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Abstract. This paper presents an adaptive fuzzy iterative learning control method for the output tracking
problem of robotic systems with unknown time delay output and input dead-zone. A state observer
is designed to estimate unmeasurable velocity variables. By introducing boundary layer function, the
identical initial condition for most iterative learning control schemes is relaxed. By combining appropriate
Lyapunov-Krasovskii functional and fuzzy logic systems approximation technique, the proposed control
scheme can guarantee that the output tracking converges to the desired reference trajectory within an error
tolerance and all the closed-loop signals remain bounded.

1. Introduction

The past decades have witnessed a great deal of research efforts that aim at the development of iterative
learning control (ILC) for systems repeatedly running over a limited time interval. It has been proven that
ILC scheme is the most effective and suitable control strategy for repeatable control tasks due to its ability
of achieving perfect tracking through learning mechanism. Robotic systems are generally used in repetitive
tasks, so ILC can be applied to enhance tracking performance.

Generally, ILC can be classified into two types: traditional ILC [1] and adaptive iterative learning
control (AILC) [2] according to the stability analysis method. Traditional ILC demands for global Lipschitz
condition and takes contraction mapping theorem instead of Lyapunov method as stability analysis tool,
which makes it difficult to cooperate with the mainstream methods of control theory.Then the so-called
AILC method is pro-posed To break through the shortcomings of traditional ILC. AILC enables us to make
use of neural networks or fuzzy logic systems (FLS) as approximators to estimate non-smooth nonlinear
uncertainties.

In control community, the importance of dead-zone cannot be overemphasized any more, because it
usually results in undesirable inaccuracies and even instability [3]. For control systems with dead-zone,
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many works have been reported [4]. However, to the best of our knowledge, there are few literatures studied
from the viewpoint of AILC to solve the control problem of robotic manipulator with input dead-zone up
to now.

In the field of control, state feedback is very powerful for control systems when the states are accessible for
feedback. However, in a great number of control systems, only the output, instead of full state information,
is accessible for feedback. For output tracking control, observer is one of the most effective scheme, which
estimates the system states on-line. Up to now, there has been great development for various observer
design methods. However, only a few results are related to AILC [5-7]. The method of designing an AILC
using only output information is an interesting and challenging issue.

Motivated by aforementioned observations, we consider the observer-based AILC problem for robotic
manipulator systems with unknown time delay output and input dead zone in this paper. As far as we
know, no works has been reported deal with such problem using AILC method. In the proposed AILC
scheme, FLS is utilized to construct the iterative learning controller.

2. Problem Formulation and Preliminaries

2.1. Problem Formulation

We consider the n degrees-of-freedom rigid robots which are described by

M(qk(t))q̈k(t) + C(qk(t), q̇k(t))q̇k(t) + G(qk(t)) + H
(
qk,τ

)
= uk(t) + dk(t) (1)

where t ∈ [0,T] is the time and k ∈ Z+ denotes iteration number Z+ is the set of positive integers.
qk (t) =

[
q1,k (t) , . . . , qn,k (t)

]T
∈ Rn and the signals qk(t), q̇k(t) and q̈k(t) are the joint position, velocity and

acceleration vectors, respectively. M
(
qk(t)

)
∈ Rn×n is the inertia matrix, C

(
qk(t), q̇k(t)

)
∈ Rn is a vector resulting

from Coriolis and centrifugal forces, and G
(
qk(t)

)
∈ Rn is the vector resulting from the gravitational forces.

uk(t) ∈ Rn is the control input vector. dk(t) ∈ Rn is the vector containing the unknown external disturbances.
qk,τ ,

[
q1,k (t − τ1(t)) , . . . , qn,k (t − τn(t))

]T, where τi (t) is un-known time-varying delay with the upper bound
τmax, i = 1, 2, . . . ,n. H (�) is a bounded unknown smooth functions of time-delay position. It is well known
that the inertia matrix M

(
qk(t)

)
is positive definite and bounded, i.e.

0 < m1In ≤M
(
qk(t)

)
≤ m2In (2)

for all qk(t) with some m1,m2 > 0 where In is the n × n identity matrix. Then the dynamic formulation (1)
can be rewritten as

q̈k(t) = −M−1(qk)C(qk, q̇k)q̇k(t) −M−1(qk)G(qk) −M−1(qk)H
(
qk,τ

)
+ M−1(qk)uk(t) + M−1(qk)dk(t) (3)

Define the state variable at the k-th iteration as x1,k (t) = qk (t), x2,k (t) = q̇k (t), xk (t) =
[
xT

1,k (t) , xT
2,k (t)

]T

and choose the output variable as yk (t) = qk (t), denote f
(
qk, q̇k

)
= −M−1(qk)C(qk, q̇k)q̇k(t) −M−1(qk)G(qk) and

1
(
x1,k

)
,M−1 (

x1,k
)

. Then we can rewrite the robotic system as ẋ1,k (t) = x2,k (t) ; ẋ2,k (t) = f (xk) − 1
(
x1,k

)
H

(
yk,τ

)
+ 1

(
x1,k

)
uk(t) + 1

(
x1,k

)
dk(t)

yk (t) = Cxk (t) , t ∈ [0,T] ; yk (t) = 0, t ∈ [−τmax, 0)
(4)

where yk,τ ,
[
yk,τ1 , . . . , yk,τn

]T =
[
y1,k (t − τ1(t)) , . . . , yn,k (t − τn(t))

]T
∈ Rn, C = [In,O]T

∈ R2n×n, O is the n × n
zero matrix. In the rest parts, when no confusions arise the variable t will be omit-ted. The velocity variables
are assumed to be unmeasurable and only the joint position is available for measurement.

Remark 2.1. Time delay exists in extensive physical systems. Time delay may degrade the control performance, and
even leads to instability.
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The design objective of this paper is to design an observer-based AILC scheme for robotic manipulator
(1) to steer the output yk track a reference signal yd over [0,T] as k → ∞, while guaranteeing that all the
system signals remain bounded.

Define the desired reference trajectory xd =
[
yT

d , ẏ
T
d

]T
. To facilitate control design, we make following

reasonable assumptions.
Assumption 1. The desired signal yd (t) and ẏd (t) are continuous, bounded and available.
Assumption 2. The unknown time delays τi (t) satisfy: 0 ≤ τi (t) ≤ τmax, τ̇i (t) ≤ κ < 1, i = 1, 2, · · · ,n,

where κ is an unknown positive constant.
Assumption 3. The unknown smooth continuous function H (�) satisfies

‖H (�)‖ ≤
n∑

j=1

ρ j (�) (5)

where ρ j (�) is unknown positive smooth function.
Assumption 4. The unknown external disturbance ‖dk (t)‖ ≤ D1 with D1 as an unknown constant.

2.2. Dead zone nonlinearity
In this paper, we consider the dead-zone characteristic in the control input, which is described by [8]

uk = D (vk) =


m (t) (vk − br) ,for vk ≥ br

0 , for blvk < br

m (t) (vk − bl) ,for vk ≤ bl

(6)

where vk (t) is the input and uk (t) is the output, br ≥ 0 and bl ≤ 0 are unknown constants, m (t) > 0 is
unknown time-varying slope. The assumption on dead-zone parameters is as follows:

Assumption 5. There exist unknown constants br min, br max, bl min, bl max, mmin, mmax, such that br min ≤

br ≤ br max, bl min ≤ bl ≤ bl max and mmin ≤ m (t) ≤ mmax.
From a practical purpose, we can re-define the dead-zone nonlinearity as

uk (t) = D (vk) = m (t) vk (t) − d1 (vk (t)) (7)

with

d1 (vk (t)) =


m (t) br for vk (t) ≥ br

m (t) vk (t) for blvk (t) < br

m (t) bl for vk (t) ≤ bl

(8)

It is obvious that d1 (vk (t)) is bounded.

2.3. Fuzzy logic systems
A FLS includes four parts: the knowledge base, the fuzzifier, the fuzzy inference engine working on

fuzzy rules, and the defuzzifier [9]. For more details of FLS, readers may refer to [9]. According to [9], the
fuzzy logic system can be expressed as

y (x) = WTφ (x) (9)

Lemma 1. Let f (x) be a continuous function defined on a compact set Ω. Then for any constant ε > 0,
there exists an FLS such that

sup
∣∣∣ f (x) −WTφ (x)

∣∣∣ ≤ ε (10)

The FLS (9) is a universal approximator, namely, it can approximate any continuous function on a
compact set. FLS has been widely used in the control design due to its perfect approximation ability.
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3. State observer and adaptive fuzzy iterative output feedback controller design

3.1. Observer design
For simplification of expression, we denote d2

(
x1,k, t

)
= 1

(
x1,k

)
(dk(t) + d1 (vk (t))) and 1

(
x1,k

)
m (t) by

1m
(
x1,k

)
, 1

(
x1,k

)
m (t). It is clear that mminIn/m2 ≤ 1m

(
x1,k

)
≤ mmaxIn/m1 . Then we can rewrite the system

(1) as

ẋk = Axk + K0yk + B
[

f (xk) − 1(x1,k)H(yk,τ) +1m
(
x1,k

)
vk + d2

(
x1,k, t

)]
(11)

with A =

[
−K1 In
−K2 O

]
2n×2n

, K1 = dia1 {k11, . . . , k1n} and K2 = dia1 {k21, . . . , k2n} are diagonal matrices, Ko =[
K1
K2

]
2n×n

, B =

[
O
In

]
2n×n

. K1 and K2 should be chosen suitably so that A is strict Hurwitz. Then, given a

matrix Q > 0, there exists a matrix P > 0 that satisfies:

ATP + PA +
n + 3
λ

PPT < −Q (12)

In order to estimate the states of system (11), design an observer as

˙̂xk = Ax̂k + Koyk + B (Ψk − vrk) , ŷk = x̂1,k (13)

where Ψk ∈ Rn, vrk is defined as the robust term which will be designed later.
Define zk ,

[
z1,k, z2,k, . . . , z2n,k

]
= xk− x̂k. Choose a positive function as Vzk = zT

k Pzk. Recalling Assumption
2 and using Youngs inequality, taking the time derivative of Vzk yields

V̇zk ≤ zT
k

(
ATP + PA +

n + 2
λ

)
zk + 2zT

k PB
[

f (xk) + 1m
(
x1,k

)
vk −Ψk

]
+
λ

m1

n∑
j=1

ρ2
j

(
yk,τ j

)
+ λD2

0 + λv2
rk (14)

where D0 denote the upper bound of d2
(
x1,k, t

)
.

To deal with time-delay term, define the following Lyapunov-Krasovskii functional

VUk (t) =
λ

m1 (1 − κ)

n∑
j=1

∫ t

t−τ j(t)
ρ2

j

(
y j,k (σ)

)
dσ (15)

Taking the time derivative of (15) and considering (14), it results in

V̇zk + V̇Uk ≤zT
k

(
ATP + PA +

n + 2
λ

)
zk + 2zT

k PB
[

f (xk) + 1m
(
x1,k

)
vk −Ψk

]
+

λ
m1 (1 − κ)

n∑
j=1

ρ2
j

(
y j,k

)
+ λD2

0 + λv2
rk (16)

To deal with time-varying uncertainties f (xk) and 1m
(
x1,k

)
, we apply the fuzzy approximation technique

to approximate f (xk) and 1m
(
x1,k

)
on the compact sets Ω f = {xk} ⊂ R2n and Ω1 =

{
x1,k

}
⊂ Rn, respectively

f (xk) =


W∗T

f 1 (t)φ f 1 (xk)
...

W∗T
f n (t)φ f n (xk)

 +


ε f 1 (xk)
...

ε f n (xk)

 =
[{

W∗

f (t)
}T
�
{
φ f (xk)

}]
+ ε f (xk) (17)

1m
(
x1,k

)
=


W̄∗T
111 (t) φ̄111

(
x1,k

)
· · · W̄∗T

11n (t) φ̄11n
(
x1,k

)
...

...
...

W̄∗T
1n1 (t) φ̄1n1

(
x1,k

)
· · · W̄∗T

1nn (t) φ̄1nn
(
x1,k

)
 =

[{
W̄∗

1 (t)
}T
�
{
φ̄1

(
x1,k

)}]
(18)
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where, W∗

f i (t) , φ f i (xk) ∈ Rl f i , i = 1, · · · ,n; W∗

1i j, φ1i j
(
x1,k

)
∈ Rl1i j , W̄∗

1i j =
[
W∗T
1i j (t) , ε1i j

(
x1,k

)]T
, φ̄1i j

(
x1,k

)
=[

φ1i j
(
x1,k

)
, 1

]T
, i = 1, · · · ,n , j = 1, · · · ,n. Here we employ GL matrix operator [10].

Consequently, we can determine that

Ψk =
{
Ŵ f ,k (t)

}T
�
{
φ f (x̂k)

}
+

[{
ˆ̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]
vk (19)

Then we can have

2zT
k PB

[
f (xk) − f̂ (x̂k)

]
= 2zT

k PB
[{

W∗

f (t)
}T
�
{
φ̃ f (xk, x̂k)

}
+ ε f (xk) −

{
W̃ f ,k

}T
�
{
φ f (x̂k)

}]
(20)

where W̃ f k = Ŵ f k −W∗

f and φ̃ f (xk, x̂k) = φ f (xk)−φ f (x̂k), denote δ f k =
{
W∗

f (t)
}T
•

{
φ̃ f (xk, x̂k)

}
+ ε f (xk) which

is bounded by
∥∥∥δ f k

∥∥∥ ≤ δ∗. Using Youngs inequality and substituting (19) back into (16) and applying (20)
we have

V̇zk + V̇Uk ≤ − λmin (Q) ‖zk‖
2
− 2zT

k PB
[{

W̃ f ,k

}T
�
{
φ f (x̂k)

}]
− 2zT

k PB
[{

˜̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]
vk

+
λ

m1 (1 − κ)

n∑
j=1

ρ2
j
(
yk

)
+ λD2

1 + λv2
rk + λδ∗2 (21)

3.2. Adaptive fuzzy iterative learning controller design

Define errors as e1,k =
[
e1

1,k, . . . , e
n
1,k

]T
= x̂1,k − yd, e2,k =

[
e1

2,k, . . . , e
n
2,k

]T
= x̂2,k − ẏd, ek =

[
eT

1,k, e
T
2,k

]T
.

Assumption 6. zi,k (0) = 0, i = 1, 2, . . . ,n.
Assumption 7. The initial tracking errors ei,k (0) at each iteration are assumed to be bounded, but not

necessarily zero, small or fixed.
Define a tracking error variable as esk =

[
esk,1, . . . , esk,n

]T = [Λ In] ek, where Λ = dia1 {λ1, . . . , λn} and
λ1, · · · , λn are chosen such that the polynomial Hi (s) = s + λi is Hurwitz. It is clear that if esk approaches
zero as k→∞, then ‖ek‖will converge to the origin asymptotically.

Based on Assumption 7, there exist known constants εi
1 and εi

2, such that,
∣∣∣∣ei

1,k(0)
∣∣∣∣ ≤ εi

1 and
∣∣∣∣ei

2,k(0)
∣∣∣∣ ≤ εi

2,

i = 1, 2, · · · n. Define an auxiliary function sk =
[
s1,k, . . . , sn,k

]T as

si,k = esk,i − ηi(t)sat
(

esk,i

ηi(t)

)
, ηi(t) = εie−Kt (22)

where εi = λiεi
1 + εi

2, K > 0. The saturation function sat (�) is defined as

sat
(

esk,i

ηi(t)

)
= sgn

(
esk,i

)
min

{∣∣∣esk,i/ηi (t)
∣∣∣ , 1} (23)

According to initial condition, we can know that
∣∣∣esk,i (0)

∣∣∣ ≤ ηi (0), thus si,k (0) = 0 is satisfied for any
k ∈ N. Define a Lyapunov function as Vsk = 1

2 sT
k sk. Taking the derivative of Vsk with respective to time, it

yields

V̇sk = sT
k
[
Λ

(
K1z1,k + e2,k

)
+ K2z1,k + Kesk +

{
Ŵ f ,k (t)

}T
�
{
φ f (x̂k)

}
+
[{

ˆ̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]
vk −vrk − ÿd

]
−KsT

k sk (24)

where η (t) =
[
η1 (t) , . . . , ηn (t)

]T, sgn(sk) =
[
sgn(s1,k), . . . , sgn(sn,k)

]T and utilizing the relation si,k
(
−Kesk,i + K

×ηi (t) sgn
(
si,k

))
= −Ks2

i,k.
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Lemma 2 [8]. For any constant η > 0 and any variable p ∈ R,

lim
p→0

[
tanh2 (

p/η
)]
/p = 0 (25)

Choose the Lyapunov function as Vk = Vzk + VUk + Vsk . For convenience of expression, denote Ξ
(
yk

)
,

λ
m1(1−κ)

n∑
j=1
ρ2

j
(
yk

)
+λD2

0 + v2
rk +λδ∗2. Employing the hyperbolic tangent function and combining (21) and (24)

we can obtain

V̇k ≤ −λmin (Q) ‖zk‖
2
− 2zT

k PB
[{

W̃ f ,k

}T
�
{
φ f (x̂k)

}]
− 2zT

k PB
[{

˜̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]
vk + sT

k
[
Λ

(
K1z1,k + e2,k

)
+ K2z1,k + Kesk +

{
Ŵ f ,k (t)

}T
�
{
φ f (x̂k)

}
+

[{
ˆ̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]
vk −vrk − ÿd +

1
n

bTanh
(
sk/η (t)

)
s−1

k Ξ(yk)
]

+
1
n

n∑
i=1

[
1 − btanh2 (

si,k/ηi (t)
)]

Ξ(yk) − KsT
k sk (26)

where we define Tanh
(
sk/η (t)

)
= dia1

[
tanh2 (

si,k/ηi (t)
)]

, i = 1, · · · ,n. Hence, btanh2 (
sk/η (t)

)
Ξ(yk)/sk is

de-fined at sk = 0 and the problem of possible singularity is solved. Apparently, bTanh
(
sk/η (t)

)
s−1

k Ξ(yk) is
well-defined and continuous over compact set ΩΞ =

{
x̂k, xd, yk

}
⊂ R5n, so it can be approximated by a FLS

to arbitrary accuracy as

bTanh
(
sk/η (t)

)
s−1

k Ξ(yk)/n =
[
W̄∗T

Ξ1φ̄Ξ1 (Zk) , · · · , W̄∗T
Ξnφ̄Ξn (Zk)

]T
=

{
W̄∗

Ξ

}T
�
{
φ̄Ξ (Zk)

}
(27)

where, Zk =
[
x̂T

k , x
T
d , y

T
k

]T
, W∗

Ξi, φΞi (Zk) ∈ RlΞi , W̄∗

Ξi =
[
W∗T

Ξi , εΞi (Zk)
]T

and φ̄Ξi (Zk) =
[
φT

Ξi (Zk) , 1
]T

, i = 1, · · · ,n.
Then we can arrive at

V̇k ≤ − λmin (Q) ‖zk‖
2
− 2zT

k PB
[{

W̃ f ,k

}T
�
{
φ f (x̂k)

}]
− 2zT

k PB
[{

˜̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]
vk − sT

k

[{
˜̄WΞ,k

}T

�
{
φ̄Ξ (Zk)

}]
+ sT

k
[
Λ

(
K1z1,k + e2,k

)
+ K2z1,k + Kesk+

{
Ŵ f ,k (t)

}T
�
{
φ f (x̂k)

}
+

[{
ˆ̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]
vk

−vrk − ÿd +
{

ˆ̄WΞ

}T
�
{
φ̄Ξ (Zk)

}]
+

1
n

n∑
i=1

[
1 − btanh2 (

si,k/ηi (t)
)]

Ξ(yk) − KsT
k sk (28)

For simplicity, denote Υk = −Λ
(
K1z1,k + e2,k

)
−K2z1,k −Kesk −

{
Ŵ f ,k (t)

}T
�
{
φ f (x̂k)

}
+ ÿd −

{
ˆ̄WΞ

}T
�
{
φ̄Ξ (Zk)

}
.

Then, we can design the output tracking controller as

vk =
[{

ˆ̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]
[δIn+

[{
ˆ̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]T [{
ˆ̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]]−1
Υk (29)

where δ is a small positive constant. Design vrk as

vrk =δ

[
δIn +

[{
ˆ̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]T [{
ˆ̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]]−1

Υk×

tanh

δsT
k

[
δIn +

[{
ˆ̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]T [{
ˆ̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]]−1

Υk/∆k

 (30)

where ∆k = q/kl , with l and q being constants and q (∈ R) > 0, l (∈ Z+) ≥ 2. ∆kis a convergent series sequence.
For subsequent analysis, we will use the following properties.
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Property 1 [11]. For any ∆k > 0 and x ∈ R, the inequality |x| − x tanh (x/∆k ) ≤ θ∆k is established, where
θ is a positive constant and θ = e−(θ+1) or θ = 0.2785.

Property 2 [12]. lim
k→∞

k∑
j=1

∆ j < 2q.

Using the matrix equality GGT
[
δIn + GGT

]−1
= In−δ

[
δIn + GGT

]−1
and recalling property 1, we can know

V̇k ≤ − λmin (Q) ‖zk‖
2
− 2zT

k PB
[{

W̃ f ,k

}T
�
{
φ f (x̂k)

}]
− 2zT

k PB
[{

˜̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}]
vk

− sT
k

[{
˜̄WΞ,k

}T
�
{
φ̄Ξ (Zk)

}]
+ θ∆k +

1
n

n∑
i=1

[
1 − btanh2 (

si,k/ηi (t)
)]

Ξ(yk) − KsT
k sk (31)

The adaptive learning algorithms are designed as follows{
Ŵ f ,k (t)

}
=

{
Ŵ f ,k−1 (t)

}
+ 2q1zT

k PB �
{
φ f (x̂k)

}
;

{
Ŵ f ,0 (t)

}
= 0, t ∈ [0,T] (32){

ˆ̄W1,k (t)
}

=
{

ˆ̄W1,k−1 (t)
}

+ 2q2zT
k PBvk �

{
φ̄1

(
x1,k

)}
;

{
Ŵ1,0 (t)

}
, 0, t ∈ [0,T] (33)

(
1 − γ

) { ˙̄̂WΞ,k

}
= −γ

{
ˆ̄WΞ,k

}
+ γ

{
ˆ̄WΞ,k−1

}
+ q3sT

k �
{
φ̄Ξ (Zk)

}{
ˆ̄WΞ,k (0)

}
=

{
ˆ̄WΞ,k−1 (T)

}
;

{
ˆ̄WΞ,0 (t)

}
= 0, t ∈ [0,T]

(34)

where q1, q2, q3 > 0 and 0 < γ < 1 are design parameters.

4. Analysis of Stability and Convergence

For stability analysis, we using the following property.
Lemma 3 [8]. Consider the set Ωsk defined by Ωsk :=

{
si,k|

∣∣∣si,k

∣∣∣ ≤ mηηi (t) , i = 1, . . . ,n
}
. Then for any

si,k <Ωsk , the following inequality is satisfied.

1 − btanh2 (
si,k/ηi (t)

)
< 0 (35)

where b > 1, mη = ln
(√

b/(b − 1) +
√

1/(b − 1)
)
.

Theorem 4.1. Considering the manipulator plant (1) and dead-zone model (6) under Assumption 1-Assumption
7, design the state observer (13) and AILC scheme (29) and (30) with parameter learning algorithms (32)-(34), the
following properties can be guaranteed: (i) the boundedness of all the system signals; (ii) the convergence of observer
estimation error zk (t) and tracking error esk (t), i.e., lim

k→∞

∫ T

0 ‖zk‖
2dσ = 0 and lim

k→∞
‖esk (t)‖ =

(
1 + mη

) ∥∥∥η (t)
∥∥∥

Proof: According to Lemma 3, two cases are considered for subsequent analysis of stability.
Case 1. si,k ∈ Ωsk , i = 1, . . . ,n.
If si,k ∈ Ωsk , then

∣∣∣si,k

∣∣∣ ≤ mηηi (t) is satisfied. We discuss in three cases. 1) If si,k = 0, we know esk,i is
bounded by ηi (t), i.e.,

∣∣∣esk,i

∣∣∣ ≤ ηi (t); 2) If si,k > 0 we know si,k = esk,i − ηi (t), then from
∣∣∣si,k

∣∣∣ ≤ mηηi (t) we

have si,k = esk,i − ηi (t) ≤ mηηi (t) which further leads to 0 < esk,i ≤
(
1 + mη

)
ηi (t); 3) Similarly, if si,k < 0 we

have si,k = esk,i + ηi (t) ≥ −mηηi (t) which implies 0 > esk,i ≥ −
(
1 + mη

)
ηi (t). Summarizing above discussion

we know that
∣∣∣esk,i

∣∣∣ ≤ (
1 + mη

)
ηi (t) holds. Then it is easy to see the finiteness of x̂i,k since xd (t) is bounded

in L∞T -norm. From the updating law (32)-(34), we know that Ŵ f ,k (t) ˆ̄W1,k (t) and ˆ̄WΞ,k (t) are also bounded.
Finally, the boundedness of zk and xk in L∞T -norm can be deduced. Obviously, the finiteness of vk is proved.
Therefore, all the signals of the closed-loop system are bounded in L∞T -norm.

Case 2. si,k < Ωsk , i = 1, . . . ,n.
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It is clear that 1
n

n∑
i=1

[
1 − btanh2 (

si,k/ηi (t)
)]

Ξ(yk) can be removed in (31). Therefore, it follows from (31)

that

2zT
k PB

{
W̃ f ,k

}T
�
{
φ f (x̂k)

}
+ sT

k

[{
˜̄WΞ,k

}T
�
{
φ̄Ξ (Zk)

}]
+ 2zT

k PB
{

˜̄W
1,k (t)

}T
�
{
φ̄1

(
x1,k

)}
vk

≤ − V̇k − λmin (Q) ‖zk‖
2 + θ∆k − KsT

k sk (36)

To carry out stability analyze, define the Lyapunov-like CEF:

Ek (t) =
1

2q1

∫ t

0
tr

{[{
W̃ f ,k

}T
�
{
W̃ f ,k

}]}
dσ +

1
2q2

∫ t

0
tr

{[{
˜̄W
1,k

}T
�
{

˜̄W1,k

}]}
dσ

+
γ

2q3

∫ t

0
tr

{[{
˜̄WΞ,k

}T
�
{

˜̄WΞ,k

}]}
dσ +

(1 − γ)
2q3

tr
{[{

˜̄WΞ,k

}T
�
{

˜̄WΞ,k

}]}
(37)

The subsequent derivation includes five parts.
1) Difference of Ek (t)
Recalling adaptive learning law (32)-(34), we can obtain the difference of Ek (t) by using similar technique

in [8] as

∆Ek (t) = Ek (t)−Ek−1 (t) ≤ Vk (0) +θ∆kt +
(1 − γ)

2q3
tr

{[{
˜̄WΞ,k (0)

}T
�
{

˜̄WΞ,k (0)
}]
−

[{
˜̄WΞ,k−1

}T
�
{

˜̄WΞ,k−1

}]}
(38)

From Assumption 2, 6 and 7, It is obvious that Vk (0) = 0. Let t = T in (38), according to ˆ̄WΞ,k (0) =
ˆ̄WΞ,k−1 (T), ˆ̄WΞ,1 (0) = 0, we can have

∆Ek (T) ≤ −Vk (T) − K
∫ T

0
sT

k skdσ − λmin (Q)
∫ T

0
‖zk‖

2dσ + θ∆kT

≤ −K
∫ T

0
sT

k skdσ − λmin (Q)
∫ T

0
‖zk‖

2dσ + θ∆kT (39)

2) The finiteness of E1 (T)
Let k=1 in (37). Recalling parameter adaptive learning laws, we can obtain that the derivative of Ė1

satisfies

Ė1 (t) ≤ − V̇1 − λmin (Q) ‖z1‖
2
− KsT

1 s1 + θ∆1 +
1

2q1
tr

{[{
W∗

f

}T
�
{
W∗

f

}]}
+

1
2q2

tr
{[{

Ŵ1,0

}T
�
{
Ŵ1,0

}
+
{
W∗

1

}T
�
{
W∗

1

}
− 2

{
W∗

1

}T
�
{
Ŵ1,0

}]}
+

γ

2q3
tr

{[{
W∗

Ξ

}T
�
{
W∗

Ξ

}]}
(40)

Denote cmax = max
t∈[0,T]

{
1

2q1
tr

{[{
W∗

f

}T
�
{
W∗

f

}]}
+ 1

2q2
tr

{[{
Ŵ1,0

}T
�
{
Ŵ1,0

}
+

{
W∗
1

}T
�
{
W∗
1

}
− 2

{
W∗
1

}T
�
{
Ŵ1,0

}]}
+

γ
2q3

tr
{[{

W∗

Ξ

}T
�
{
W∗

Ξ

}]}}
. Integrating (40) over [0, t] leads to:

E1 (t) − E1 (0) ≤ −V1 (t) + V1 (0) − λmin (Q)
∫ t

0
‖z1‖

2dσ −
∫ t

0
KsT

1 s1dσ + θ∆1t + t · cmax (41)

According to ˆ̄WΞ,1 (0) = 0, we obtain

E1 (t) ≤ t · cmax + θ∆1t +
(1 − γ)

2q3
tr

{[{
W∗

Ξ

}T
�
{
W∗

Ξ

}]}
, t ∈ [0,T] (42)
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which implies the finiteness of E1 (t) on [0,T] . Letting t = T, we can obtain the finiteness of E1 (T) as

E1 (T) ≤ T · (cmax + θ∆1) +
(1 − γ)

2q3
tr

{[{
W∗

Ξ

}T
�
{
W∗

Ξ

}]}
(43)

Applying (39) repeatedly, we have

Ek (T) = E1 (T) +

k∑
j=2

∆E j (T) ≤ −K
k∑

j=2

∫ T

0
sT

j s jdσ − λmin (Q)
k∑

j=2

∫ T

0

∥∥∥z j

∥∥∥2
dσ+T · cmax

+
(1 − γ)

2q3
tr

{[{
W∗

Ξ

}T
�
{
W∗

Ξ

}]}
+ θT

k∑
j=1

∆k ≤ T · cmax +
(1 − γ)

2q3
tr

{[{
W∗

Ξ

}T
�
{
W∗

Ξ

}]}
+ θT

k∑
j=1

∆k (44)

According to the Property 2 of we can have θT
k∑

j=1
∆k ≤ lim

k→∞
θT

k∑
j=1

∆k ≤ 2θTq, which leads to the

boundedness of Ek (T).
3) The finiteness of Ek (t)
Next we will use induction method to prove the boundedness of Ek (t). Separate Ek (t) into two parts.

E1
k (t) =

1
2q1

∫ t

0
tr

{[{
W̃ f ,k

}T
�
{
W̃ f ,k

}]}
dσ+

1
2q2

∫ t

0
tr

{[{
˜̄W
1,k

}T
�
{

˜̄W1,k

}]}
dσ+

γ

2q3

∫ t

0
tr

{[{
˜̄WΞ,k

}T
�
{

˜̄WΞ,k

}]}
dσ

(45)

E2
k (t) =

(1 − γ)
2q3

tr
{[{

˜̄WΞ,k

}T
�
{

˜̄WΞ,k

}]}
(46)

The boundedness of E1
k (T) and E2

k (T) is guaranteed for all iterations. Hence, ∀k ∈ N, there exist two
constants M1 and M2 which satisfy

E1
k (t) ≤ E1

k (T) ≤M1 < ∞,E2
k (T) ≤M2 (47)

On the other hand, from (38) and E2
k+1 (0) = E2

k (T), we obtain

∆Ek+1 (t) < θ∆kt + M2 − E2
k (t) (48)

Combining (47) and (48) results in

Ek+1 (t) = Ek (t) + ∆Ek+1 (t) ≤M1 + M2 + θ∆kt (49)

As we have known that E1 (t) is bounded, consequently Ek (t) is finite.
4) Learning convergence property
According to (44) and taking the limitation, we have

lim
k→∞

k∑
j=2

K
∫ T

0
sT

j s jdσ ≤ T · cmax +
(1 − γ)

2q3
tr

{[{
W∗

Ξ

}T
�
{
W∗

Ξ

}]}
+ 2qθT (50)

lim
k→∞

k∑
j=2

λmin (Q)
∫ T

0

∥∥∥z j

∥∥∥2
dσ ≤ T · cmax +

(1 − γ)
2q3

tr
{[{

W∗

Ξ

}T
�
{
W∗

Ξ

}]}
+ 2qθT (51)

Using the convergence theorem of the sum of series, we know lim
k→∞

∫ T

0 sT
k skdσ = 0, lim

k→∞

∫ T

0 ‖zk‖
2dσ = 0. It

is obvious lim
k→∞

∫ T

0

∥∥∥yk − ŷk

∥∥∥2
dσ ≤ lim

k→∞

∫ T

0 ‖zk‖
2dσ = 0, ∀t ∈ [0,T]. Besides, lim

k→∞

∫ T

0 sT
k skdσ = 0 is equivalent to
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lim
k→∞

∫ T

0 ‖sk‖dσ = 0 which means that lim
k→∞

∫ T

0 ‖esk‖dσ ≤
∫ T

0

∥∥∥η (σ)
∥∥∥dσ and lim

k→∞
‖esk‖ ≤

∥∥∥η (σ)
∥∥∥. Furthermore, we

can get the boundedness of sk (t) and zk in L2
T-norm, which further means that xk (t) and x̂k (t) are bounded.

From the boundedness of Ek (t) we can draw the conclusion that Ŵ f ,k, ˆ̄W1,k and ˆ̄WΞ,k are bounded. Based
on foregoing reasoning, we can arrive at that vk (t) is bounded.

Summarizing the discussions above, we can conclude that, the proposed control algorithm can guar-
antee that all system signal are bounded for two cases, and lim

k→∞

∫ T

0 ‖zk‖
2dσ = 0 and lim

k→∞

∫ T

0 ‖esk‖
2dσ ≤∫ T

0

∥∥∥η (σ)
∥∥∥2

dσ. Ulteriorly, es∞ (t) is bounded by lim
k→∞
‖esk (t)‖ ≤

(
1 + mη

) ∥∥∥η (t)
∥∥∥, ∀t ∈ [0,T].

This concludes the proof. �
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