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Abstract. Local community detection aims to obtain the local communities to which target nodes belong, by
employing only partial information of the network. As a commonly used network model, bipartite applies
naturally when modeling relations between two different classes of objects. There are three problems
to be solved in local community detection, such as initial core node selection, expansion approach and
community boundary criteria. In this work, a similaritybased local community detection algorithm for
bipartite networks (SLCDB) is proposed, and the algorithm can be used to detect local community structure
by only using either type of nodes of a bipartite network. Experiments on real data prove that SLCDB
algorithms output community structure can achieve a very high modularity which outperforms most
existing local community detection methods for bipartite networks.

1. Introduction

There are many forms of complex network models, such as one-mode network, bipartite network and
multimode network[1]. Bipartite network is commonly and naturally existed in real world, when modeling
relations between two different classes of objects in real world, such as paper reference relationship, movie
actor-movie relationship. The dichotomy characteristics of target networks can help researchers reveal
more details and useful networking features than single model networks[2]. Bipartite networks also share
some statistical properties as their single-mode form, which means when regarding the nodes of the two
parts of the network as the same, the single model network and original bipartite network share the same
degree distribution, clustering coefficient, at the same time, bipartite also maintains more information of
the real network being modeled than the single model version. As an important network model which
is widely used in reality, researchers have done a lot bipartite network related research, bipartite network
models of real application had been built, such as scientists cooperation network, the audience and the
music network, book lending network, P2P exchange network and so on. There are mainly two ways
to curve the relationship of two different classes of objects, one is projection method, which projects the
two parts of the bipartite network into a certain type of node to carry on further study, the other is non-
projection method. There are different ways of projecting different nodes into the same category, such as
the unweighted projection and weighted projection[3, 4], but existing experiments proved that projection
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operation usually causes loss of information[5–7]. Therefore, the use of non-projection modeling is more
reasonable.

Existing researches focus more on modifying community detection methods which are not specially
designed for bipartite network to solve community detection problem, such as clustering algorithm based
on edge clustering coefficient[8], Kab-Biclique division method[9], module optimization algorithm[10], etc.
These existing methods ignore the difference between the nodes of the two parts of bipartite network,
and they also dont make sufficient use of the characteristics of bipartite network. On the other hand,
global information are usually needed by these algorithms, which means that these algorithms are difficult
to be applied without full structure information of target network. Alzahrani et al.[11] summarized the
recent studies in bipartite networks and obtained clusters by Infomap, which are meaningful than those
found in Louvain. Beckett et al.[12] introduced two algorithms, LPAwb+ and DIRTLPAwb+, for maximiz-
ing weighted modularity in bipartite networks, providing a different and potentially insightful method
for evaluating network partitions. There are also some researchers improved the community detection
algorithms in bipartite network, for example, Fan et al. studied community partition merging principle
in single type of nodes in bipartite networks and proposed an improved bipartite networks community
detection method, which was based on Page Rank algorithm, information spreading probability model and
combined with the modularity, and they also demonstrated the effectiveness of the proposed method[13].
However, for huge and dynamic bipartite networks, it is difficult to collect global information[14], so taking
full advantage of local network structure can be a better choice.

This paper focuses on detecting local community structure of bipartite networks, and reducing depen-
dence on global information turns into the main target of the proposing method.

The rest of the paper is structured as follows: Section 2 describes the key questions of local community
discovery in bipartite network. Section 3 introduces the proposed algorithm and analyzes the complexity.
Section 4 provides some experiments on the proposed algorithm in different iterative orders. We conclude
in Section 5 with possible directions for future work.

2. Key Issues of Local Community Detection in Bipartite Network

In order to solve local community detection problem, there are three basic questions needed to be
answered: (1) How to choose initial node, which is called initial core[15]? (2) How to expand member
nodes starting from initial core[16]? (3) What criteria should be adopted to determine the boundary of a
community[17–20]? This section discusses and analyzes these questions so as to propose a solution to local
community discovery in bipartite network.

2.1. Initial Core of Local Community

Whether it is a onemode network or a bipartite network, we always concern with the local surrounding
structure of some key nodes. According to the general definition of local community, namely in a network
G, given an initial node V0, under the circumstance of referencing local information, the algorithm will find
a community that contains the node.

In the light of this definition, the final community started from the core should contain node V0; thus
some algorithms directly use V0 as the initial core, and then expand from this core node to discover the
community.

The second idea takes consideration on community center, not starting from V0, but selecting a node
nearby V0 which may be the community center. Typically, one approach is to traverse V0’s neighbor nodes
from the direction which consists with the degree ascending, until the algorithm finds the node with the
largest degree(marked as Vmax), and Vmax is employed as its initial core; another approach calculates V0’s
neighbor nodes and the central degrees of the neighbor’s neighbor nodes, so as to find Vc which holds the
highest central degrees and is simultaneously close to V0, then Vc is regarded as the initial core of the local
community.

The initial core selection and subsequent expansion approach are closely correlated. Selecting central
node is a prerequisite of subsequent expansion and boundary determination in some local community
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discovery algorithms. Selecting central node is beneficial to improve the efficiency and stability of local
communities mining, while the rationality of the selected initial core remains to be verified. Firstly, the
central node nearest to V0 and V0 itself may not fall into the same community. Secondly, starting from
the node with high clustering coefficient may lead to overlapping communities. Starting from the original
node could avoid these problems, however, the subsequent expansion strategy and boundary determination
become more difficult to deal with, and is prone to poor stability, that is to say, starting from different nodes
in the same community may lead to different results.

The above approaches which start from a single node are defective. The proposed algorithm considers
sub-graph, which is a group of nodes belonging to the same community, as the initial core of local commu-
nities. To a network, node similarity refers to the closeness between two nodes in certain aspects, such as
structural similarity and regular similarity. High similarity between two nodes illustrates that these two
nodes share more common features. Thus, the more similar the two nodes are, the more possible they are
from the same community. Selected collections of nodes sharing the highest similarity and more common
features are regarded as similar sub-graph.

As mentioned above, using a similar sub-graph as the initial core of a local community is reasonable,
and a more reasonable choice is to select the most similar group of nodes which should be a complete graph
or so called component, which can ensure the stability of initial core and avoid problems resulted from
selecting inaccurate central node as the initial core.

2.2. Local Community Expansion Approach

Local community expansion approach is defined as the approach to choose neighbor nodes to be added
into current community after obtaining the initial core[21]. Each time you select a node to be added,
considering the following approaches: one by one node, level expansion and sub-graph expansion.

The most common expansion strategy is the one by one node approach. A neighbor node is chosen for
each existed community. In light to certain criteria, the algorithm decides whether this certain node will be
added into the current community or not, repeating this process until the algorithm satisfies community
boundary conditions. The new node to be added in accordance with the standard closeness selection to the
existed community, such as the external node which has highest connectivity with existed communities,
the node which has the highest similarity with existed community boundary nodes and so on. The biggest
problem of one by one node approach is that the final result is instable, that is to say, starting from different
nodes in the same community may lead to different results. Relatively speaking, compared with starting
from boundary nodes, starting from central nodes would obtain a better result. Given that the unknown
network structure could cause uncertainty, one by one node approach is not desirable.

Subsequently, considering with level expansion approach to implement local community expansion,
the definition of level expansion demonstrates that adding the neighbor nodes of the initial core and the
neighbor nodes neighbors into community sequentially, and the algorithm repeats this process until the
current node is judged to be a boundary node. Level expansion approach requires the initial core to be
selected must be a central node, otherwise the performance will be degraded. Level expansion approach
is more efficient than one by one node approach, and the result turns to be better when the network has
a regular community structure. However, if the community structure of the network is irregular, level
expansion approach would join or exclude all the nodes of a certain level, and it is difficult to ensure the
accuracy of community boundaries.

Sub-graph expansion approach refers that the network is divided into several sub-graphs, each time
you select a sub-graph and determine whether all nodes in the sub-graph should be included into existed
communities. In the prerequisite of all sub-graph nodes belonging to the same community, this approach is
more efficient and reasonable than level expansion approach. Meanwhile, aiming at irregular community
structure, the result of sub-graph expansion is better than that of the level expansion approach.

The algorithm employs similar sub-graph approach to expand the local community. For a given initial
node, we can calculate the closest node to obtain a similar sub-graph and regard the sub-graph as a core, then
starting from the core(similar sub-graph) to obtain nearby similar sub-graph. According to the definition
of similar sub-graph, the nodes of each similar sub-graph fall into the same community; thus, based on
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neighboring similar sub-graph to extend sub-graphs holds its rationality and the completeness of similar
sub-graphs makes the judgment of boundaries for merging sub-graphs more accurate.

2.3. Local Community Evaluation Criteria
Another key problem lies in the local community discovery, namely how to determine whether a node

of an existed local community should be expanded, which is also the criteria of the local community
boundariesthe termination conditions of the algorithm. For global community partitioning algorithm, the
accuracy of the results can be measured by modularity function or other evaluation indicators; but for local
community discovery algorithm, the results can only be judged by the local information, thus, it is difficult
to make judgments for highly coupled complex networks.

Some researchers supposed a number of evaluation indicators for local community of onemode network.
Clauset et al.[17] proposed a local community discovery algorithm based on local modularity R, the R is
defined as follows:

R =
Bin

Bin + Bout
, (1)

where Bin represents the number of links between the boundary nodes and internal nodes in a com-
munity, Bout indicates the number of links between boundary nodes in the current community and other
nodes out of the current community. R value represents steep degree of the community boundary, the
larger the R value, the higher the proportion of links between community boundary nodes and inner nodes
in the community, namely the more obvious of the community structure. Conversely, if adding a node
leads to the R value reducing, representing its links is much closer with outer nodes of the community
rather than internal nodes in the community, so the node should be excluded this community. Using R
value to measure the community boundary obtains its rationality as well as lower accuracy. Moreover,
this algorithm uses node by node expansion approach and needs a prespecified community scale as end
condition; apparently it is unable to meet the actual needs.

Bagrow et al. [19] proposed an algorithm of extensions of the local communities in accordance with the
level of mining, this paper defined an indicator, and a presetting threshold value α. When the indicator is
less than α, it is considered that the algorithm reached community boundaries. Defined as:

∆Kl
j =

Kl
j

Kl−1
j

. (2)

It represents a ratio between the number of external connection links of the l layer which starting from
the node j, and the number of external connection links of l − 1 layer starting from the same node j. The
algorithm uses layer by layer expansion approach and the results is not very accurate; meanwhile the
presetting threshold value α is subjective, it is not very reasonable.

Luo et al.[18] uses M (the ratio between inner links and outer links) as the indicator of local modularity,
repeating the process by deciding each neighbor node to join the current community or not until M reaches
a maximum value which is regarded as the end conditions. Defined as follows:

M =
Ein

Eout
, (3)

where Ein represents the total number of edges inside the community; Eout provides the number of
links between boundary nodes and outside nodes of the community. The algorithm has no default end
conditions and it judges the end conditions by the extreme value of M, which is obviously more reasonable;
however, the stability problems of “one by one node” expansion approach still exists.

Chen et al. proposes L-a ratio [22] between inside and outside degrees which is used as a local community
evaluation indicator. Defined as follows:

L =
Lin

Lex
, (4)
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where Lin is a ratio between the number of edges and the number of nodes in the community, and Lex is
a ratio between the number of edges which connect to the outside community and the number of boundary
nodes. The algorithm also has the similar problem which mentioned earlier.

In summary, due to the lack of global information, local community usually incorporates boundary
information inside and outside the community as a basis for evaluation; however, in terms of the uncertainty
of the expansion process, it is difficult to ensure the accuracy and stability of the results. Our algorithm
proposes a solution to these problems.

2.3.1. Edge Clustering Coefficient in Bipartite Network
The edge clustering coefficient of a one-mode network is defined as a ration between the number of

triangles of a certain edge and all possible triangles [23]. Zhang et al. proposed the definition of edge
clustering coefficient in bipartite network as follows[24] :

LC3(i,X) =
1

ki + kX − 2

 Kx∑
m=2

tmi

km + ki − tmi
+

ki∑
N=2

tNX

kN + kX − tNX

 , (5)

where ki and kX represent the degrees of node i and node X respectively. m is the number of neighbor
nodes of node X excluding node i, tmi shows the triples between node m and node i (the number of common
neighbors between node m and node i), node N illustrates the neighbor nodes of node i excluding node X,
and the definition of tNX is similar with the definition of tmi.

2.3.2. Modularity QB

In order to evaluate whether the result of the algorithm is good or not, Newman and Girvan proposed
a definition of modularity function[25], that is, Q function. Defined as follows:

Q =
1

2m

∑[
Ai j −

kik j

2m

]
δ(ci, c j), (6)

where A represents the adjacency matrix of the network, ki denotes the degree of node i, m exhibits
the total number of edges; ci is the community which contains node i, c j represents the community which
contains node j. δ(ci, c j) = 1satisfies only when ci equals to c j.

The Q function represents the close degree of inner edges in each network. The value of Q ranges from
-0.5 to 1. In fact, the value of Q usually ranges from 0.3 to 0.7 in common network.

2.3.3. Similarity Indicators in Bipartite Network
Similarity measurement has been widely researched in one-mode network. One of the basic similar-

ity measurement indicator is Common Neighbor indicator[26]. Taking the impact between nodes into
consideration, similarity can be evaluated in many ways, such as Salton indicator (also known as cosine
similarity)[27], Jaccard indicator[28], Srensen indicator[29], hub node promoted indicators (Hub Promoted
Index, HPI)[30], hub depress indicators (Hub Depress Index, HDI)[31]and Leicht indicator[32]. In addition,
addressing common neighbors information of two nodes, a set of similarity indicators were proposed, such
as the famous Adamic-Adar(AA) indicator[33], the idea of Adamic-Adar index is that the greater the degree
of common neighbor, the smaller the contribution to the node similarity, and vice versa. From the angle on
network resource allocation, indexes, such as RA indicator[31] and the similarity indicator based on local
Naive Bayes model[34], can also be a good way to evaluate the similarity.

Among various similarity indicators, indicator based on the random walk of similarity holds a good
effect and a wide range of applications. A considerable amount of similarity indicators are based on a
random walk process definition. For example, indicator based on the random walk of cosine similarity
(Cos+) [35], the average commute time (Average Commute Time, ACT)[36], SimRank indicator[37], restarted
the random walk indicator (Random Walk with Restart, RWR)[38], these are indicators of global random
walk.
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Because computational complexity of global random walk indicators is very high, it is difficult to apply
this indicator to large-scale networks. To solve this problem, Liu Weiping and Lv Linyuan proposed a
random walk similarity indicator with a number of steps in a limited time (Local Random Walk, LRW)[39],
and proved that the performance of the proposed indicator is much better than common neighbor based
approaches and the computational complexity is much smaller than the global random walking based
methods, such as Superposed Random Walk, SRW based method. The SRW indicator considers the
probability of the most likely connection between the target node and the adjacent node, and the efficiency
and accuracy are quite high. SRW similarity is calculated as follows:

SSRW
xy =

t∑
l=1

SSRW
xy = qx

t∑
l=1

πxy(l) + qy

t∑
l=1

πyx(l), (7)

where SSRW
xy (t) represents random walk similarity of node x and node y after it is superimposed to t step,

qx and qy are parameters which are initially allocated to node x and node y, πxy(l) is the probability starting
from node x and arriving node y through l steps.

For the local community detection problems in bipartite network, given the initial node x0, we use
SimRank to gain the most similar node to x0, which marked as xsim. SimRank indicator is a commonly
used similarity evaluation indicator which is based on a random walk of global information, to solve local
community detection problem, we can adopt random walk model based on finite local information.

Our algorithm extended superimposed random walk indicator(SRW) to apply to bipartite network.
Starting from the initial node with limited depth traverse, it is possible to obtain the corresponding prob-
ability of achieving neighboring nodes. The probability of the same kind of nodes is regarded as the
comparative probability, the node with largest probability is the most similar node with the original node.
Then the process will be repeated to achieve similar node sub-graphs in the original bipartite network,
and these sub-graphs are employed as the initial core and merging units for the local communities mining
process.

2.3.4. Local Community Modularity in Bipartite Network
For bipartite networks, the evaluation of a local community can only be analyzed by the structural

information of the certain community. Only the statistical degree of edge information leads to low accuracy;
moreover, betweenness is a global feature for a network, and edge clustering coefficient becomes a more
reasonable choice.

Based on triple edge clustering coefficient LC3 in bipartite network, it characterized the connection
tightness of the end nodes. According to the definition of community, clustering coefficient among inner
edges of the community is high and low among boundary edges. Figure 1 illustrates the LC3 clustering
coefficient of each edge for a simple bipartite network, it can be seen that, in the figure the network
was divided into two parts(left and right) and its internal edge clustering coefficients(5/6, 23/36) were
significantly higher than that of the boundary edges (2, C) whose clustering coefficient was 1/4. The figure
discloses that it was reasonable to employ edge clustering coefficient as an indicator to distinguish local
community boundaries.

Therefore, our algorithm utilizes the accumulated ratio between the external edge clustering coefficient
of boundary nodes and the total edge clustering coefficient as the modularity of local community MB, which
is formulated as:

MB(C) =
∑
a∈C

∑
b<C LC3(a, b)∑n
i=1 LC3(a, i)

, (8)

where a is the boundary nodes of the community, b is the neighbor nodes of the community, and n is the
number of neighbor nodes of a. Since the edge clustering coefficient uses the structural information of near
range, modularity MB represents the connection tightness between the boundary nodes and the outside
nodes of the community. The smaller the MB, the more sparse links between the community and external,
so that the more obvious the community structure presents. Thus, this formulated modularity can be used
as the criteria for the sub-graph merging process.
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Figure 1: Sample of edge clustering coefficient LC3

3. Similarity-based Bipartite Local Community Detection Algorithm

3.1. Algorithm Description
SLCDB algorithm is denoted as:

BLC = SLCDB(B, v0), (9)

where the input parameters are the bipartite network B and the initial node v0, the output result is a
local community BLC which contains v0.

Step 1: Based on the conception of similarity sub-graph, the algorithm obtained the initial core which
contains v0.

a) Regarding V0 as the current node, and the initial core set is marked as: C0 = {v0};
b) Starting from the current node, calling the random walk function, the algorithm obtains the similarity

indicators of the neighbor nodes;
c) Selecting the highest similarity node s of v0, if node s is in the set C0, the algorithm turns to Step 2,

otherwise continues with Step 1-d);
d) Adding s to C0, selecting s as the current node then algorithm repeated the Step 1-b).
Step 2: Acquire and expand neighbor similarity sub-graph.
a) Obtaining a neighbor node n which is not being traversed in C0, the algorithm turns to Step 2-b). If

all the nodes in C0 are traversed, the algorithm turns to Step 2-d);
b) In light of the process of Step 1, starting from node n, obtaining the similarity sub-graph Cn which

contains node n, then the algorithm marks the most similar node i while merging it into Cn as traversed;
if node i belongs to certain sub-graph Ci (Ci may be the initial core C0 or another neighbor sub-graph), the
algorithm merge Cn into Ci. The algorithm returns to Step 2-a), otherwise continues with Step 2-c);

c) The algorithm obtains new sub-graph Cn and stores it into ListC, then returns to Step 2-a);
d) After finishing obtaining all the similar sub-graphs, the algorithm would expand the neighbor sub-

graph, namely traversing all the nodes in the neighbor sub-graph which is not traversed; if the most similar
node belongs to a certain existed sub-graph, then merge the node into the sub-graph, the algorithm repeated
the process until all the boundary nodes dont belong to any neighbor sub-graph.

Step 3: Merge and expand the sub-graph.
a) Calculating the modularity MB for all the sub-graphs;
b) Selecting a neighbor sub-graph from ListC in turns, calculating the increased modularity ∆MB with

other sub-graph (including core sub-graph C0). If ∆MB is less than 0, the algorithm will not merge this
sub-graph and repeat current process, otherwise the algorithm will continue to execute Step 3-c);

c) Merging sub-graph, selecting sub-graph with the biggest ∆MB to merge; if two neighbor sub-graphs
are to be merged, the algorithm would trace back to Step 3-b), then selecting next sub-graph; if the core
sub-graph C0 merges with neighbor sub-graph, due to C0 expanded the neighbor nodes which are not
traversed, the algorithm need to trace back to Step 2 to obtain new neighbor sub-graph.

Step 4: After finishing the merge of sub-graphs, the algorithm would expand C0 into two local commu-
nities BLC which contains two types of nodes(e.g. if the bipartite network is company-shareholder network,
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then the two types of nodes are company nodes and shareholders nodes), and the algorithm finishes and
the results are returned.

3.2. The Complexity of Algorithm

3.2.1. Time Complexity
The SLCDB algorithm is divided into 4 steps. The main computation of the first two steps is to calculate

the similarity indicator based on random walk. If starting from a node, then the algorithm executes a
random walk within w steps; thus, the complexity is the power of maximum node degree w. However,
we only need to obtain maximum similarity of the same type nodes in practice. Therefore, walk path
probability is less than the threshold value α and the algorithm stops before the next iteration. For example,
the network’s average degree k = 10, if the threshold of α = 1/1000, then the actual average depth of the
iteration is lo1k(1/α) + 1 = 4. Thus, if the core sub-graph and neighbor sub-graphs contain the average of
total nodes which is (t + 1)m, then the total similarity indicator complexity is O(ktm/α).

The expansion process of the subgraph needs to continue to traverse and add the neighbor nodes,
the maximum complexity does not exceed the size of the community m, and all the neighbor sub-graphs
expansion is proportional to the maximum complexity of tm. The merging process of sub-graphs requires
to compute the value local modularity MB, if the size of sub-graph is m, the number of average total edges is
km, and the number of community internal edge links is bigger than external edge links; thus, the number
of edges which needs to be calculated the clustering coefficient of LC3 is less than km/2; and calculating LC3
of each edge needs to traverse both of the end vertices neighbor nodes, its complexity is 2k. Therefore, the
local modularity computation complexity of each sub-graph is O(k2m).

In order to judge the sub-graphs merging process, the algorithm will calculate gain and loss of local
modularity after subgraph merging operations. If the average number of sub-graph is t+1, then the number
of possible combinations is t× (t + 1), and the computation complexity is O(k2t2m). After subgraph merging
operation, the algorithm recalculates local modularity gain and loss, assuming that the scale of community
is lo1(m), then, the computation complexity of iterative merge function will be O(k2t2mlo1(m)).

Base on above analysis, the maximum complexity of the algorithm is O(k2t2mlo1(m)), and which is the
time computation complexity of SLCDB algorithm.

3.2.2. Space Complexity
The data structure of the whole network uses adjacency table. Storage of all the nodes in the base table

occupies space n. The length of each node of the linked list is unequal which depends on the number of its
neighbor nodes, and the average value is k, so the space complexity is O(n + kn).

In the partition process, the algorithm needs to keep information, degree, similarity indicator etc. of all
involved nodes, which may occupy the space O(ktm/α). The algorithm also needs to build a collection of
lists used to store the core sub graph and all neighbor graphs and it takes up the space O(m + tm).

Because the size of a community and all its neighbors are not larger than the size of the entire network
n, the maximum space complexity of SLCDB algorithm is O(kn), which is less than O(n2).

4. Experiment and Results Analysis

In order to evaluate the performance of the proposed algorithm, Scotland corporation network[40]
dataset is employed in the experiment. This dataset shows the relationship between 136 shareholders of
108 joint-stock companies in early 20th century in Scotland. Each company has a plurality of shareholders
and vice versa. The relationship between a company and a shareholder shapes a classical bipartite network.
The structure of this network is shown in Figure 2, the nodes in red colour represent companies and the
nodes in cyan colour represent shareholders. This algorithm uses the maximal connected subgraph which
contains 86 companies and 131 shareholders, including 217 nodes and 348 edges.

To verify the performance, supposing a node set of bipartite network, marked as setB, the experiment
is carried out in two different traversing orders, node degree ascending and descending. Execute SLCDB
algorithm and get an output community result denoted by listC, then remove the nodes in listC from setB.
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Figure 2: Scotland corporation network

Repeat the above step until every node falls into a certain community. Firstly, the algorithm will take
different nodes as starting nodes to execute to verify the stability of the algorithm; secondly, it will take
different type of nodes as starting nodes to execute so as to compare the differences and similarities of the
two results; finally, it will be verified by QB to prove accuracy of the proposed algorithm.

4.1. Community Results Based on Company Nodes Ascending
Nodes 1∼108 represent companies, each time starting from the company nodes with minimum degree.

The local community for each step is shown in Table 1. It shows the algorithm detects 17 local communities
by starting from company nodes. There is no overlapping between company nodes; however, some
shareholder nodes are overlapped due to such type of nodes have many connected edges belonging to
many communities.

4.2. Community Detection Results Based on Company Nodes Descending
The experimental result of starting from the company nodes with maximum degree is shown in Table

2. The results are similar as experiments on the company nodes ascending. Algorithms would get different
community results when using different nodes as the initial nodes as was proved in the 2nd paragraph
of section 2.2, and Label Propagation Algorithm (LPA)[40] is a typical example. Starting from either
descending order or ascending order of node degree, the two community detecting results remain very
good, and this phenomenon proves the stability of the proposed algorithm.

4.3. Community Detection Results Based on Shareholder Nodes Ascending and Descending
Each time starting from the shareholder nodes with minimum degree, the local community for each step

is exhibited in Table 3, which shows 22 communities are divided by the algorithm. The results are different
from above results, demonstrating that the proposed algorithm is effective on the same type of nodes in
spite of descending or ascending. The structure of communities of company nodes is quite different from
the structure of communities of shareholder nodes.

Each time starting from the maximum node of shareholder nodes, the algorithm gets 22 communities.
The results keep the same with Table 3, which proves the stability of the algorithm is acceptable.

4.4. Community Detection Results Analysis
Figure 3(a) shows the community results based on company nodes and Figure 3(b) discloses the com-

munity results based on shareholder nodes. The nodes in dark color represent shareholders and the nodes
in shallow color indicate company. Both of the two results conform to the community structure. The two
community detection results are not the same. Figure 3(a) represents the communities composed by the
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Table 1: Partition result of Scotland corporation network by SLCDB (company nodes ascending)
Group Node Local community result
1 1 [1, 3, 7, 12, 16, 21, 23, 50, 53, 109, 110, 112, 113, 114, 115, 116, 130,

131, 132, 133, 134, 145, 177]
2 2 [2, 20, 27, 29, 35, 46, 58, 62, 71, 117, 118, 120, 121, 122, 123, 125,

126, 127, 128, 129, 130, 153, 176, 181]
... ... ...
17 96 [96, 99, 105, 221, 222, 228, 229, 238, 241, 242, 243]

companies and their owners. Figure 3(b) reveals the communities composed by shareholders and their
common companies. In Figure 3(a), a node in each community could be either a company node or a
common shareholder node, the results emphasize the relationship between companies. In Figure 3(b), a
node in each community could be either a shareholder node or a company node, the results emphasize the
relationship between the shareholders.

QB is an indicator to judge whether the algorithm is good or not and it was mentioned in Section 2. LPA
is a very famous algorithm due to its time efficiency and widely used in the actual application, the main
idea of this algorithm described as follows:

Each node is initialized with a unique label, and during the iteration, each nodes label is changed into the
maximum number of its neighbors. As the labels propagate through the network in this manner, densely
connected groups of nodes form a consensus on their labels. At the end of the algorithm, nodes with the
same label are grouped together as communities. The advantage of this algorithm over the other methods
is its simplicity and time efficiency. The time complexity of LPA is O(n).

The comparison of partition modularity is shown in Figure 4. The results prove that SLCDB algorithm
gets higher accuracy than LPA. According to the discussion in section 3.2, the time complexity of SLCDB is
higher than that of LPA, and this is what were going to do next.

Figure 3: Partition result of Scotland corporation network by SLCDB

5. Conclusion

A similarity based local community detection algorithm for bipartite network is proposed. The algo-
rithm employs random walk strategy as similarity indicator and starts from similar sub-graphs to expand
community structure, the modularity of bipartite network is used as the community detection criteria. The
accuracy and stability of algorithm was proved by experiment on real data. This research gives a practical



D. Chen et al. / Filomat 32:5 (2018), 1559–1570 1569

Table 2: Partition result of Scotland corporation network by SLCDB (company nodes descending)
Group Node Local community result
1 108 [55, 59, 67, 77, 82, 87, 100, 108, 121, 167, 168, 178, 179, 182, 191,

192, 197, 198, 199, 200, 206, 226, 227, 230, 231, 244]
2 106 [89, 91, 98, 106, 225, 227, 231, 234, 235, 236, 238, 242]
... ... ...
17 39 [38, 39, 172, 173, 174, 175]

Table 3: Partition result of Scotland corporation network by SLCDB (shareholder nodes ascending)
Group Node Local community result
1 109 [1, 7, 23, 50, 109, 112, 145]
2 110 [28, 59, 61, 67, 110, 168, 182, 183, 184, 192, 197]
... ... ...
22 225 [89, 90, 91, 98, 106, 225, 231, 234, 235, 236, 237, 238]

Figure 4: Comparison of partition modularity

way of community detection for bipartite network by using only partial network information. The research
on the three key issues (initial core node selection, expansion approach and community boundary criteria)
of community detection can be a useful reference for relative researches. The next step is to optimize the
time efficiency of this algorithm.
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