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Abstract. This study focuses on a novel anti-disturbance flight control scheme for the near space hypersonic
vehicle (NHV) based on the fuzzy sliding-mode control technique and disturbance observer. First, a fuzzy
system is employed to approximate the uncertainty nonlinear dynamics; furthermore, an auxiliary fast
dynamic observation system is introduced to tackle the system uncertainty and the time-varying unknown
external disturbance of the NHV. Second, the dynamic adaptive terminal sliding-mode control strategy
is raised to alleviate the chattering phenomenon. Third, the Lyapunov method is used to prove that the
adaptive control system can be guaranteed to be stable and the tracking errors are converged in finite time.
Finally, the effectiveness of the proposed method is verified with simulation.

1. Introduction

In the last few years, more people have been paying attention to the NHV technology, because the
NHV as a novel aerospace aircraft plays an important role in military and civil applications. Compared
with traditional flight vehicles, NHV has many outstanding advantages, such as lower launch cost, rapid
response ability, strong penetration ability, difficulty of detection, and superior performance of various
tasks. On the other hand, the NHV system presents some negative characteristics: a wide range of flight
envelopes, severe nonlinearity, strong uncertainty, highly-coupled control channels, and changeable flight
environment with time variations. In addition, the different external disturbance and the state variables
always interact with each other and other factors, which further increases the control design difficulty for
the NHV. Thus, the robust flight control design for the NHV is a challenging task.

Due to the enormous value of military and civilian, more and more researchers are interested in the
NHV[1-6][12-15]. As a powerful tool for designing controllers of the near space vehicle flight control
systems, sliding mode control (SMC) as an efficient robust strategy has been extensively studied in [7-8].
Since the remarkable robust control performance, the SMC has been widely applied in many practical
systems [9]. However, there are still some disadvantages in SMC. The first is the well-known chattering
phenomenon which is harmful to the actuators, especially when large parameter uncertainties or external
disturbances appear. To overcome this limitation, a novel flight control scheme is proposed using the fuzzy
sliding-mode control method. These proposed dynamic attitude control systems can improve control
performance of hypersonic vehicles despite uncertainties and external disturbances.
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Combining the disturbance observer and the fuzzy terminal sliding-mode control, a new control scheme
is developed to compensate the disturbances for the NHV in this paper. Using the Lyapunov approach, the
proposed controller is provided the uniformly asymptotic stability for the hypersonic vehicles system and
achieves perfect disturbance compensation. Compared with the existing work, the highlight of this paper
is:

a. A novel anti-disturbance flight control scheme is designed for the near space vehicle (NHV) based
on the fuzzy sliding-mode control technique and disturbance observer.

b. An auxiliary fast dynamic observation system is introduced to tackle the system uncertainty and the
time-varying unknown external disturbance of the NHV.

c. In order to alleviate the chattering phenomenon, the dynamic adaptive terminal sliding-mode control
strategy is raised in the paper.

This work is motivated by the fuzzy terminal sliding-mode control with the disturbance observer for
the attitude motion of the NHV. First, the six-DOF hypersonic flight model is presented. Second, the
robust controller of the HSV with the disturbance and the uncertainty is designed. Using the Lyapunov
approach, the proposed controller is provided the uniformly asymptotic stability for the hypersonic vehicles
system. Finally, numerical simulation with a nonlinear the six-DOF hypersonic flight model is carried out
to demonstrate the performance.

2. Hypersonic vehicle model

According to the six-degrees-of-freedom of the NHV, the mathematic model of the NHV is given by the
NASA Langley Research Center [10] as follows:

Ω̇(t) = fs(Ω(t)) + 1s(Ω(t))ω(t) + 1s2(Ω(t))δ(t) (1)

ω̇(t) = 1 f (ω(t))u(t) + f f (ω(t)) (2)

where Ω =
[
α, β, µ

]T represents the slow-loop state, and ω =
[
p, q, r

]T represents the fast-loop state.
In order to design the TSM control for the uncertain attitude motion dynamics (1), (2) of the NHV, we

give the following lemma:
Lemma 1 ([11]). For a continuous and positive function , if the following condition is held:

V̇(t)+αV(t) − λV(t)γ ≤ 0 (3)

Then, V(t) converges in finite time ts and ts is decided by

ts ≤ t0 +
1

α(1 + γ)
ln
αV(t0)1−γ + λ

λ
(4)

where α > 0, λ > 0, and 0 < γ < 1.

3. Design of the robust controller for NHV

3.1. The design of NHV slow-loop controller with uncertainty

The model of slow-loop is described by (1), and the influence of 1s2(Ω(t)) is omitted. Also, the part of
the uncertainty is added to meet the requirement of the project as follows:

Ω̇(t) = fs(Ω (t)) + ∆ fs(Ω (t)) + 1s(Ω (t))ω(t) (5)

∆ fs(Ω (t)) represents the uncertainty of fs(Ω (t)).
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For the interference of uncertainty, using the fuzzy logic system to approximate, the expression is as
followings:

y (Ω) =

∑r
i=1 yi

(∑n
j=1 µAi

j

(
Ω j

))
∑n

j=1 µAi
j

(
Ω j

) = θ̂Tξ (Ω)

Where µAi
j
(Ω j) is the function, ξ(Ω) is the basis function, θ̂T is the adjustable parameter, and y(Ω) is the

output of fuzzy system.
Because the fuzzy system has infinite approximation ability, the unknown uncertainty can be described

by a fuzzy system and an error.

∆ fs(Ω(t)) = θ∗Tξ(Ω, ω) + ε(Ω, ω)

For the system (5), the following dynamic observation system is designed as follows:

µ̇s = σ(Ω − µs) + fs (Ω(t)) + 1s (Ω(t))ω(t) + θ0
Tξ(Ω, ω) + χθ + χε (6)

Where σ > 0 is the design parameters, θ0 is the estimated value of θ∗, and χθ, χε are the designed
adaptive control inputs, which are satisfied:

χε = π̂2($s)/ [π̂ (‖$s‖) + a1] (7)

χθ = υ̂2($s)ξ(Ω, ω)/ [υ̂ (‖$s‖) ‖ξ(Ω, ω)‖ + a2] · ξ(Ω, ω) (8)

Where $s is the slow-loop disturbance observation error, a1, a2 > 0 are the design parameters, υ̂ and π̂
are the estimate values of υ, π, which are satisfied in the following equation:

‖ε(Ω, ω)‖ ≤ π,
∥∥∥θ̃∥∥∥ = ‖θ∗ − θ0‖ ≤ υ

The slow-loop interference observation error is represented by the following:

$s = Ω − µs

Then

$̇s = −σ$s + θ̃Tξ(Ω, ω) + ε(Ω, ω) − χθ − χε (9)

In order to design the controller of the slow-loop and track the command signals Ωc(t) in a limited time,
the terminal sliding mode surface can be designed as:∐

= Ωe +

∫ t

0
(c1Ωe + c2Ω

q1/p1
e )dτ = 0 (10)

where the tracking error is Ωe = Ω −Ωc, c1, c2 > 0, p1 > q1, and p1, q1 are odd.
The robust adaptive control of the hypersonic vehicle based on the terminal sliding mode surface can

be given as follows:
Theorem 1. For the given system (5), there exist interference observation error dynamic system (9),

control law (11) and adaptive law (12) and (13); under the action of the robust adaptive control, the
closed-loop system is stable, and the interference observation error is ultimately bounded.

ω(t) =1−1
s (− fs(Ω(t)) − θ0

Tξ(Ω, ω) − c1Ωe − c2|Ωe|
q1/p1 si1n(Ωe)

+ Ω̇c − χθ − χε − ζ1

∐
−ζ2

∣∣∣∣∐∣∣∣∣τ1/δ1

si1n(
∐

))
(11)
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˙̂π = γ1 [‖$s‖ − h1(π̂ − π0)] (12)

˙̂υ = γ2[(‖$s‖) ‖ξ(Ω, ω)‖ − h2(υ̂ − υ0)] (13)

where π0, υ0 are the initial value of π, υ, h1, h2, ζ1, ζ2 > 0 are the designed parameters, γ1, γ2 > 0.
Proof: Choose the Lyapunov function as

V =
1
2
$s

T$s +
1

2γ1
π̃2 +

1
2γ2

υ̃2 (14)

Invoking (9), (12) and (13) , and differentiating (14) yields

V̇ =$T
s $̇s +

1
γ1
π̃ ˙̃π +

1
γ2
υ̃ ˙̃υ

=$T
s {−σ$s + θ̃Tξ(Ω, ω) + ε(Ω, ω) − π̂2$s/[π̂(‖$s‖) + a1]

− υ̂2($s) ξ
T(Ω, ω)/[υ̂(‖$s‖) ‖ξ(Ω, ω)‖ + a2] · ξ(Ω, ω)}

− π̃[‖$s‖ − h1(π̂ − π0)] − υ̃[(‖$s‖) ‖ξ(Ω, ω)‖ − h2(υ̂ − υ0)]

Then

π̂2(‖$s‖)2/[π̂(‖$s‖) + a1] > π̂(‖$s‖) − a1

υ̂2(‖$s‖)2
‖ξ(Ω, ω)‖ 2

/[υ̂(‖$s‖) ‖ξ(Ω, ω)‖ + a2] > υ̂(‖$s‖) ‖ξ(Ω, ω)‖ − a2

We have

V̇ ≤ −σ$s
T$s + a1 + a2 + π̃h1(π̂ − π0) +υ̃h2(υ̂ − υ0) (15)

Due to

π̃(π̂ − π0) ≤ −
π̃2

2
+

(π − π0)2

2

υ̃(υ̂ − υ0) ≤ −
υ̃2

2
+

(υ − υ0)2

2
From (15), we have

V̇ ≤ −σ$s
T$s + a1 + a2 −

h1π̃2

2
+

h1(π − π0)2

2
−

h2υ̃2

2
+

h2(υ − υ0)2

2

Let

φ = a1 + a2 +
h1(π − π0)2

2
+

h2(υ − υ0)2

2

Choosing the ‖$s‖ >
√

φ
σ , or |π̃| >

√
2φ
h1

, or |υ̃| >
√

2φ
h2

. So V̇ < 0, the interference observation error is
ultimately bounded. Thus, this proof is completed.

The convergence of the tracking error of the whole closed-loop system is given in theorem 2.
Theorem 2. For the given system (7), there exist interference observation error dynamic system (9),

control law (16) and adaptive law (12) and (13); then the tracking error of the closed-loop system converges
to a very small area.

ω(t) =1−1
s (− fs(Ω(t)) − θ0

Tξ(Ω, ω) − c1Ωe − c2|Ωe|
q1/p1 si1n(Ωe)

+ Ω̇c − χθ − χε − ζ1

∐
−ζ2

∣∣∣∣∐∣∣∣∣τ1/δ1

si1n(
∐

))
(16)
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Where ζ1, ζ2 > 0, are the designed parameters, δ1 > τ1 > 0,
Proof: We defined the following sliding surface as follows:∐

= Ωe +

∫ t

0
(c1Ωe + c2Ω

q1/p1
e )dτ = 0 (17)

differentiating (17) yields
∐

= Ωe +
∫ t

0 (c1Ωe + c2Ω
q1/p1
e )dτ = 0∐̇

= Ω̇e + c1Ωe + c2Ω
q1/p1
e

= Ω̇ − Ω̇c + c1Ωe + c2Ω
q1/p1
e

= fs(Ω(t)) + 1s(Ω(t))ω(t) + ∆ fs(Ω(t)) − Ω̇c + c1Ωe + c2Ω
q1/p1
e

= ∆ fs(Ω(t)) − θ0
Tξ(Ω, ω) − χθ − χε − ζ1

∐
−ζ2

∣∣∣∣∐∣∣∣∣τ1/δ1

si1n(
∐

)

Choosing the Lyapunov function candidate

V =
1
2

∐T ∐
(18)

differentiating (18) yields

V̇ =
∐T∐̇

=
∐T [

∆ fs (Ω(t)) − θ0
Tξ(Ω, ω) − χθ − χε − ζ1

∐
−ζ2

∣∣∣∣∐∣∣∣∣τ1/δ1

si1n
(∐)]

≤ −ζ1

∥∥∥∥∐∥∥∥∥2
+ ε̄

∥∥∥∥∐∥∥∥∥ − ζ2

∥∥∥∥∐∥∥∥∥ ∣∣∣∣∣∣∣∣∐∣∣∣∣∣∣∣∣τ1/δ1

≤ −ζ1

∥∥∥∥∐∥∥∥∥2
−

(
ζ2

∣∣∣∣∣∣∣∣∐∣∣∣∣∣∣∣∣τ1/δ1

− ε̄
) ∥∥∥∥∐∥∥∥∥

(19)

Where ε̄ ≥
∥∥∥∆ fs(Ω(t)) − θ0

Tξ(Ω, ω) − χθ − χε
∥∥∥

Choose ζ2

∥∥∥∐τ1/δ1
∥∥∥ − ε̄ ≥ p > 0

Then (19) can be changed into

V̇ ≤ −2ζ1V −
√

2pV1/2 (20)

According to Lemma 1,
∐

will be converged to a small area in a limited time.

t1 =
1
ζ1

ln
2ζ1V(t0)1/2 +

√
2p

√
2p

(21)

Thus, this proof is completed.

3.2. The design of NHV fast-loop controller with compound disturbance
Considering the hypersonic vehicle dynamic modeling of the fast-loop equation (2), which includes the

uncertainty and external disturbance part:

ω̇(t) = f f (ω(t)) + ∆ f f (ω(t)) + (1 f (ω(t)) + ∆1 f (ω(t)))u(t) + d f (t)
y1 = ω (t) (22)

where d f (t) is the external disturbance of the hypersonic vehicle, and ∆ f f (ω(t)), ∆1 f (ω(t)) are the system
uncertainties, ψ(ω,u) = ∆ f f (ω(t)) + ∆1 f (ω(t))u(t) + d f (t) is the compound disturbance.
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In order to eliminate the influence of the uncertainty and external disturbance, the robust terminal
sliding mode control law is designed based on adaptive disturbance observer for the compensative control.

The fast-loop dynamic observation system (23) is designed to observe the compound disturbance.

µ̇ f = f f (ω, t) + 1 f (ω, t)u(t) + α(ω − µ f ) + β(ω − µ f )τ/δ + ϑθ + ϑε + θTξ(ω,u) (23)

Where $ = ω − µ f is the observer error, ϑθ, ϑε are the designed adaptive law, α, β > 0 are the designed
parameters, and δ > τ > 0 is odd.

Then

$̇ = −α$ − β$τ/δ + θ̃Tξ (ω,u) + ε(ω,u) − ϑθ − ϑε (24)

Where

‖ε(ω,u)‖ ≤ λ,
∥∥∥θ̃∥∥∥ = ‖θ∗ − θ‖ ≤ ρ (25)

λ̂, ρ̂ are estimates of the λ, ρ and λ̃ = λ − λ̂, ρ̃ = ρ − ρ̂
The design and analysis of the terminal sliding mode control laws based on adaptive disturbance

observer as compensation control are given in theorem 3.
Theorem 3. For the given system (22), there exist interference observation error dynamic system (24),

adaptive regulation law (26), (27), (28), (29); then, the observed interference error is ultimately bounded.

˙̂λ = w1[‖$‖ +
∥∥∥$τ/δ∥∥∥ − k1(λ̂ − λ0)] (26)

˙̂ρ = w2[(‖$‖ +
∥∥∥$τ/δ∥∥∥) ‖ξ(ω,u)‖ − k2(ρ̂ − ρ0)] (27)

ϑε = λ̂2($ + $τ/δ)/[λ̂(‖$‖ +
∥∥∥$τ/δ∥∥∥) + r1] (28)

ϑθ = ρ̂2($ + $τ/δ) ξ T(ω,u)/[ρ̂(‖$‖ +
∥∥∥$τ/δ∥∥∥) ‖ξ(ω,u)‖ + r2] · ξ(ω,u) (29)

Where λ0, ρ0 is the initial value of λ, ρ, r1, r2 > 0, k1, k2 > 0 are the designed parameters, and w1,w2 > 0
is the learning rate.

Proof: Defining the Lyapunov function as

V =
1
2
$T$ +

δ
τ + δ

($(τ+δ)/(2δ))T$(τ+δ)/(2δ) +
1

2w1
λ̃2 +

1
2w2

ρ̃2 (30)

Invoking (22), (26) and (27), and differentiating (30) yields

V̇ = ($ + $τ/δ)T$̇ +
1

w1
λ̃ ˙̃λ +

1
w2
ρ̃ ˙̃ρ

= ($ + $τ/δ)T
{−α$ − β$τ/δ + θ̃Tξ (ω,u) + ε(ω,u) − λ̂2($ + $τ/δ)/[λ̂(‖$‖ +

∥∥∥$τ/δ∥∥∥) + r1]

− ρ̂2($ + $τ/δ) ξ T(ω,u)/[ρ̂(‖$‖ +
∥∥∥$τ/δ∥∥∥) ‖ξ(ω,u)‖ + r2] · ξ(ω,u)}

− λ̃[‖$‖ +
∥∥∥$τ/δ∥∥∥ − k1(λ̂ − λ0)] − ρ̃[(‖$‖ +

∥∥∥$τ/δ∥∥∥) ‖ξ(ω,u)‖ − k2(ρ̂ − ρ0)]

≤ −α‖$‖2 − β
∥∥∥$τ/δ∥∥∥2

− λ̂2(‖$‖ +
∥∥∥$τ/δ∥∥∥)2/[λ̂(‖$‖ +

∥∥∥$τ/δ∥∥∥) + r1]

− ρ̂2(‖$‖ +
∥∥∥$τ/δ∥∥∥)2

‖ξ(ω,u)‖ 2
/[ρ̂(‖$‖ +

∥∥∥$τ/δ∥∥∥) ‖ξ(ω,u)‖ + r2]

+ λ̂(‖$‖ +
∥∥∥$τ/δ∥∥∥) + λ̃k1(λ̂ − λ0) + ρ̂(‖$‖ +

∥∥∥$τ/δ∥∥∥) ‖ξ(ω,u)‖ + ρ̃k2(ρ̂ − ρ0)

(31)
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Considering

λ̂2
(
‖$‖ +

∥∥∥$τ/δ∥∥∥)2
/
[
λ̂
(
‖$‖ +

∥∥∥$τ/δ∥∥∥) + r1

]
> λ̂

(
‖$‖ +

∥∥∥$τ/δ∥∥∥) − r1 (32)

ρ̂2
(
‖$‖ +

∥∥∥$τ/δ∥∥∥)2
‖ξ(ω,u)‖2/

[
ρ̂
(
‖$‖ +

∥∥∥$τ/δ∥∥∥) ‖ξ(ω,u)‖ + r2

]
> ρ̂

(
‖$‖ +

∥∥∥$τ/δ∥∥∥) ‖ξ(ω,u)‖ − r2 (33)

Then

V̇ ≤ −α‖$‖2 + r1 + r2 + λ̃k1(λ̂ − λ0) +ρ̃k2(ρ̂ − ρ0) (34)

Thus

λ̃(λ̂ − λ0) ≤ −
λ̃2

2
+

(λ − λ0)2

2
(35)

ρ̃(ρ̂ − ρ0) ≤ −
ρ̃2

2
+

(ρ − ρ0)2

2
(36)

From (33)

V̇ ≤ −α‖$‖2 + r1 + r2 −
k1λ̃2

2
+

k1(λ − λ0)2

2
−

k2ρ̃2

2
+

k2(ρ − ρ0)2

2
(37)

Let

γ = r1 + r2 +
k1(λ − λ0)2

2
+

k2(ρ − ρ0)2

2

Choosing ‖$‖ >
√

γ
α , or

∣∣∣λ̃∣∣∣ > √
2γ
k1

, or
∣∣∣ρ̃∣∣∣ > √

2γ
k2

. So V̇ < 0, the interference observation error is
ultimately bounded. Thus, this proof is completed.

4. Conclusion

A novel fuzzy robust sliding mode control scheme has been proposed to cope with the convergence
speed and control precision for the NHV attitude system. To deal with distinct characteristics of the complex
near space vehicle flight control systems, an auxiliary fast dynamic observation system is introduced to
tackle the system uncertainty and the time-varying unknown external disturbance of the NHV . Using the
proposed controller, the compound interference can be effectively compensated as well as the closed-loop
stability is guaranteed.
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