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Available at: http://www.pmf.ni.ac.rs/filomat

Reliability Analysis of Blade Fatigue Life Based on Fuzzy Intelligent

Multiple Extremum Response Surface Method

Chun-Yi Zhanga, Tian Suna, Ai-Hua Wanga, Hui-Zhe Jinga, Bao-Sheng Liua, Cheng-Wei Lia

aSchool of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China

Abstract. In order to more reasonable analyze the dynamic reliability of aero-engine blade with coupling
failure mode. A fuzzy intelligent multiple extremum response surface method (FIMERSM) was proposed.
Considering the coupling effect of temperature load and centrifugal load, the maximum stress point, the
maximum strain point and the minimum life point on blade were found by deterministic analysis. Then,
the density of blade, rotor speed, elastic modulus, blade-tip temperature, blade-root temperature, fatigue
strength coefficient, fatigue strength exponent, fatigue ductility coefficient, fatigue ductility exponent, blade
width, blade thickness, blade torsion angle, and blade height as input random variables. By using Latin
hypercube sampling technique, the sample values of the input random variables were acquired and finite
element basic equation was calculated for each samples which obtained the corresponding dynamic output
response of their stress, strain, and low cycle fatigue life within the analysis time domain. By taking
the entire maximum values of the dynamic output response in the analysis time domain as new output
response, the fuzzy intelligent multiple extremum response surface function (FIMERSF) was established.
Finally, the dynamic reliability of the blade structure were obtained by using the Monte Carlo method
(MCM) large amount linkage sampling of the input random variables and take it into the FIMERSF to
calculate the output response. The results imply that the comprehensive reliability of blade is 99.46%.
Through the comparison of MCM, Multiple extremum response surface method (MERSM) and FIMERSM,
the computational results show that the FIMERSM has high computational precision and computational
efficiency.

Introduction

Turbine blade, as an important component of aero-engine, bears complex failure modes such as stress,
strain and low-cycle fatigue, and subjected to heavy loads such as high temperature, high pressure and
high revolving speed. Therefore, it is important to analyze the reliability of turbine blade [1].

The classical reliability analysis method has been studied extensively [2-4]. Among them, the Response
surface method (RSM) is fast and certain precision, and it widely used in the field of reliability analysis. Hu-
Yun et al. [5] calculated the reliability of gear by RSM with consideration the effects of elasto hydrodynamic
lubrication (EHL) on contact fatigue reliability of gear. Some scholars have improved the response surface
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method to improve its computational speed and computational accuracy. Zhang Chun-yi et al. [6] firstly
proposed the thought of the extremum response surface method (ERSM), and completed the reliability
analysis of the two-link flexible manipulator by using extremum response surface function instead of the
dynamic differential equation of the Lagrange form of the flexible mechanism. Gao Hai-Feng et al. [7]
established the Manson-Coffin formulas of nickel-based superalloy GH4133 of aeroengine blade material
based on the different confidence levels, and completed the prediction of the low-cycle fatigue life (LCF)
of turbine blade with thermo-structural coupling interaction by distributed collaborative response surface
method (DCRSM).However, due to the fact that scientific research has its own development law, the
reliability analysis were carried out in one failure mode at that time, without considering the correlation
between the failure modes, and the fuzzy properties of the constraint boundary conditions.

The support Vector Regression (SVR) is a kind of machine intelligence algorithm [8], which has an
excellent learning ability of small sample and efficient computational efficiency, and it widely used in the
field of reliability analysis [9-11]. In the traditional SVR, it is necessary to give the value of the insensitive
parameter ε in advance, and it is difficult to select the reasonable value of ε in the practical application.
Then, Schölkopf et al. [12] proposed V-Support Vector Regression (V-SVR), introduced the ε-loss function
control parameter v in the original optimization problem of SVR, and solved ε as constraint of optimization
problem. However, V-SVR is susceptible to the influence of noise and outliers when there is a lot of fuzzy
information in the training samples. Therefore, Yan Hong-Sen et al. [13] proposed a Fuzzy V-Support
Vector Regression(FV-SVR) by combining the fuzzy regression theory with the V-SVR, and applied it to the
product design time intelligent estimation. However, FV-SVR has not been applied to reliability analysis.

In order to improve the calculation accuracy and calculation efficiency of reliability analysis, considering
the correlation between failure modes, and the fuzziness of data. A method of FIMERSM was proposed by
integrating FV-SVR and RSM, and applied it to the dynamic reliability analysis of aeroengine turbine blades
and comparison with other reliability analysis methods shows that FIMERSM has strong advantages.

1. Fuzzy Intelligent Multi-Extremum Response Surface Method

1.1. Basic thought

The basic principle of FIMERSM is as follows: the material performance parameters, working conditions
and design dimensions of the blade were selected as input variables. Considering the coupling effect of
temperature load and centrifugal load, the basic equations of the finite element of the blade are solved, and
the maximum stress point, the maximum strain point and the minimum life point of the blade are found
by deterministic analysis. Then, considering the randomness and fuzziness of the data, the above input
variable is taken as the input random variable, and the sample of the random variable is extracted by using
the Latin hypercube sampling technique. The dynamic output response of the stress, strain, and low cycle
fatigue life with in the analysis time domain were obtained by solve the finite element basic equation for
each samples. By taking the entire maximum values of the dynamic output response in the analysis time
as the new output responses, and the data is normalized as the training sample of the FV-SVR model. The
parameters of FV-SVR is optimized by genetic algorithm (GA), the fuzzy intelligent multiple extremum
response surface function (FIMERSF) was established. Finally, the dynamic reliability of the blade structure
were obtained by using MCM large amount linkage sampling of the input random variables and bring
them into the FIMERSF to calculate the output responses.
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Figure 1 The FEM of blade

1.2. Mathematical model

1.2.1. Mathematical model of FV-SVR

Given a training dataset
{

(xi, yi), xi ∈ T(R)n, yi ∈ T(R), i = 1, 2, · · · , l
}

, xi ∈ T(R)n is a input sample, yi ∈ T(R)
is the output value. T(R) and T(R)n is the space of 1-dimensional and n-dimensional of triangular fuzzy
numbers, respectively. In order to simplify the calculation, the symmetric triangular fuzzy numbers are
taken into account, i.e. sxi

= txi
, syi
= tyi

, xi = (mxi
, sxi

), yi = (myi
, syi

). m, s and t represent the central,
left and right fuzzy amplitudes of the triangular fuzzy numbers, respectively. The FV-SVR is modeled by
minimizing following constrained risk function [13] in Eq. (1).

min
w,b,ε,ξ(∗)

1

2
‖w‖2 + c[vε +

1

l

2
∑

k=1

l
∑

i=1

(ξki + ξ
∗
ki)] (1)

s.t











































(myi
+ syi

) − w · Φ(mxi
) − b − ρ(sxi

) ≤ ε + ξ1i

w ·Φ(mxi
) + b + ρ(sxi

) − (myi
+ syi

) ≤ ε + ξ∗
1i

(myi
− syi

) −w ·Φ(mxi
) + b − ρ(sxi

) ≤ ε + ξ2i

w ·Φ(mxi
) + b − ρ(sxi

) − (myi
− syi

) ≤ ε + ξ∗
2i

ξ
ki
, ξ∗

ki
≥ 0, k = 1, 2

ε ≥ 0

(2)

Where, ‖w‖2 =
∑l

i, j=1 (a1i − a∗
1i
+ a2i − a∗

2i
)(a1 j − a∗

1 j
+ a2 j − a∗

2 j
)(Φ(mxi) · Φ(mxj)); ρ(sxi

) = max
{

sx1
, · · · sxin

}

is

maximum fuzzy amplitude of xi; Φ(·) denotes a nonlinear mapping function from the input space xi to a
high-dimensional feature space; c is the regularization constant; v ∈ [0, 1] is an control parameters of ε-loss
function; ξki, ξ∗ki

(k = 1, 2; i = 1, · · · , l) are the slack variables; w and b are the support vector weight and the
bias. By introducing the Lagrange multiplier a∗

ki
, the mathematical model of FV-SVR is obtained by solving
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the above optimization problem.
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In the formula (3), k(mxi
,mx j

) is the kernel function, the Gaussian radial basis kernel function kRBF(mxi
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and the polynomial kernel function kpoly(mxi

,mx j
) are combined to construct the mixed kernel function as

follows [14]:

Kmix(mxi
,mx j

) = λ[(mxi
·mx j

) + 1]d + (1 − λ) exp



















−

∥

∥

∥mxi
−mx j

∥

∥

∥

2

2σ2



















(4)

Where, 0 < λ < 1 is the mixed kernel function weighting factor; σ, d is the kernel function parameter of
RBF kernel and polynomial kernel, respectively.

1.2.2. Mathematical model of FIMERSM

The basic thought of FIMERSM is as follows: X( j) is assumed to be the input vector sample values

of member group j. The maximum value of the responses at time domain [0, T] is y
( j)
max(X( j)). The set of

y
( j)
max(X( j)) is {y

( j)
max(X( j)) : j ∈ Z+}. The relationship of X( j)and y can be expressed in the following function:

y = f (X) = {y
( j)
max(X( j)) : j ∈ Z+} (5)

Where, Z+ is positive integer. Through the establishment of multiple extremum response surface
function (MERSF) [6] by FV-SVR for each failure mode, the mathematical model of fuzzy intelligent multiple
extremum response surface method is shown as follows:
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Where, ỹ
( j)
max is the extremum output response with the j th failure modes; (aki − a∗

ki
)( j) is the Lagrange

multipliers with the j th failure modes; kmix(mxi
,mx j

)( j) is the mixed kernel function with the j th failure

modes; b( j) is a bias term with the j th failure modes; ρ(sx)( j) is the maximum fuzzy amplitude with the j th
failure modes.

1.2.3. Mathematical model of Fuzzy reliability analysis

Assuming that the stress S = S(x1, x2, · · · , xn) and the intensity R = R(x1, x2, · · · , xn) of the structure are
independent of each other, the structure is safe when R > S, and the structure is failure when R < S. By
the transformation of the normalization factor F, we can establish a unified reliability model with both
randomness and fuzziness, and F is defined as follows:

F =

∫∫

uR(r) fR(r)uS(s) fS(s)uS̃(m)dx1dx2 · · · dxn (7)

Where, fS(s)and fR(r)represent the probability density functions of S and R, respectively. us(s),uR(r)
represent the fuzzy membership functions of S and R, respectively. The membership function of the state
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variableM = R−S belongs to the security domain S̃ is us̃(m). By the conversion of the equivalent probability
density function of the membership function of fuzzy variables, the problem of the generalized fuzzy
stochastic reliability probability can be solved by the method of the stochastic reliability probability. The
membership is transformed as follows:

u
(e)
i

(xi) =
ui(xi)

∫

ui(xi)dxi

, i = 1, 2, · · · , n f (8)

Based on the above-defined normalization factor F and the equivalent transformation probability den-

sity function ui(xi) = u
(e)
i

(xi)

∫

ui(xi)dxi of the fuzzy membership function, the fuzzy stochastic reliability

probability pr and failure probability p f are defined as the integral form [15]:

pr =

n f
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F

∫∫

R>s

uR(r) fR(r)uS(s) fS(s)uS̃(m)dx1dx2 · · ·dxn (9)

p f = 1 − pr (10)

2. Example

2.1. Thermal- structural coupling deterministic analysis of blade

An aeroengine turbine blade was selected as the example in the study and its material is GH4133B alloy
[16]. The material performance parameters, working conditions and design dimensions [7] of the blade
were selected as input random variables obeying normal distributions with mutual independence. The
distributions of input random variables are shown in Table 1.

The blade was divided into 97795 tetrahedrons units and 160516 nodes. The finite element model (FEM)
of blade are shown in Figure 1. The finite element basic equations (shape function of tetrahedron [17],
geometric equation [18], physical equation [19], Manson-coffin formula [7] and Miner linear accumulative
damage law [20]) of the thermal- structural coupling deterministic analysis of blade are shown in Eq. (11)-
Eq. (15). The thermal-structure coupling deterministic analysis was completed by substituting the mean
values in Table 1 into the finite element basic equations of the blade structure. The distributions of stress,
strain and low-cycle fatigue life of blade are shown in Figure 2, Figure 3 and Figure 4. As can be seen from
the analysis results, the maximum stress, maximum strain and minimum fatigue life of blade are locates on
the blade-root.

Table 1 Input random variables of blade reliability analysis

Random variables Mean Standard deviation Distribution

Density,ρ/(kg.m−3) 8210 410.5 Normal
Rotor speed,ω/(rad·s−1) 1168 58.4 Normal
Elastic modulus,E/MPa 163000 4890 Normal
Blade -tip temperature,Ta/k 1473.15 73.658 Normal
Blade-root temperature,Tb/k 1173.2 60.658 Normal
Fatigue strength coefficient,σ′f 1419 70.95 Normal
Fatigue strength exponent, b −0.1 0.005 Normal
Fatigue ductility coefficient, ε′f 50.5 2.525 Normal
Fatigue ductility exponent, c −0.84 0.042 Normal
Blade width, w/mm 41.1602 1.234806 Normal
Blade thickness,t/mm 8.1968 0.245904 Normal
Blade torsion angle, δ/radian 0.5458 0.016374 Normal
Blade height, h/mm 103.8536 3.115608 Normal
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Where, v is the volume of tetrahedron; ai, bi, ci, di is the related coefficient of node geometry; εx, εy, εz

and γxy, γyz, γzx are the elastic body line strain and shear strain along the x, y, z direction, respectively;
{σ} = [σx, σy, σz, τxy, τyz, τzx] is the components of stress; [D] is the elastic matrix; {ε} = [εx, εy, εz, γxy, γyz, γxz]
is the components of strain; σm is the mean stress; ∆ε/2 is the strain amplitude; D denotes damage; r is the
number of stress levels; ni is the cycle number of the i th level; Ni is the corresponding fatigue life of the i
th stress levels.

Figure 2 The FEM of blade
Figure 3 Distribution of blade stress

Figure 4 Distribution of blade strain Figure 5 Distribution of blade life

2.2. Establishment Model of FIMERSM

The input random variables were sampled by the LHS [21] at the location of maximum stress, strain
and minimum life of the blade. The output response values were obtained by thermal- structural coupling
analysis based on these samples. The data is normalized to [0, 1] as a training sample for FV-SVR. In order
to improve the prediction accuracy of FV-SVR model, the parameters of FV-SVR model (c, v, σ, λ, d) in
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formula (1) and formula (4) are optimized by genetic algorithm (GA). The fitness function of GA is defined
as the root mean square error (RMSE) of the k-fold cross validation method on the training data set, as
follows [22]:

RMSE =

√

∑n
k=1 (yk −

⌢
yk)2

n
(16)

Where, n is the number of training data samples, yk is the actual value, and
⌢
yk is the predicted value.

Through 200 interactions, the fitness curves of stress’s FV-SVR (FV-SVR1), strain’s FV-SVR (FV-SVR2), and
low-cycle fatigue life’s FV-SVR (FV-SVR3) of the blade are shown in Figure 5. The RMSE of the FV-SVR
model in the three failure modes is 7.2413e-05, 6.1959e-05 and 0.012922. The optimal parameters (c, v,
σ, λ, d) searched by the GA are assigned to the FV-SVR model. Through training, the FIMERSM model
coefficients for stress, strain and life are shown in Eq. (17)-Eq. (19).

Figure 6 The fitness variation curve of GA
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2.3. Dynamic Reliability Analysis

In line with the blade working condition and the material parameter [16], the allowable membership
function of the stress, strain and life of blade is established, as shown in Figure 6, and the corresponding
membership function is expressed as Eq. (20).
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The Eq. (20) is transformed into the form of a probability density function according to the form of
Eq. (9). In the case of randomness and fuzziness with input variables, the generalized fuzzy stochastic
reliability probabilistic model of the blade is as follows:

(a) Allowable stress membership function (b) Allowable strain membership function

(c) Allowable life membership function

Figure 7 The membership function of the blade allowed constraint
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pr3
=

∫

uG
∼

j
(N f )dN f

F

∫

Ωs

. . .

∫

u
(e)
G
∼

j
(N f ) · f (ρ) f (w) f (E) f (Ta) f (Tb) f (σ′ f ) f (b) f (ε′ f ) f (c) f (W) f (t) f (δ) f (h)

dρdwdEdTadTbdσ′ f dε′ f dbdcdWdtdδdh

F =

∫

· · ·

∫

uG
∼

j
(σ)uG

∼
j
(ε)uG

∼
j
(N f ) f (ρ) f (w) f (E) f (Ta) f (Tb) f (σ′ f ) f (b) f (ε′ f ) f (c) f (W) f (t) f (δ) f (h)

dρdwdEdTadTbdσ′ f dε′ f dbdcdWdtdδdh

(21)

By using MCM linkage sampling for FIMERSM model 10,000 times and solve the Eq. (21). The
distribution of the output response of the maximum stress point, the maximum strain point and the
minimum life point of the blade are shown in Figure 7. The blade reliability analysis results are shown in
Table 2.

(a) Blade stress (b) Blade strain (c) Blade life
Figure 8 Simulation samples of blade stress, strain and life

(a) Blade stress (b) Blade strain (c) Blade life
Figure 9 Distribution of blade output response
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Table 2 Reliability analysis results of blade

Parameter Mean Standard deviation Failure number Reliability,(%) Computational time, (s)
Pr1,Stress/MPa 630.076 11.225 40 99.60 0.344

Pr2,Strain/mm/mm 0.004674 0.00062114 25 99.75 0.335
Pr3, Life/cycle 8312.0022 35.56 29 99.71 0.316

Pr1∩Pr2∩Pr3, Total failure mode − − 54 99.46 0.815

3. Validating FIMERSM

To verify the validity of the FIMERSM, the reliability analysis of blade were carried out with MCM,
MERSM and FIMERSM according to the input random variables in Table 1 and the same computing
environment. Three method computational times are shown in Table 3 and reliability analysis results of
blade are listed in Table 4.

Table 3 Computational time of three methods for blade reliability analysis

Method
Different simulations, times

102 103 104 105 106

MCM, (Pr1∩Pr2∩Pr3) 25200 s 14400 s 1209600 s — —
MERSM,(Pr1∩Pr2∩Pr3) 0.123 s 3.95 s 6.824 s 16.26 s —

FIMERSM,(Pr1∩Pr2∩Pr3) 0.094 s 0.359 s 0.815 s 1.537 s 3.162 s

Table 4 Results of blade reliability analysis based on three methods

Sampling Reliability degree, (Pr1 ∩ Pr2 ∩ Pr3) Precision, (%) Improved
number MCM MERSM FIMERSM MERSM FIMERSM precision, (%)

102 0.99 0.97 0.99 97 100 3
103 0.997 0.988 0.992 99.0 99.4 0.4
104 0.9957 0.9913 0.9946 99.55 99.89 0.34
105 — 0.99359 0.99832 — — —
106 — — 0.999824 — — —

4. Discussion

As shown in Table 3, the computational time of FIMERSM is far less than MCM and MERSM. The
FIMERSM only spends 0.359 under the 10000 times simulations, which is only 1/8 that of MERSM and
1/1484171 that of MCM.

As shown in Table 4, the computational precision of FIMERSM is higher than MERSM and is almost
consistent with MCM. Especially, the computational accuracy of FIMERSM is improved by 0.34% to that of
MERSM under 104 time simulations.

Additionally, as shown in Table 3 and Table 4, the FIMERSM can solve the reliability analysis problem
of multi-failure modes which the MERSM and MCM almost unlikely completed when the simulation times
are more than 106.

By the above conclusions, it is fully supported that the FIMERSM not only keeping the high computa-
tional precision, but also greatly improve the calculation efficiency.

5. Conclusions and future work

This study proposes a reliability analysis method FIMERSM by integrating FV-SVR and MERSM. The
following conclusions are drawn from the simulation:

1) The reliability degree of blade stress, strain and fatigue life are 99.60%,99.75% and 99.71%,respectively.
2) FIMERSM is a fast, efficient and accurate method for the reliability analysis of multi-failure mode

structure on the premise of guarantee calculation precision.
3) In the future, we will focus on the additional factors (creep, crack, etc.) for blade dynamic reliability

analysis, and strive to the calculation simulate factors and the actual work of the situation fully consistent.
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