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Abstract. Recently, we have discussed the warped product pseudo-slant submanifolds of the type Mθ× f M⊥

of Kenmotsu manifolds. In this paper, we study other type of warped product pseudo-slant submanifolds
by reversing these two factors in Kenmotsu manifolds. The existence of such warped product immersions is
proved by a characterization. Also, we provide an example of warped product pseudo-slant submanifolds.
Finally, we establish a sharp estimation such as ‖h‖2 ≥ 2p cos2 θ

(
‖~∇(ln f )‖2 − 1

)
for the squared norm of the

second fundamental form ‖h‖2, in terms of the warping function f , where ~∇(ln f ) is the gradient vector of
the function ln f . The equality case is also discussed.

1. Introduction

In 1972, Kenmotsu [19] introduced a new class of almost contact Riemannian manifolds which are
known as Kenmotsu manifolds. It is well known that odd dimensional hyperbolic spaces admit Kenmotsu
structures. Kenmotsu manifolds are locally isometric to warped product spaces with one dimensional base
and Kaehler fiber.

On the other hand, B.-Y. Chen introduced the notion of warped product submanifolds in [10, 11]. The
study of warped product submanifolds got momentum after Chen’s papers and several articles appeared
on warped product submanifolds in different structure of manifolds (for instance, see [3], [17], [22], [23],
[25], [27], [30]). For the survey on warped product submanifolds we refers to [12–14, 16].

Next, pseudo-slant submanifolds of almost contact metric manifolds were studied by Carriazo in [8].
The warped products of these submanifolds were studied by Sahin under the name of hemi-slant warped
product submanifolds of Kaehler manifolds [26]. Later, we extended this idea for cosymplectic manifolds
[30].

Recently, we have studied warped product pseudo-slant submanifolds of the type Mθ × f M⊥ of a Ken-
motsu manifold M̃, where Mθ and M⊥ are proper slant and anti-invariant submanifolds of M̃, respectively.
We derived an inequality for the squared norm of the second fundamental form in terms of the warping
function. Also, the warped product submanifolds of Kenmotsu manifolds were studied in ([2], [3, 4],
[20, 21], [24], [1], [29]) and references therein.
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In this paper, we study warped product submanifolds of the type M⊥ × f Mθ of a Kenmotsu manifold
M̃, where M⊥ and Mθ are anti-invariant and proper slant submanifold of M̃, respectively. The paper is
organized as follows: In Section 2, we give some preliminaries formulas which we will use later. Section 3 is
devoted to study of warped product pseudo-slant submanifolds of Kenmotsu manifolds and we prove the
existence of warped pseudo-slant submanifolds with an example and a characterzation. In Section 4, we
establish an inequality for the squared norm of second fundamental form in terms of the warping function
and the slant angle. The equality case is also considered.

2. Preliminaries

A (2n + 1)-dimensional smooth manifold M̃ is said to be an almost contact metric manifold [6] if it admits
a (1, 1) tensor field ϕ, a structure vector field ξ, a 1-form η and a Riemannian metric 1, which satisfy

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1, (1)

1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y), η(X) = 1(X, ξ), (2)

for any vector fields X,Y on M̃. In addition, if

(∇̃Xϕ)Y = 1(ϕX,Y)ξ − η(Y)ϕX, ∇̃Xξ = X − η(X)ξ (3)

where ∇̃ denotes the operator of covariant differentiation with respect to 1, then (M̃, ϕ, ξ, η, 1) is called a
Kenmotsu manifold [19]. The covariant derivative of ϕ is defined as

(∇̃Xϕ)Y = ∇̃XϕY − ϕ∇̃XY (4)

for any vector fields X,Y on M̃.
Let M be a Riemannian manifold isometrically immersed in M̃ and denoted by the same symbol 1 for

the Riemannian metric induced on M. Let Γ(TM) be the Lie algebra of vector fields in M and Γ(TM⊥) the set
of all vector fields normal to M, same notation for smooth sections of any other vector bundle E. Denotes
by ∇ the Levi-Civita connection of M. Then the Gauss and Weingarten formulas are respectively given by

(a) ∇̃XY = ∇XY + h(X,Y), (b) ∇̃XV = −AVX + ∇⊥XV, (5)

for any vector fields X, Y ∈ Γ(TM) and V ∈ Γ(TM⊥), where ∇⊥ is the connection in the normal bundle TM⊥,
h is the second fundamental form of M and AV is the Weingarten endomorphism associated with V. The
second fundamental form h and the shape operator A are related by

1(h(X,Y),V) = 1(AVX,Y). (6)

For any X ∈ Γ(TM), we write

ϕX = TX + FX, (7)

where TX is the tangential component of ϕX and FX is the normal component of ϕX. Similarly, for any
vector field V normal to M, we put

ϕV = BV + CV, (8)

where BV and CV are the tangential and the normal components of ϕV, respectively.
Invariant and anti-invariant submanifolds are depend on the behavior of almost contact structure.

A submanifold M tangent to the structure vector field ξ is said to be invariant (resp. anti-invariant) if
ϕ(TpM) ⊆ TpM, ∀ p ∈M (resp. ϕ(TpM) ⊆ TpM⊥, ∀ p ∈M).
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It is clear that if TX (resp. FX) is identically zero in (7), then M is an anti-invariant (resp. invariant)
submanifold of a contact Riemannian manifold M̃.

We denote by H, the mean curvature vector defined as H(p) = 1
m

∑m
i=1 h(ei, ei), where {e1, · · · , em} is an

orthonormal basis of the tangent space TpM, for any p ∈M.
Also, we set

hr
i j = 1(h(ei, e j), er) and ‖h‖2 =

m∑
i, j=1

1(h(ei, e j), h(ei, e j)), (9)

for i, j = 1, · · · ,m and r = m + 1, · · · , 2n + 1.
A submanifold M of a Riemannian manifold M̃ is said to be totally umbilical if h(X,Y) = 1(X,Y)H and

totally geodesic if h(X,Y) = 0, for all X,Y ∈ Γ(TM). Also, M is minimal in M̃, if H = 0.
There are some other classes of submanifolds of almost contact Riemannian manifolds which we define

here:

1. A submanifold M tangent to ξ is said to be a contact CR-submanifold if there exists a pair of orthogonal
distributions D : p→ Dp and D⊥ : p→ D⊥p , ∀ p ∈M such that

(i) TM = D ⊕D⊥ ⊕ 〈ξ〉, where 〈ξ〉 is a 1-dimensional distribution spanned by ξ.
(ii) D is invariant by ϕ, i.e., ϕD = D

(iii) D⊥ is anti-invariant by ϕ, i.e., ϕD⊥ ⊆ TM⊥.
2. A submanifold M is called slant [7] if for each non-zero vector X tangent to M the angle θ(X) between
ϕX and TpM is a constant, i.e, it does not depend on the choice of p ∈M and X ∈ TpM − 〈ξp〉.

For a slant submanifold M, if θ = 0, then M is invariant and if θ = π
2 , then M is an anti-invariant

submanifold. A slant submanifold is said to be proper slant if it is neither invariant nor anti-invariant.
Now, we have the following characterization for a slant submanifold of an almost contact metric

manifold.

Theorem 2.1. [7] Let M be a submanifold of an almost contact metric manifold M̃, such that ξ ∈ Γ(TM). Then M is
slant if and only if there exists a constant λ ∈ [0, 1] such that

T2 = λ(−I + η ⊗ ξ).

Furthermore, if θ is slant angle, then λ = cos2 θ.

Following relations are straightforward consequence of the above theorem

1(TX,TY) = cos2 θ[1(X,Y) − η(X)η(Y)] (10)

1(FX,FY) = sin2 θ[1(X,Y) − η(X)η(Y)] (11)

for any X,Y tangent to M.
We also have the following useful result for a slant submanifolds almost contact metric manifolds.

Theorem 2.2. [33] Let M be a proper slant submanifold of an almost contact metric manifold M̃, such that ξ ∈ Γ(TM).
Then

(a) BFX = sin2 θ(−X + η(X)ξ), (b) CFX = −FTX

for any X ∈ Γ(TM).

In [8], Carriazo introduced another class of submanifolds known as pseudo-slant (anti-slant) submani-
folds which are the generalizations of slant and contact CR-submanifolds. He defined these submanifolds
as follows:
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Definition 2.3. A Riemannian manifold M isometrically immersed in an almost contact manifold M̃ is said to be a
pseudo-slant submanifold if there exists a pair of orthogonal distributionsD⊥ andDθ such that TM = D⊥⊕Dθ⊕〈ξ〉, the
distribution D⊥ is anti-invariant i.e., ϕ(D⊥) ⊆ TM⊥ and the distribution Dθ is proper slant with slant angle θ , 0.

If we denote the dimension of D⊥ and Dθ by q and p, respectively then it is clear that contact CR-
submanifolds and slant submanifolds are particular classes of pseudo-slant submanifolds with slant angle
θ = 0 and q = 0, respectively. Also, the invariant (resp. anti-invariant) submanifold is a pseudo-slant
submanifold with slant angle θ = 0 and q = 0 (resp. p = 0). A pseudo-slant submanifold M is proper
pseudo-slant if neither q = 0 nor θ = 0 or π

2 .
The normal bundle TM⊥ of a pseudo-slant submanifold M is decomposed as

TM⊥ = ϕD⊥ ⊕ FDθ ⊕ ν (12)

where ν is an invariant normal subbundle of TM⊥.

3. Warped product pseudo-slant submanifolds

In [5], Bishop and O’Neill introduced the notion of warped products to study manifolds with negative
curvature. They defined these manifolds as follows: Let M1 and M2 be two Riemannian manifolds with
Riemannian metrics 11 and 12, respectively, and a positive differentiable function f on M1. Consider the
product manifold M1 ×M2 with its projections π1 : M1 ×M2 → M1 and π2 : M1 ×M2 → M2. Then their
warped product manifold M = M1 × f M2 is the Riemannian manifold M1 ×M2 = (M1 ×M2, 1) equipped
with the Riemannian structure such that

1(X,Y) = 11(π1?X, π1?Y) + ( f ◦ π1)212(π2?X, π2?Y)

for any vector fields X,Y tangent to M, where ? is the symbol for the tangent maps. On a warped product
manifold M = M1 × f M2, M1 is the base manifold and M2 is the fiber. A warped product manifold is said
to be trivial or simply a Riemannian product manifold if the warping function f is constant.

Now, we recall the following general result for a warped product manifold for later use.

Lemma 3.1. [5] Let M = M1 × f M2 be a warped product manifold. Then

(i) ∇XY ∈ TM1 is the lift of ∇XY on M1

(ii) ∇XZ = ∇ZX = X(ln f )Z
(iii) ∇ZW = ∇M2

Z W − 1(Z,W)~∇(ln f )

or each X, Y∈ Γ(TM1) and Z,W ∈ Γ(TM2) where ∇ and ∇M2 denote the Levi-Civita connections on M and M2,
respectively, and ~∇(ln f ) is the gradient of ln f .

From the above lemma it is clear that if M = M1 × f M2 be a warped product manifold, then M1 is a
totally geodesic submanifold of M and M2 is a totally umbilical submanifold of M.

Let M be a Riemannian manifold of dimension k with the inner product 1 and {e1, · · · , ek} be an orthonor-
mal frame on M. Then for a differentiable function f on M, the gradient ~∇ f of a function f on M is defined
by

1(~∇ f ,X) = X( f ), (13)

for any X ∈ Γ(TM). As a consequence, we have

‖~∇ f ‖2 =

k∑
i=1

(ei( f ))2 (14)
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where ~∇ f is the gradient of the function f on M.
In [1], we studied warped product submanifolds of the form Mθ × f M⊥ of a Kenmotsu manifold M̃,

where Mθ and M⊥ are proper slant and anti-invariant submanifolds of M̃, respectively. In this paper, we
study warped product submanifolds of the form M⊥ × f Mθ of a Kenmotsu manifold and We call them
warped product pseudo-slant submanifolds. For these types of warped products we have two possibilities
that either the structure vector field ξ is tangential to Mθ or ξ is tangential to M⊥. When ξ is tangent to Mθ,
then it is easy to show that the warped product is trivial [1]. Therefore, throughout the paper, we consider
the structure vector field ξ is tangent to M⊥.

First, we give the following non trivial example of warped product pseudo-slant submanifolds.

Example 3.2. Consider a submanifold of R7 with the cartesian coordinates (x1, y1, x2, y2, x3, y3, t) and the
almost contact structure

ϕ

(
∂
∂xi

)
= −

∂
∂yi

, ϕ

(
∂
∂y j

)
=

∂
∂x j

, ϕ

(
∂
∂t

)
= 0, 1 ≤ i, j ≤ 3.

It is easy to showR7 is an almost contact metric manifold with respect to the Euclidean metric tensor ofR7.
Let us consider a submanifold M of R7 defined by the immersion χ as follows

χ(u1,u2,u3, t) = (u1 cos u3,u2 cos u3,u1 + u2,u1 − u2,u1 sin u3,u2 sin u3, t).

Then the tangent space of M is spanned by vectors

Z1 = cos u3
∂
∂x1

+
∂
∂x2

+
∂
∂y2

+ sin u3
∂
∂x3

,

Z2 = cos u3
∂
∂y1

+
∂
∂x2
−

∂
∂y2

+ sin u3
∂
∂y3

,

Z3 = −u1 sin u3
∂
∂x1
− u2 sin u3

∂
∂y1

+ u1 cos u3
∂
∂x3

+ u2 cos u3
∂
∂y3

; Z4 =
∂
∂t
.

Then, we find

ϕZ1 = − cos u3
∂
∂y1
−

∂
∂y2

+
∂
∂x2
− sin u3

∂
∂y3

,

ϕZ2 = cos u3
∂
∂x1
−

∂
∂y2
−

∂
∂x2

+ sin u3
∂
∂x3

,

ϕZ3 = u1 sin u3
∂
∂y1
− u2 sin u3

∂
∂x1
− u1 cos u3

∂
∂y3

+ u2 cos u3
∂
∂x3

; ϕZ4 = 0.

It is clear that ϕZ3 is orthogonal to TM. Therefore, the anti-invariant distribution is D⊥ = span{Z3} and
Dθ = span{Z1,Z2} is a proper slant distribution with slant angle θ = arccos( 1

3 ) = 70◦52
′

such that ξ = ∂
∂t is

tangent to Dθ. Thus M is a proper pseudo-slant submanifold such that ξ = Z4 is tangent to M. It is easy to
observe that both the distributions are integrable. If we denote the integral manifolds ofD⊥ andDθ by M⊥
and Mθ, respectively then the metric tensor 1 of M is given by

1 = 3(du2
1 + du2

2) + dt2 + (u2
1 + u2

2)du2
3.

Thus M is a warped product pseudo-slant submanifold M = Mθ × f M⊥ with the warping function f =√
u2

1 + u2
2.

Now, we have the following results which are useful to prove the main theorem of this section.
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Lemma 3.3. Let M = M⊥ × f Mθ be a warped product pseudo-slant submanifold of a Kenmotsu manifold M̃ such
that ξ ∈ Γ(TM⊥). Then, we have

(i) ξ(ln f ) = 1;
(ii) 1(h(Z,W),FX) = 1(h(X,Z), ϕW)

for any X ∈ Γ(TMθ) and Z,W ∈ Γ(TM⊥).

Proof. For any X ∈ Γ(TMθ) and ξ ∈ Γ(TM⊥), we have ∇̃Xξ = X. Then using (5) (a) and Lemma 3.1 (ii), we
get ξ(ln f )X = X which implies that ξ(ln f ) = 1, for any non-zero vector field X ∈ Γ(TMθ), which proves (i).
For the second part of the Lemma, consider any X ∈ Γ(TMθ) and any Z,W ∈ Γ(TM⊥), then

1(h(Z,W),FX) = 1(∇̃ZW, ϕX) − 1(∇ZW,TX) = 1((∇̃Zϕ)W,X) − 1(∇̃ZϕW,X) + 1(∇ZTX,W).

First and the last terms in the right hand side of above relation are identically zero by using (3) and Lemma
3.1 (ii). Thus from (5) (b) and (6), we obtain 1(h(Z,W),FX) = 1(h(X,Z), ϕW), which is (ii). Hence, the proof
is complete.

Lemma 3.4. Let M = M⊥× f Mθ be a warped product submanifold of a Kenmotsu manifold M̃ such that ξ ∈ Γ(TM⊥),
where M⊥ and Mθ are anti-invariant and proper slant submanifolds of M̃, respectively. Then, we have

(i) 1(h(X,Y), ϕZ) =
(
η(Z) − Z(ln f )

)
1(TX,Y) + 1(h(X,Z),FY)

(ii) 1(h(TX,Y), ϕZ) = cos2 θ
(
Z(ln f ) − η(Z)

)
1(X,Y) + 1(h(TX,Z),FY)

for any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥).

Proof. For any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥), we have

1(h(X,Z),FY) = 1(∇̃XZ, ϕY) − 1(∇̃XZ,TY) = 1((∇̃Xϕ)Z,Y) − 1(∇̃XϕZ,Y) − 1(∇XZ,TY).

Using (3), (5) (b), (6) and Lemma 3.1 (ii), we obtain

1(h(X,Z),FY) = −η(Z)1(TX,Y) + 1(h(X,Y), ϕZ) + Z(ln f )1(TX,Y)

which proves (i). For the second part of the lemma, if we interchange X by TX in (i) and use Theorem 2.1,
then we get (ii), which proves the lemma completely.

Also, if we interchange the vector field Y by TY in Lemma 3.4 (i)-(ii), for any Y ∈ Γ(TMθ), then we have
the following relations.

1(h(X,TY), ϕZ) = cos2 θ
(
η(Z) − Z(ln f )

)
1(X,Y) + 1(h(X,Z),FTY) (15)

and

1(h(TX,TY), ϕZ) = cos2 θ
(
η(Z) − Z(ln f )

)
1(TX,Y) + 1(h(TX,Z),FTY). (16)

A warped product submanifold M = M1 × f M2 of a Kenmotsu manifold M̃ is said to be mixed totally
geodesic, if h(X,Z) = 0, for any X ∈ Γ(TM1) and Z ∈ Γ(TM2), where M1 and M2 are Riemannian submanifolds
of M̃. Now, we give the following characterization for a mixed totally geodesic warped product submanifold
by using a result of [18].

Theorem 3.5. Let M be a pseudo-slant submanifold of a Kenmotsu manifold M̃ such that ξ is orthogonal to slant
distribution Dθ. Then M is locally a mixed totally geodesic warped product submanifold if and only if

AFXZ = 0 and AϕZTX = cos2 θ{η(Z) − Z(µ)}X (17)

for any Z ∈ Γ(D⊥ ⊕ 〈ξ〉) and X ∈ Γ(Dθ) for some smooth function µ on M such that Y(µ) = 0, for any Y ∈ Γ(Dθ).
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Proof. Let M = M⊥ × f Mθ be a mixed totally geodesic warped product psedo-slant submanifold of a Ken-
motsu manifold M̃. Then, for any X,Y ∈ Γ(TMθ and Z,W ∈ Γ(TM⊥), we have 1(AFXZ,Y) = 1(h(Y,Z),FX) = 0,
i.e., AFXZ has no component in Γ(TMθ). Also, from Lemma 3.3 (ii), we have AFXZ has no component in
Γ(TM⊥) too, therefore AFXZ = 0, which is first relation of (17). Similarly, 1(AϕZTX,W) = 1(h(TX,W), ϕZ) = 0,
i.e., AϕZTX has no component in Γ(TM⊥). Then second relation of (17) follows from Lemma 3.4 (ii).

Conversely, if M is a pseudo-slant submanifold of a Kenmotsu manifold M̃ with anti-invariant and
proper slant distributionsD⊥⊕〈ξ〉 andDθ, respectively such that (17) holds, then for any Z,W ∈ Γ(D⊥⊕〈ξ〉)
and X ∈ Γ(Dθ), we have

1(∇ZW,X) = 1(∇̃ZW,X) = 1(ϕ∇̃ZW, ϕX).

Using (4), we derive

1(∇ZW,X) = 1(∇̃ZϕW, ϕX) − 1((∇̃Zϕ)W, ϕX).

Then from (3) and the orthogonality of vector fields, we obtain

1(∇ZW,X) = −1(ϕW, ∇̃ZTX) − 1(ϕW, ∇̃ZFX) = −1(h(Z,TX), ϕW) + 1(W, ϕ∇̃ZFX).

Using (4) and (6), we arrive at

1(∇ZW,X) = −1(AϕWTX,Z) + 1(∇̃ZϕFX,W) − 1((∇̃Zϕ)FX,W).

The first term in the right hand side is identically zero by using (17) and the orthogonality of vector fields.
Thus, from (3) and (8), we get

1(∇ZW,X) = 1(∇̃ZBFX,W) + 1(∇̃ZCFX,W).

By using Theorem 2.2, we find

1(∇ZW,X) = − sin2 θ1(∇̃ZX,W) − 1(∇̃ZFTX,W) = sin2 θ1(∇̃ZW,X) − 1(AFTXW,Z).

Again using (5) and (17), we obtain

cos2 θ1(∇ZW,X) = 0. (18)

Since M is a proper pseudo-slant submanifold, therefore cos2 θ , 0 and hence from (18), we conclude that
∇ZW ∈ Γ(D⊥ ⊕ 〈ξ〉) i.e., the leaves of the distributionD⊥ ⊕ 〈ξ〉 are totally geodesic in M. On the other hand,
for any X,Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥ ⊕ 〈ξ〉) we have

1(∇̃XY,Z) = 1(ϕ∇̃XY, ϕZ) + η(Z)1(∇̃XY, ξ) = 1(∇̃XϕY, ϕZ) − 1((∇̃Xϕ)Y, ϕZ) − η(Z)1(Y, ∇̃Xξ).

Using (3) and (7), we obtain

1(∇̃XY,Z) = 1(∇̃XTY, ϕZ) + 1(∇̃XFY, ϕZ) − η(Z)1(X,Y) = 1(h(X,TY), ϕZ) − 1(ϕ∇̃XFY,Z) − η(Z)1(X,Y).

Then from (4) and (6), we get

1(∇̃XY,Z) = 1(AϕZTY,X) − 1(∇̃XϕFY,Z) + 1((∇̃Xϕ)FY,Z) − η(Z)1(X,Y).

Hence by (3), (7) and (17), we derive

1(∇̃XY,Z) = cos2 θ
(
η(Z) − (Zµ)

)
1(X,Y) − 1(∇̃XBFY,Z) − 1(∇̃XCFY,Z) + η(Z)1(FX,FY) − η(Z)1(X,Y).
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From (11) and Theorem 2.2, we find that

1(∇̃XY,Z) = cos2 θ
(
η(Z) − (Zµ)

)
1(X,Y) + sin2 θ1(∇̃XY,Z) + 1(∇̃XFTY,Z)

+ sin2 θη(Z)1(X,Y) − η(Z)1(X,Y)

= sin2 θ1(∇̃XY,Z) + 1(AFTYZ,X) − cos2 θ(Zµ)1(X,Y).

Using (17), we obtain

1(∇̃XY,Z) = sin2 θ1(∇̃XY,Z) − cos2 θ(Zµ)1(X,Y). (19)

Similarly, we have

1(∇̃YX,Z) = sin2 θ1(∇̃YX,Z) − cos2 θ(Zµ)1(X,Y). (20)

Then from (19) and (20), we find

cos2 θ1([X,Y],Z) = 0. (21)

For a proper pseudo-slant submanifold cos2 θ , 0 and hence from (21), we conclude that the slant distri-
bution Dθ is integrable on M. If Mθ be a leaf of the integrable distribution Dθ in M and if hθ is the second
fundamental form of Mθ in M, then for any X,Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥ ⊕ 〈ξ〉), we have

1(hθ(X,Y),Z) = 1(∇XY,Z) = 1(∇̃XY,Z) = 1(ϕ∇̃XY, ϕZ) + η(Z)1(∇̃XY, ξ).

Using (4) and the orthogonality of vector fields, we obtain

1(hθ(X,Y),Z) = 1(∇̃XϕY, ϕZ) − 1((∇̃Xϕ)Y, ϕZ) − η(Z)1(Y, ∇̃Xξ).

Then from (3) and (7), we derive

1(hθ(X,Y),Z) = 1(∇̃XTY, ϕZ) + 1(∇̃XFY, ϕZ) − η(Z)1(X,Y) = 1(AϕZTY,X) − 1(ϕ∇̃XFY,Z) − η(Z)1(X,Y).

Again, from (4) and (17), we get

1(hθ(X,Y),Z) = cos2 θ
(
η(Z) − (Zµ)

)
1(X,Y) − 1(∇̃XϕFY,Z) + 1((∇̃Xϕ)FY,Z) − η(Z)1(X,Y).

Using (3) and (8), we find that

1(hθ(X,Y),Z) = − cos2 θ(Zµ)1(X,Y) − sin2 θη(Z)1(X,Y) − 1(∇̃XBFY,Z) − 1(∇̃XCFY,Z) + η(Z)1(TX,TY).

Then from (11) and Theorem 2.2, we arrive at

1(hθ(X,Y),Z) = − cos2 θ(Zµ)1(X,Y) + sin2 θ1(∇̃XY,Z) + 1(∇̃XFTY,Z).

Using (5) (b) and the symmetry of the shape operator A, we derive

cos2 θ1(hθ(X,Y),Z) = − cos2 θ(Zµ)1(X,Y) − 1(AFTYZ,X).

Second term in the right hand side of above relation is identically zero by using (17) and thus we have

1(hθ(X,Y),Z) = −(Zµ)1(X,Y).

From (13), we get

hθ(X,Y) = −~∇µ1(X,Y) (22)

where ~∇µ is the gradient of the function µ. Thus from (22), we conclude that Mθ is totally umbilical in M
with non-vanishing mean curvature vector Hθ = −~∇µ. Also, we can prove that Hθ is parallel corresponding
to the normal connection DN of Mθ in M (for instance, see [30]). Thus, Mθ is an extrinsic sphere in M. Hence,
by a result of Hiepko [18], we conclude that M is a warped product submanifold, which proves the theorem
completely.
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4. An inequality for warped products M⊥ × f Mθ

In this section, we establish a sharp inequality for the squared norm of the second fundamental form
‖h‖2, in terms of the gradient of the warping function and the slant angle. First, we construct the following
frame fields for a warped product pseudo-slant pseudo-slant submanifold of a Kenmotsu manifold to
develop the main result of this section.

Let M = M⊥ × f Mθ be a warped product pseudo-slant submanifold of dimension m of a (2n + 1)-
dimensional Kenmotsu manifold M̃ such that the structure vector field ξ is tangent to M⊥, where M⊥ and Mθ

are anti-invariant and proper slant submanifolds of M̃, respectively. Let us consider the dim M⊥ = q + 1 and
dim Mθ = 2p and their tangent bundles byD⊥⊕〈ξ〉 andDθ, respectively. We set the orthonormal frame fields
ofDθ andD⊥ ⊕ 〈ξ〉, respectively as {e1, · · · , ep, ep+1 = secθTe1, · · · , e2p = secθTep} and {e2p+1 = e∗1, · · · , e2p+q =

e∗q, em = e2p+q+1 = e∗q+1 = ξ}. Then the orthonormal frames of the normal subbundles FDθ, ϕD⊥ and ν,
respectively are {em+1 = ẽ1 = cscθFe1, · · · em+p = ẽp = cscθFep, em+p+1 = ẽp+1 = cscθ secθFTe1, · · · , em+2p =
ẽ2p = cscθ secθFTep}, {em+2p+1 = ẽ2p+1 = ϕe∗1, · · · , em+2p+q = ẽ2p+q = ϕe∗q} and {e2m = ẽm, · · · , e2n+1 = ẽ2(n+1−m))}.
It is clear that the dimensions of the normal subspaces FDθ, ϕD⊥ and ν, respectively are 2p, q and 2(n−m+1).

Theorem 4.1. Let M = M⊥ × f Mθ be a mixed totally geodesic warped product pseudo-slant submanifold of a
Kenmotsu manifold M̃ such that ξ ∈ Γ(TM⊥), where M⊥ and Mθ are anti-invariant and proper slant submanifolds
of M̃, respectively. Then, we have:

(i) The squared norm of the second fundamental form h of M satisfies

‖h‖2 ≥ 2p cos2 θ
(
‖~∇(ln f )‖2 − 1

)
(23)

where 2p = dim Mθ and ~∇(ln f ) is gradient of the function ln f along M⊥.
(ii) If equality sign in (i) holds identically, then M⊥ is totally geodesic in M̃ and Mθ is a totally umbilical submanifold

of M̃.

Proof. From the definition (9), we have

‖h‖2 =

m∑
i, j=1

1(h(ei, e j), h(ei, e j)) =

2n+1∑
r=m+1

m∑
i, j=1

1(h(ei, e j), er)2.

Using the constructed frame, we obtain

‖h‖2 =

2n+1∑
r=m+1

q+1∑
i, j=1

1(h(e∗i , e
∗

j), er)2 + 2
2n+1∑

r=m+1

q+1∑
i=1

2p∑
j=1

1(h(e∗i , e j), er)2 +

2n+1∑
r=m+1

2p∑
i, j=1

1(h(ei, e j), er)2. (24)

Since M is mixed totally geodesic then the second term in the right hand side of (24) is identically zero, thus
we find

‖h‖2 =

m+2p∑
r=m+1

q+1∑
i, j=1

1(h(e∗i , e
∗

j), er)2 +

m+2p+q∑
r=m+2p+1

q+1∑
i, j=1

1(h(e∗i , e
∗

j), er)2 +

2n+1∑
r=2m

q+1∑
i, j=1

1(h(e∗i , e
∗

j), er)2

+

m+2p∑
r=m+1

2p∑
i, j=1

1(h(ei, e j), er)2 +

m+2p+q∑
r=m+2p+1

2p∑
i, j=1

1(h(ei, e j), er)2 +

2n+1∑
r=2m

2p∑
i, j=1

1(h(ei, e j), er)2

=

2p∑
r=1

q+1∑
i, j=1

1(h(e∗i , e
∗

j), ẽr)2 +

2p+q∑
r=2p+1

q+1∑
i, j=1

1(h(e∗i , e
∗

j), ẽr)2 +

2(n+1−m)∑
r=m

q+1∑
i, j=1

1(h(e∗i , e
∗

j), ẽr)2

+

2p∑
r=1

2p∑
i, j=1

1(h(ei, e j), ẽr)2 +

2p+q∑
r=2p+1

2p∑
i, j=1

1(h(ei, e j), ẽr)2 +

2(n+1−m)∑
r=m

2p∑
i, j=1

1(h(ei, e j), ẽr)2. (25)
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First term in the right hand side of (25) is identically zero by using Lemma 3.3 (ii). Also, we couldn’t find
the relations for the second fundamental form for the vectors of D⊥ with ϕD⊥ or ν and for the vectors of
Dθ with FDθ or ν, therefore we shall leave the positive second, third, fourth and sixth terms in (25), then
we derive

‖h‖2 ≥
q∑

r=1

2p∑
i, j=1

1(h(ei, e j), ϕe∗r)
2

=

q∑
r=1

p∑
i, j=1

1(h(ei, e j), ϕe∗r)
2 + sec2 θ

q∑
r=1

p∑
i, j=1

1(h(Tei, e j), ϕe∗r)
2

+ sec2 θ

q∑
r=1

p∑
i, j=1

1(h(ei,Te j), ϕe∗r)
2 + sec4 θ

q∑
r=1

p∑
i, j=1

1(h(Tei,Te j), ϕe∗r)
2. (26)

Then by Lemma 3.4 and the relations (15)-(16), we arrive at

‖h‖2 ≥
q∑

r=1

p∑
i, j=1

(
η(e∗r) − e∗r(ln f )

)2
1(Tei, e j)2 + 2 cos2 θ

q∑
r=1

p∑
i, j=1

(
η(e∗r) − e∗r(ln f )

)2
1(ei, e j)2

+

q∑
r=1

p∑
i, j=1

(
η(e∗r) − e∗r(ln f )

)2
1(Tei, e j)2. (27)

First and the last terms in the right hand side of (27) are identically zero by using the orthonormality of
vector fields and hence finally, we get

‖h‖2 ≥ 2p cos2 θ

q+1∑
r=1

(
η(e∗r) − e∗r(ln f )

)2
− 2p cos4 θ

(
η(e∗r+1) − e∗r+1(ln f )

)2
. (28)

Since e∗r+1 = ξ, then η(e∗r+1) = 1 and from Lemma 3.3 (i), we have e∗r+1(ln f ) = 1. Hence the last term in the
right hand side of (28) is identically zero, then we have

‖h‖2 ≥ 2p cos2 θ
{ q+1∑

r=1

η(e∗r)
2
− 2

q+1∑
r=1

η(e∗r)e
∗

r(ln f ) +

q+1∑
r=1

(e∗r(ln f ))2
}
. (29)

Since η(e∗r) = 0, ∀ r = 1, · · · q and η(e∗r) = 1, e∗r(ln f ) = 1, for r = q + 1. Then using these facts with (14) in (29),
we get the inequality (23). To prove the equality case, for the non-vanishing h from the first term of (25)
with Lemma 3.3 (ii), we have

1(h(D⊥,D⊥),FDθ) = 0 ⇒ h(D⊥,D⊥) ⊥ FDθ. (30)

Also, from the leaving second and third terms of (25), we obtain

h(D⊥,D⊥) ⊥ ϕD⊥ and h(D1,D1) ⊥ ν. (31)

From (30) and (31), we get

h(D⊥,D⊥) = 0. (32)

Since M⊥ is totally geodesic in M [5, 10], using this fact with (32), we conclude that M⊥ is totally geodesic
in M̃. Similarly, from the remaining fourth and sixth terms in (25), we obtain

h(Dθ,Dθ) ⊥ FDθ and h(Dθ,Dθ) ⊥ ν
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which means that

h(Dθ,Dθ) ⊆ ϕD⊥. (33)

Furthermore, for a mixed totally geodesic submanifold M, by Lemma 3.4 (ii) and (33), we have

1(σ(TX,Y), ϕZ) = − cos2 θ
(
η(Z) − Z(ln f )

)
1(X,Y) (34)

for any X,Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥ ⊕ 〈ξ〉). Hence, since Mθ is totally umbilical in M [5, 10], it follows with
(34) that Mθ is totally umbilical in M̃. This, ends the proof of the theorem.

As a special case, we have the following applications of our derived results.

Remark 4.2. If we assume θ = 0 in Theorem 3.5, then the warped product becomes M = M⊥ × f MT of a Kenmotsu
manifold M̃, where MT and M⊥ are invariant and anti-invariant submanifolds of M̃, respectively, which is a case of
warped product contact CR-submanifolds which have been studied in [31]. Thus, Theorem 3.1 of [31] is a special case
of Theorem 3.5.

Remark 4.3. Also, if we consider θ = 0 in Theorem 4.1, then the warped product is of the form M = M⊥ × f MT of
a Kenmotsu M̃, where MT and M⊥ are invariant and anti-invariant submanifolds of M̃, respectively and hence the
inequality (23) will be ‖h‖2 ≥ 2p

(
‖~∇(ln f )‖2 − 1

)
. Thus, Theorem 3.2 of [31] is again a special case of Theorem 4.1.
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