µ2) is also a fuzzy fantastic filter of Q;
(4) If µ2 is a fuzzy Boolean filter of Q, then X(µ1, µ2) is also a fuzzy Boolean filter of Q.

Proof. (1) Suppose that µ2 is a fuzzy filter of Q. Hence X(µ1, µ2)(1) =
∧

y∈Q[µ1(y) → µ2((1 → y) →
y)] =

∧
y∈Q[µ1(y) → µ2(1)] ≥

∧
y∈Q[µ1(y) → µ2((x → y) → y)] = X(µ1, µ2)(x). If x ≤ y, we have

X(µ1, µ2)(x) =
∧

z∈Q[µ1(z) → µ2((x → z) → z)] ≤
∧

z∈Q[µ1(z) → µ2((y → z) → z)] = X(µ1, µ2)(y).
Furthermore, for any x, y ∈ Q, X(µ1, µ2)(x � y) =

∧
z∈Q[µ1(z) → µ2(((x � y) → z) → z)] ≥

∧
z∈Q[µ1(z) →

µ2(((x→ z)→ z)�((y→ z)→ z))] ≥
∧

z∈Q[µ1(z)→ µ2(((x→ z)→ z)∧µ2((y→ z)→ z))] ≥
∧

z∈Q[(µ1(z)→
µ2(((x → z) → z)) ∧ (µ1(z) → µ2((y → z) → z))] ≥

∧
z∈Q[(µ1(z) → µ2(((x → z) → z))] ∧

∧
z∈Q[(µ1(z) →

µ2((y→ z)→ z))] = X(µ1, µ2)(x) ∧ X(µ1, µ2)(y). This proof is complete.
(2) Suppose that µ2 is a fuzzy prime filter of Q. Hence X(µ1, µ2)(x ∨ y) =

∧
z∈Q[(µ1(z) → µ2((x ∨ y → z) →

z)] =
∧

z∈Q[(µ1(z)→ µ2((x→ z)→ z) ∨ ((y→ z)→ z)] =
∧

z∈Q[(µ1(z)→ µ2((x→ z)→ z) ∨ µ2((y→ z)→
z)] =

∧
z∈Q[µ1(z) → µ2((x → z) → z)] ∨

∧
z∈Q[µ1(z) → µ2((y → z) → z)] = X(µ1, µ2)(x) ∨ X(µ1, µ2)(y). By

(1) this proof is complete.
(3) Assume that µ2 is a fuzzy fantastic filter of Q. Thus X(µ1, µ2)((x → y) =

∧
z∈Q[(µ1(z) → µ2((x → y) →

z) → z))] ≤
∧

z∈Q[(µ1(z) → µ2(((y → x) → x) → y) → z) → z))] = X(µ1, µ2)(((y → x) → x) → y)). By (1)
this proof is complete.

(4) Assume that µ2 is a fuzzy Boolean filter of Q. Thus X(µ1, µ2)((x → (y → x)) =
∧

z∈Q[(µ1(z) → µ2((x →
((x→ y))→ z)→ z))] ≤

∧
z∈Q[(µ1(z)→ µ2(x→ z)→ z)] = X(µ1, µ2)(x). By (1) this proof is complete.

Theorem 3.12. Given fuzzy filters µ1, µ2 of Q, the generated fuzzy filter of µ1 � µ2 is denoted by µ1 ⊗ µ2,
where (µ2 � µ1)(x) = µ2(x) � µ1(x), for any x ∈ Q,

(µ1 ⊗ µ2)(x) =
∨
{
∧

i=1,2,··· ,n(µ1(ai) � µ2(ai)|x ≥ a1 � · · · � an}.

Proof. Denote the right of the above equation by ν(x). Firstly, by x ≥ x � x, ν(x) ≥ (µ2(x) � µ1(x)) ∧ (µ2(x) �
µ1(x)) = µ2(x) � µ1(x) = (µ1 � µ2)(x). Next, we prove that ν is a fuzzy filter. Obviously, for all x ∈ L,
ν(1) ≥ ν(x). Let x, y ∈ Q. If there exist a1, · · · , an, b1, · · · , bm ∈ Q, x ≥ a1 � · · · � an, x→ y ≥ b1 � · · · bm, we have
y ≥ x�(x→ y) ≥ a1�· · ·�an�b1�· · ·�bm. Hence ν(y) ≥

∧
i=1,··· ,n(µ1(ai)�µ2(ai))

∧∧
i=1,··· ,m(µ1(bi)�µ2(bi)). On

the other hand, ν(x)∧ ν(x→ y) =
∨
{
∧

i=1,··· ,n(µ1(si)� µ2(si))|x ≥ s1 � · · · � sn}
∧∨
{
∧

i=1,··· ,m(µ1(ti)� µ2(ti))|x→
y ≥ t1 � · · · � tm} =

∨
{
∧

i=1,··· ,n(µ1(si) � µ2(si))
∧∧

i=1,··· ,m(µ1(ti) � µ2(ti))|x ≥ s1 � · · · � sn, x→ y ≥ t1 � · · · � tm}.
This implies that ν is a fuzzy filter of Q. Finally, if λ is a fuzzy filter satisfying µ1 � µ2 ≤ λ, we get
ν(x) =

∨
{
∧

i=1,··· ,n(µ1(ai) � µ2(ai))|x ≥ a1 � · · · � an} ≤
∨
{
∧

i=1,··· ,n λ(ai)|x ≥ a1 � · · · � an} ≤ λ(x). Summarizing
the above results the proof is complete.
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Theorem 3.13. Let λ1, λ2, λ3 be fuzzy filters of Q. Then λ1 ⊗ λ2 ⊆ λ3 if and only if λ1 ⊆ X(λ2, λ3).

Proof. Set x ∈ Q. If λ1⊗λ2 ⊆ λ3, then λ1(x)�λ2(x) ≤ (λ1⊗λ2)(x) ≤ λ3(x). Hence X(λ2, λ3)(x) =
∧

y∈Q[λ2(y)→
λ3((x → y) → y)] ≥

∧
y∈Q[λ2((x → y) → y) → λ3((x → y) → y)] ≥

∧
y∈Q[λ2((x → y) → y) → λ1((x →

y) → y) � λ2((x → y) → y)] ≥ λ1((x → y) → y) ≥ λ1(x). This means that λ1 ⊆ X(λ2, λ3). Conversely, if
λ1 ⊆ X(λ2, λ3), then λ1(x) ≤ X(λ2, λ3)(x) =

∧
y∈Q[λ2(y)→ λ3((x→ y)→ y)]. Hence λ1(x) ≤ λ2(y)→ λ3((x→

x) → x) = λ2(x) → λ3(x). So λ1(x) ⊗ λ2(x) ≤ λ3(x) and thus λ1 ⊗ λ2(x) =
∨
{
∧

i=1,2,··· ,m(λ1(ai) � λ2(ai))|x ≥
ai � · · · � an} ≤

∨
{
∧

i=1,2,··· ,m λ3(ai)|x ≥ ai � · · · � an} =
∨
{λ3(a1 � · · · � am)|x ≥ ai � · · · � an} ≤ λ3(x). This shows

that λ1 ⊗ λ2 ⊆ λ3.

We have the following theorem whence→ in X(µ1, µ2) is the Gödel residuum implication.

Theorem 3.14. Let λ1, λ2 ∈ F (Q). Then λ1 ∧ λ2 = λ1 ∧ X(λ1, λ2).

Proof. Obviously, λ1 ∧ λ2 ≤ λ1 ∧ X(λ1, λ2). Now, we prove that λ1 ∧ X(λ1, λ2) ≤ λ1 ∧ λ2. Indeed, for any
x ∈ Q, [λ1 ∧ X(λ1, λ2)](x) = λ1(x) ∧ X(λ1, λ2)(x) = λ1(x) ∧

∧
z∈L(λ1(y)→ λ2((y→ x)→ x)) ≤ λ1(x) ∧ (λ1(x)→

λ2(x)) = λ1(x) ∧ λ2(x) = (λ1 ∧ λ2)(x). Therefore λ1 ∧ λ2 = λ1 ∧ X(λ1, λ2).

Theorem 3.15. (F (Q),∧,∨,⊗,X(λ1, λ2), ∅,L) is a complete residuated lattice.

Proof. It follows from Theorem 3.13.

4. Conclusions

Inspired by the previous studies about fuzzy filters and stabilizers of BL-algebras, we introduce two
classes of fuzzy stabilizers and investigated their related properties in BL-algebras. Also, we discuss the
relation between these fuzzy stabilizers and other classes of fuzzy filters in BL-algebras. Finally, using the
properties of the fuzzy stabilizers, we deduce that the collection of all fuzzy filters constitutes a residuated
lattice. These results will provide a solid algebraic foundation for the consequence connectives in fuzzy
logic.
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