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Available at: http://www.pmf.ni.ac.rs/filomat

Generalized Hyers-Ulam Stability for General Additive Functional
Equations on Non-Archimedean Random Lie C∗-Algebras

Zhihua Wanga, Prasanna K. Sahoob

aSchool of Science, Hubei University of Technology, Wuhan, Hubei 430068, P.R. China
bDepartment of Mathematics, University of Louisville, Louisville, KY 40292, USA

Abstract. In this paper, using the fixed point method, we prove some results related to the generalized
Hyers-Ulam stability of homomorphisms and derivations in non-Archimedean random C∗-algebras and
non-Archimedean random Lie C∗-algebras for the generalized additive functional equation
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where n ∈N is a fixed integer with n ≥ 3.

1. Introduction

The study of the stability problem for functional equations is related to a question of Ulam [39] in
1940 concerning the stability of group homomorphisms. In 1941, Hyers [10] affirmatively answered Ulam’s
question for Banach spaces. Subsequently, Hyers’ result was generalized by Aoki [1] for additive mappings
and by Rassias [30] for linear mappings by considering an unbounded Cauchy difference. The paper [30] of
Rassias has provided a lot of influence in the development of what we now call the generalized Hyers-Ulam
stability (or Hyers-Ulam-Rassias stability) of functional equations. In 1994, Găvruţă [7] obtained a generalized
result of Rassias’ theorem which allow the Cauchy difference to be controlled by a general unbounded
function. We refer the interested reader to [9, 11, 13, 15, 21, 22, 31, 35] for more information.

In [34], Rassias and Kim introduced and investigated the following functional equation:∑
1≤i< j≤n

f
(xi + x j

2
+

n−2∑
l=1, kl,i, j

xk l

)
=

(n − 1)2

2

n∑
i=1

f (xi) (1)

where n is a fixed integer with n ≥ 2. We observe that in the case n = 2, the functional equation (1) yields the
Jensen functional equation 2 f ((x + y)/2) = f (x) + f (y) and there are many interesting results concerning the
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stability problems of the Jensen equation [19, 32, 33]. In [12], Jang and Saadati proved the generalized Hyers-
Ulam stability of homomorphisms and derivations in non-Archimedean C∗-algebras and non-Archimedean
Lie C∗-algebras for the Jensen type functional equation f ((x + y)/2) + f ((x − y)/2) = f (x). For the case n = 3,
Najati and Ranjbari [25] investigated homomorphisms between C∗-ternary algebras, and derivations on
C∗-ternary algebras. In fact, in [34], the authors established the general solution of the functional equation
(1) and investigated the generalized Hyers-Ulam stability problem of the functional equation (1) with n ≥ 3
in quasi-β-normed spaces. In 2013, Kim et al. [18] proved some new Hyers-Ulam-Rassias stability results
of n-Lie homomorphisms and Jordan n-Lie homomorphisms on n-Lie Banach algebras associated to the
functional equation (1) using the fixed point method.

In this paper, using the fixed point method, we will investigate the generalized Hyers-Ulam stabil-
ity results of homomorphisms and derivations in non-Archimedean random C∗-algebras and on non-
Archimedean random Lie C∗-algebras for the additive functional equation (1) with n ≥ 3.

2. Preliminaries

In this section, we adopt the usual terminology, notions and conventions of the theory of non-
Archimedean random normed space as in [3–5, 16, 17, 20, 27, 29, 36, 37]. Throughout this paper, ∆+ is the
space of all probability distribution functions, i.e., the space of all mappings F : R ∪ {−∞,∞} → [0, 1] such
that F is left-continuous and non-decreasing onR, F(0) = 0 and F(+∞) = 1. D+ is a subset of ∆+ consisting of
all functions F ∈ ∆+ for which l−F(+∞) = 1, where l− f (x) denotes the left limit of the function f at the point
x, that is, l− f (x) = lim

t→x−
f (t). The space ∆+ is partially ordered by the usual point-wise ordered of functions,

i.e., F ≤ G if and only if F(t) ≤ G(t) for all t ∈ R. The maximal element for ∆+ in this order is the distribution
function ε0 given by

ε0(t) =

 0, if t ≤ 0,

1, if t > 0.

Definition 2.1. (cf. [36]). A mapping T : [0, 1] × [0, 1] → [0, 1] is a continuous triangular norm (briefly, a
continuous t-norm) if T satisfies the following conditions:
(1) T is commutative and associative;
(2) T is continuous;
(3) T(a, 1) = a for all a ∈ [0, 1];
(4) T(a, b) ≤ T(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are the Lukasiewicz t-norm TL, where TL(a, b) = max(a + b −
1, 0),∀a, b ∈ [0, 1] and the t-norms TP,TM,TD, where TP(a, b) := ab, TM(a, b) := min(a, b),

TD(a, b) :=

 min(a, b), if max(a, b) = 1,

0, otherwise.

By a non-Archimedean field we mean a field K equipped with a function (valuation) | · | from K into
[0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and |r+ s| ≤ max{|r|, |s|} for r, s ∈ K. Clearly |1| = |−1| = 1
and |n| ≤ 1 for all n ∈ N. By the trivial valuation we mean the function | · | taking everything but 0 into 1
and |0| = 0 (i.e., the function | · | is called the trivial valuation if |r| = 1,∀r ∈ K, r , 0, and |0| = 0).

Let X be a vector space over a field K with a non-Archimedean non-trivial valuation | · |. A function
‖ · ‖ : X→ [0,∞) is called a non-Archimedean norm if it satisfies the following conditions:
(i) ‖x‖ = 0 if and only if x = 0;
(ii) For any r ∈ K and x ∈ X, ‖rx‖ = |r|‖x‖;
(iii) For all x, y ∈ X, ‖x + y‖ ≤ max{‖x‖, ‖y‖} (the strong triangle inequality).
Then (X, ‖ · ‖) is called a non-Archimedean normed space. Due to the fact that

‖xn − xm‖ ≤ max{‖x j+1 − x j‖ : m ≤ j ≤ n − 1}, (n > m),
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a sequence {xn} is Cauchy if and only if {xn+1−xn} converges to zero in a non-Archimedean normed space. By
a complete non-Archimedean normed space we mean one in which every Cauchy sequence is convergent.

Example 2.2. (cf. [14]). For any non-zero rational number x, there exists a unique integer nx ∈ Z such that
x = a

b pnx , where a and b are integers not divisible by p. Then |x|p := p−nx defines a non-Archimedean norm on Q. The
completion ofQ with respect to the metric d(x, y) = |x− y|p is denoted byQp, which is called the p-adic number field.

A non-Archimedean Banach algebra is a complete non-Archimedean algebra A which satisfies ‖ab‖ ≤
‖a‖‖b‖ for all a, b ∈ A. For more detailed definitions of non-Archimedean Banach algebras, we refer the
reader to [8, 38].

IfU is a non-Archimedean Banach algebra, then an involution onU is a mapping t → t∗ fromU into
U which satisfies
(I) t∗∗ = t for t ∈ U;
(II) (αs + βt)∗ = ᾱs∗ + β̄t∗;
(III) (st)∗ = t∗s∗ for s, t ∈ U.
If, in addition, ‖t∗t‖ = ‖t‖2 for t ∈ U, thenU is a non-Archimedean C∗-algebra.

Definition 2.3. (cf. [14, 37]). A non-Archimedean random normed space (briefly, NA-RN-space) is a triple (X, µ,T),
where X is a linear space over a non-Archimedean fieldK, T is a continuous t-norm, and µ is a mapping from X into
D+ such that the following conditions hold:
(NA-RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;
(NA-RN2) µαx(t) = µx( t

|α| ) for all x ∈ X, t > 0, and α , 0;
(NA-RN3) µx+y(max(t, s)) ≥ T(µx(t), µy(s)) for all x, y ∈ X and t, s ≥ 0;
It is easy to see that if (NA-RN3) holds, then
(RN3) µx+y(t + s) ≥ T(µx(t), µy(s)).

Example 2.4. (cf. [26]). Let (X, ‖ · ‖) be a non-Archimedean normed linear space, and α, β > 0. Define

µx(t) =
αt

αt + β‖x‖

for all x ∈ X and t > 0. Then (X, µ,TM) is a non-Archimedean RN-space.

Proof. (NA − RN1) is obviously true. Notice that for any t ∈ R, t > 0 and c , 0

µcx(t) =
αt

αt + β‖cx‖
=

αt
αt + β|c|‖x‖

=
α · t
|c|

α · t
|c| + β‖x‖

= µx(
t
|c|

),

which implies that (NA − RN2) holds.
To prove (NA − RN3). We assume that µx(t) ≤ µy(s), thus we have

‖y‖
s
≤
‖x‖

t
.

Now, if ‖x‖ ≥ ‖y‖ for all x, y ∈ X, then we have by the strong triangle inequality

t‖x + y‖ ≤ t‖x‖ ≤ (max(t, s))‖x‖.

Therefore,

β‖x + y‖
α(max(t, s))

≤
β‖x‖
αt

and so

1 +
β‖x + y‖

α(max(t, s))
≤ 1 +

β‖x‖
αt

,
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which implies that µx+y(max(t, s)) ≥ µx(t).
if ‖x‖ ≤ ‖y‖ for all x, y ∈ X, then we also have

t‖x + y‖ ≤ t‖y‖ ≤ t ·
s
t
‖x‖ ≤ (max(t, s))‖x‖.

By the same way to the above, we can also getµx+y(max(t, s)) ≥ µx(t). Hence,µx+y(max(t, s)) ≥ TM(µx(t), µy(s))
for all x, y ∈ X and t, s ≥ 0. Then (X, µ,TM) is a non-Archimedean RN-space. �

Example 2.5. (cf. [26]). Let (X, ‖ · ‖) be a non-Archimedean normed linear space, let β > α > 0 and

µx(t) =


0, t ≤ α‖x‖,

t
t+(β−α)‖x‖ , α‖x‖ < t ≤ β‖x‖,

1, t > β‖x‖.

Then (X, µ,TM) is a non-Archimedean RN-space.

Proof. (NA − RN1) is obviously true. Notice that for c , 0, if µcx(t) = 1, then t > β‖cx‖, i.e. t
|c| > β‖x‖

⇒ µx( t
|c| ) = 1

thus µcx(t) = µx( t
|c| ).

Again if µcx(t) = t
t+(β−α)‖cx‖ , then α‖cx‖ < t ≤ β‖cx‖, i.e. α‖x‖ < t

|c| ≤ β‖x‖, so we have

µx(
t
|c|

) =
t

t + (β − α)‖cx‖
,

therefore, µcx(t) = µx( t
|c| ). Similarly, when µcx(t) = 0, then µcx(t) = µx( t

|c| ) = 0. Thus for c , 0, µcx(t) = µx( t
|c| )

which implies that (NA − RN2) holds.
Next, we have to show that

µx+y(max(t, s)) ≥ TM(µx(t), µy(s)).

If s = t = 0, then in this case the relation is obvious. So we consider the case when t > 0, s > 0.
If t > β‖x‖, s > β‖y‖, then max(t, s) > β‖x‖,max(t, s) > β‖y‖, and µx(t) = 1, µy(s) = 1. Now, we have

max(t, s) ≥ β‖x‖( or β‖y‖) = max(β‖x‖, β‖y‖) ≥ β(‖x + y‖)

Hence, we get

µx+y(max(t, s)) = 1⇒ µx+y(max(t, s)) ≥ TM(µx(t), µy(s)).

If t > β‖x‖, and α‖y‖ < s ≤ β‖y‖, then µx(t) = 1, µy(s) = s
s+(β−α)‖y‖ . Now, if ‖x‖ ≥ ‖y‖, then we obtain

max(t, s) ≥ β‖x‖ = max(β‖x‖, β‖y‖) ≥ β(‖x + y‖)

Hence, we have

µx+y(max(t, s)) = 1⇒ µx+y(max(t, s)) ≥ TM(µx(t), µy(s)).

Next, if ‖y‖ ≥ ‖x‖. So we get

max(t, s) ≥ α‖y‖ = max(α‖x‖, α‖y‖) ≥ α(‖x + y‖)

Hence, we get

µx+y(max(t, s)) =
max(t, s)

max(t, s) + (β − α)‖x + y‖
⇒ µx+y(max(t, s)) ≥ TM(µx(t), µy(s)).

If α‖x‖ < t ≤ β‖x‖, and α‖y‖ < s ≤ β‖y‖, then in this case the relation is similar to the proof of Example 2.4,
and thus it is omitted. This completes the proof of the example. �
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Definition 2.6. (cf. [14, 23]). A non-Archimedean random normed algebra (X, µ,T,T′) is a non-Archimedean
random normed space (X, µ,T) with an algebraic structure such that
(NA-RN4) µxy(t) ≥ T′(µx(t), µy(t)) for all x, y ∈ X and all t > 0, in which T′ is a continuous t-norm.

Example 2.7. (cf. [23]). Let (X, ‖ · ‖) be a non-Archimedean normed algebra. Define

µx(t) =


0, x , 0, t ≤ 0,

t
t+‖x‖ , x , 0, t > 0,

1, x = 0

Then (X, µ,TM) is a non-Archimedean RN-space. An easy computation shows that µxy(t) ≥ µx(t)µy(t) if and only if

‖xy‖ ≤ ‖x‖‖y‖ + t‖y‖ + t‖x‖

for all x, y ∈ X and t > 0. It follows that (X, µ,TM,TP) is a non-Archimedean random normed algebra.

Definition 2.8. (cf. [14]). Let (X, µ,T,T′) and (Y, µ,T,T′) be non-Archimedean random normed algebras.
(a) An R-linear mapping f : X→ Y is called a homomorphism if f (xy) = f (x) f (y) for all x, y ∈ X.
(b) An R-linear mapping f : X→ Y is called a derivation if f (xy) = f (x)y + x f (y) for all x, y ∈ X.

Definition 2.9. (cf. [14]). Let (U, µ,T,T′) be non-Archimedean random Banach algebra, then an involution onU
is a mapping u→ u∗ fromU intoU which satisfies
(I′) u∗∗ = u for u ∈ U;
(II′) (αu + βv)∗ = ᾱu∗ + β̄v∗;
(III′) (uv)∗ = v∗u∗ for u, v ∈ U.
If, in addition, µu∗u(t) = T′(µu(t), µu(t)) for u ∈ U and t > 0, thenU is a non-Archimedean random C∗-algebra.

Definition 2.10. (cf. [14]) Let (X, µ,T) be a non-Archimedean RN-space. Let {xn} be a sequence in X. Then {xn} is
said to be convergent if there exists x ∈ X such that

lim
n→∞

µxn−x(t) = 1,

for all t > 0. In this case, x is called the limit of the sequence {xn}.

A sequence {xn} in X is called Cauchy if for each ε > 0 and t > 0, there exists n0 such that for all n ≥ n0
and all p > 0 we have µxn+p−xn (t) > 1 − ε. Due to

µxn+p−xn (t) ≥ min{µxn+p−xn+p−1 (t), . . . , µxn+1−xn (t)}.

Therefore, the sequence {xn} is Cauchy if for each ε ≥ 0 and t > 0 there exists n0 such that for all n ≥ n0, we
have µxn+1−xn (t) > 1 − ε.

If each Cauchy sequence is convergent, then the random norm is said to be complete, and the non-
Archimedean RN-space is called a non-Archimedean random Banach space.

Definition 2.11. Let S be a set. A function d : S × S→ [0,∞] is called a generalized metric on S if d satisfies
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x), ∀x, y ∈ S;
(3) d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ S.

The next Lemma 2.12 is due to Diaz and Margolis [6], which is extensively applied to the stability theory
of functional equations.
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Lemma 2.12. ([6]). Let (S, d) be a complete generalized metric space and J : S→ S be a strictly contractive mapping
with Lipschitz constant L < 1. Then for each fixed element x ∈ S, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that
(i) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(ii) the sequence {Jnx} is convergent to a fixed point y∗ of J;
(iii) y∗ is the unique fixed point of J in the set S∗ := {y ∈ S | d(Jn0 x, y) < +∞};
(iv) d(y, y∗) ≤ 1

1−L d(y, Jy), ∀y ∈ S∗.

3. Stability of homomorphisms and derivations in non-Archimedean random C∗-algebras

In this section, assume thatA is a non-Archimedean random C∗-algebra with the norm µA· and that
B is a non-Archimedean random C∗-algebra with the norm µB· . For a given mapping f : A→ B, we define

Dλ, f (x1, . . . , xn) =
∑

1≤i< j≤n

f
(λxi + λx j

2
+

n−2∑
l=1,kl,i, j

λxkl

)
−

(n − 1)2

2

n∑
i=1

λ f (xi)

for all x1, . . . , xn ∈ A(n ≥ 3) and λ ∈ T1 := {λ ∈ C : |λ| = 1}.
We need the following lemmas to prove the main results.

Lemma 3.1. (cf. [24]). Let V and W be linear spaces and let n ≥ 3 be a fixed positive integer. A mapping f : V →W
satisfies the functional equation (1) for all x1, . . . , xn ∈ V if and only if f is an additive mapping.

Lemma 3.2. (cf. [28]). Let f : A → A be an additive mapping such that f (λx) = λ f (x) for all λ ∈ T1 and all
x ∈ A. Then the mapping f is C-linear.

Note that a C-linear mapping H : A → B is called homomorphism in non-Archimedean random
C∗-algebras if H satisfies H(xy) = H(x)H(y) and H(x∗) = H(x)∗ for all x, y ∈ A.

Now we are going to prove the generalized Hyers-Ulam stability of homomorphisms in non-Archimedean
random C∗-algebras for the functional equationDλ, f (x1, . . . , xn) = 0.

Theorem 3.3. Let f : A → B be a mapping for which there are functions ϕ : An
→ D+, ψ : A2

→ D+ and
η : A→ D+ such that |ρ| < 1 is far from zero and

µB
Dλ, f (x1,...,xn)(t) ≥ ϕx1,...,xn (t) (2)

µBf (xy)− f (x) f (y)(t) ≥ ψx,y(t) (3)

µBf (x∗)− f (x)∗ (t) ≥ ηx(t) (4)

for all λ ∈ T1, x1, . . . , xn, x, y ∈ A and t > 0. If there exits a constant 0 < L < 1 such that

ϕρx1,...,ρxn (|ρ|Lt) ≥ ϕx1,...,xn (t) (5)

ψρx,ρy(|ρ|2Lt) ≥ ψx,y(t) (6)
ηρx(|ρ|Lt) ≥ ηx(t) (7)

for all x, y, x1, . . . , xn ∈ A and t > 0, then there exists a unique homomorphism H : A→ B such that

µBf (x)−H(x)(t) ≥ ϕx,...,x

(
|n||ρ|2(1 − L)

|2|
t
)

(8)

for all x ∈ A and t > 0, where ρ := n − 1.
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Proof. Letting λ = 1, and x1 = · · · = xn = x in (2), we obtain

µB n
2

 f ((n−1)x)− n(n−1)2
2 f (x)

(t) ≥ ϕx,...,x(t) (9)

for all x ∈ A and t > 0. Then

µB
f (x)− f (ρx)

ρ

(
|2|
|n||ρ|2

t
)
≥ ϕx,...,x(t) (10)

for all x ∈ A and t > 0.
Let us define Ω to be the set of all mappings 1 : A → B and introduce a generalized metric on Ω as

follows:

d(1, h) := inf
{
δ ∈ R+

∣∣∣∣∣µB1(x)−h(x)(δt) ≥ ϕx,...,x(t),∀x ∈ A, t > 0
}
.

It is easy to see that (Ω, d) is a complete generalized metric space [2, 20]. Now, we consider the mapping
J : Ω→ Ω defined by

J1(x) :=
1
ρ
1(ρx) (11)

for all 1 ∈ Ω and x ∈ A. Note that for all 1, h ∈ Ω, we have

µB
J1(x)−Jh(x)(Lδt) = µB1

ρ 1(ρx)− 1
ρ h(ρx)

(Lδt) = µB
1(ρx)−h(ρx)(|ρ|Lδt)

≥ ϕρx,...,ρx(|ρ|Lt) ≥ ϕx,...,x(t) (12)

for all x ∈ A and t > 0. So d(J1,Jh) ≤ Ld(1, h) holds for all 1, h ∈ Ω.
By (10), we have d( f ,J f ) ≤ |2|

|n||ρ|2 . Hence according to Lemma 2.12, the sequence Jm f converges to a
fixed point H of J , that is,

lim
m→∞

1
|ρ|m

f (ρmx) = H(x) (13)

and

H(ρx) = ρH(x) (14)

for all x ∈ A. Also H is the unique fixed point ofJ in the set Ω∗ = {1 ∈ Ω : d( f , 1) < ∞}. This implies that H
is a unique mapping satisfying (14) such that there exists a δ ∈ R+ such that

µBf (x)−H(x)(δt) ≥ ϕx,...,x(t)

for all x ∈ A and t > 0. Also,

d( f ,H) ≤
1

1 − L
d( f ,J f ) ≤

|2|
|n||ρ|2(1 − L)

.

This implies that the inequality (8) holds. It follows from (2), (5) and (13) that

µB
Dλ,H

(x1, . . . , xn)(t) = lim
m→∞

µB1
ρmDλ, f (ρmx1,...,ρmxn)

(t)

≥ lim
m→∞

ϕρmx1,...,ρmxn (|ρ|mt) = 1

for all λ ∈ T1, x1, . . . , xn ∈ A and t > 0. Hence, we obtain

Dλ,H(x1, . . . , xn) = 0 (15)
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for all x1, . . . , xn ∈ A. If we put λ = 1 in (15), then H is additive by Lemma 3.1. Also, letting x1 = · · · = xn = x
in the last equality, we obtain H(λx) = λH(x). Now by using Lemma 3.2, we infer that the mapping H is
C-linear. On the other hand, it follows from (3), (6) and (13) that

µBH(xy)−H(x)H(y)(t) = lim
m→∞

µBf (ρ2mxy)− f (ρmx) f (ρm y)(|ρ|
2mt)

≥ lim
m→∞

ψρmx,ρm y(|ρ|2mt) = 1

for all x, y ∈ A. So, H(xy) = H(x)H(y) for all x, y ∈ A. Thus H : A → B is a homomorphism satisfying (8),
as desired. Also, by (4), (7) and (13) and by a similar method, we have H(x∗) = H(x)∗. This completes the
proof of the theorem. �

Theorem 3.4. Let f : A → B be a mapping for which there are functions ϕ : An
→ D+, ψ : A2

→ D+ and
η : A→ D+ such that |ρ| < 1 is far from zero, and (2), (3) and (4) hold for all λ ∈ T1, x1, . . . , xn, x, y ∈ A and t > 0.
If there exits a constant 0 < L < 1 such that

ϕ x1
ρ ,...,

xn
ρ

(
L
|ρ|

t
)
≥ ϕx1,...,xn (t) (16)

ψ x
ρ ,

y
ρ

(
L
|ρ|2

t
)
≥ ψx,y(t) (17)

η x
ρ

(
L
|ρ|

t
)
≥ ηx(t) (18)

for all x, y, x1, . . . , xn ∈ A and t > 0, then there exists a unique homomorphism H : A→ B such that

µBf (x)−H(x)(t) ≥ ϕx,...,x

(
|n||ρ|2(1 − L)
|2|L

t
)

(19)

for all x ∈ A and t > 0, where ρ := n − 1.

Proof. Let Ω and d be as in the proof of Theorem 3.3. Then (Ω, d) becomes complete generalized metric
space and the mapping J : Ω→ Ω defined by

J1(x) := ρ1

(
x
ρ

)
, for all 1 ∈ Ω and x ∈ A.

Then, it is easy to see that d(J1,Jh) ≤ Ld(1, h) for all 1, h ∈ S. By (9) and (16), we obtain

µBf (x)−ρ f ( x
ρ )

(
|2|L
|n||ρ|2

t
)
≥ ϕ x

ρ ,...,
x
ρ

(
L
|ρ|

t
)
≥ ϕx,...,x(t)

for all x ∈ A and t > 0. So, we have d( f ,J f ) ≤ |2|L
|n||ρ|2 .

The remaining assertion is similar to the corresponding part of Theorem 3.3. This completes the proof.�

Corollary 3.5. Let ` ∈ {−1, 1}, r , 1 and θ be nonnegative real numbers. Suppose that f : A → B be a mapping
such that

µB
Dλ, f (x1,...,xn)(t) ≥

t
t + θ(‖x1‖

r
A

+ ‖x2‖
r
A

+ · · · + ‖xn‖
r
A

)

µBf (xy)− f (x) f (y)(t) ≥
t

t + θ · (‖x‖r
A
· ‖y‖r

A
)

µBf (x∗)− f (x)∗ (t) ≥
t

t + θ · ‖x‖r
A
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for all λ ∈ T1, x1, . . . , xn, x, y ∈ A and t > 0. Then there exists a unique homomorphism H : A → B such that, if
`r > `,

µBf (x)−H(x)(t) ≥
`|n||ρ|(|ρ| − |ρ|r)t

`|n||ρ|(|ρ| − |ρ|r)t + θ|2||n| ‖x‖r
A

(20)

for all x ∈ A and t > 0, where ρ := n − 1.

Proof. The proof follows from Theorems 3.3 and 3.4 by taking

ϕx1,...,xn (t) =
t

t + θ(‖x1‖
r
A

+ ‖x2‖
r
A

+ · · · + ‖xn‖
r
A

)

ψx,y(t) =
t

t + θ · (‖x‖r
A
· ‖y‖r

A
)
, ηx(t) =

t
t + θ · ‖x‖r

A

for all x1, . . . , xn, x, y ∈ A and t > 0. We can choose L = |ρ|`(r−1), we obtain the desired result. �
Note that a C-linear mapping δ : A→A is called derivation onA if δ satisfies δ(xy) = δ(x)y + xδ(y) for

all x, y ∈ A.
We prove the generalized Hyers-Ulam stability of derivations on non-Archimedean random C∗-algebras

for the functional equationDλ, f (x1, . . . , xn) = 0.

Theorem 3.6. Let f : A → A be a mapping for which there are functions ϕ : An
→ D+, ψ : A2

→ D+ and
η : A→ D+ such that |ρ| < 1 is far from zero and

µA
Dλ, f (x1,...,xn)(t) ≥ ϕx1,...,xn (t) (21)

µAf (xy)− f (x)y−x f (y)(t) ≥ ψx,y(t) (22)

µAf (x∗)− f (x)∗ (t) ≥ ηx(t) (23)

for all λ ∈ T1, x1, . . . , xn, x, y ∈ A and t > 0. If there exits a constant 0 < L < 1 such that (5), (6) and (7) hold, then
there exists a unique derivation δ : A→A such that

µAf (x)−δ(x)(t) ≥ ϕx,...,x

(
|n||ρ|2(1 − L)

|2|
t
)

(24)

for all x ∈ A and t > 0, where ρ := n − 1.

Proof. By the same reasoning as in the proof of Theorem 3.3, the mapping δ : A→A defined by

δ(x) := lim
m→∞

1
|ρ|m

f (ρmx) ∀x ∈ A (25)

is a unique C-linear mapping which satisfies (24). We show that δ is a derivation. By (22) and (25), we have

µAδ(xy)−δ(x)y−xδ(y)(t) = lim
m→∞

µAf (ρ2mxy)− f (ρmx)ρm y−ρmxδ(ρm y)(|ρ|
2mt)

≥ lim
m→∞

ψρmx,ρm y(|ρ|2mt) = 1

for all x, y ∈ A and all t > 0. Hence we have δ(xy) = δ(x)y + xδ(y) for all x, y ∈ A. This means that δ is a
derivation satisfying (24). This completes the proof. �
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4. Stability of homomorphisms and derivations in non-Archimedean random Lie C∗-algebras

A non-Archimedean random C∗-algebra C, endowed with the Lie product [x, y] =
xy−yx

2 on C, is called
a non-Archimedean random Lie C∗-algebra.

Definition 4.1. Let A and B be non-Archimedean random Lie C∗-algebras. A C-linear mapping H : A → B is
called a non-Archimedean random Lie C∗-algebra homomorphism if H([x, y]) = [H(x),H(y)] for all x, y ∈ A.

In this section, assume thatA is a non-Archimedean random Lie C∗-algebra with the norm µA· and that
B is a non-Archimedean random Lie C∗-algebra with the norm µB· .

Now, we prove the generalized Hyers-Ulam stability of homomorphisms in non-Archimedean random
Lie C∗-algebras for the equationDλ, f (x1, . . . , xn) = 0.

Theorem 4.2. Let f : A → B be a mapping for which there are functions ϕ : An
→ D+, ψ : A2

→ D+ and
η : A→ D+ such that |ρ| < 1 is far from zero, (2) and (4) hold and

µBf ([x,y])−[ f (x), f (y)](t) ≥ ψx,y(t) (26)

for all x, y ∈ A and t > 0. If there exits a constant 0 < L < 1 and (5), (6) and (7) hold, then there exists a unique
homomorphism H : A→ B such that (8) holds for all x ∈ A and t > 0, where ρ := n − 1.

Proof. By the same reasoning as in the proof of Theorem 3.3, we can find the mapping H : A→ B given
by

H(x) := lim
m→∞

1
|ρ|m

f (ρmx) (27)

for all x ∈ A. It follows from (6), (26) and (27) that

µBH([x,y])−[H(x),H(y)](t) = lim
m→∞

µBf (ρ2m[x,y])−[ f (ρmx), f (ρm y)](|ρ|
2mt)

≥ lim
m→∞

ψρmx,ρm y(|ρ|2mt) = 1

for all x, y ∈ A and t > 0, then

H([x, y]) = [H(x),H(y)]

for all x, y ∈ A. Thus, H : A→ B is a Lie C∗-algebra homomorphism satisfying (8), as desired. �

Theorem 4.3. Let f : A → B be a mapping for which there are functions ϕ : An
→ D+, ψ : A2

→ D+ and
η : A → D+ such that |ρ| < 1 is far from zero, and (2), (4) and (26) hold for all λ ∈ T1, x1, . . . , xn, x, y ∈ A and
t > 0. If there exits a constant 0 < L < 1 and (16), (17) and (18) hold, then there exists a unique homomorphism
H : A→ B such that (19) holds for all x ∈ A and t > 0, where ρ := n − 1.

Proof. The proof follows from Theorem 3.4 and a method similar to Theorem 4.2. �

Corollary 4.4. Let ` ∈ {−1, 1}, r =, 1 and θ be nonnegative real numbers. Suppose that f : A → B be a mapping
such that

µB
Dλ, f (x1,...,xn)(t) ≥

t
t + θ(‖x1‖

r
A

+ ‖x2‖
r
A

+ · · · + ‖xn‖
r
A

)

µBf ([x,y])−[ f (x), f (y)](t) ≥
t

t + θ · (‖x‖r
A
· ‖y‖r

A
)

µBf (x∗)− f (x)∗ (t) ≥
t

t + θ · ‖x‖r
A

for all λ ∈ T1, x1, . . . , xn, x, y ∈ A and t > 0. Then there exists a unique homomorphism H : A → B such that (20)
holds.
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Proof. The proof follows from Theorems 4.2 and 4.3, and a method similar to Corollary 3.5. �

Definition 4.5. LetA be non-Archimedean random Lie C∗-algebra. A C-linear mapping δ : A→ A is called a Lie
derivation if δ([x, y]) = [δ(x), y] + [x, δ(y)] for all x, y ∈ A.

We prove the generalized Hyers-Ulam stability of derivations on non-Archimedean random Lie C∗-
algebras for the functional equationDλ, f (x1, . . . , xn) = 0.

Theorem 4.6. Let f : A → A be a mapping for which there are functions ϕ : An
→ D+, ψ : A2

→ D+ and
η : A→ D+ such that |ρ| < 1 is far from zero, and (21) and (23) hold and

µAf ([x,y])−[ f (x),y]−[x, f (y)](t) ≥ ψx,y(t) (28)

for all x, y ∈ A and t > 0. If there exits a constant 0 < L < 1 such that (5), (6) and (7) hold, then there exists a unique
derivation δ : A→A such that (24) holds for all x ∈ A and t > 0, where ρ := n − 1.

Proof. By the same reasoning as in the proof of Theorem 4.2, we can find the mapping δ : A→ B given
by

δ(x) := lim
m→∞

1
|ρ|m

f (ρmx) (29)

for all x ∈ A. It follows from (6), (28) and (29) that

µAδ([x,y])−[δ(x),y]−[x,δ(y)](t) = lim
m→∞

µAf (ρ2m[x,y])−[ f (ρmx),ρm y]−[x, f (ρm)](|ρ|
2mt)

≥ lim
m→∞

ψρmx,ρm y(|ρ|2mt) = 1

for all x, y ∈ A and t > 0, then

δ([x, y]) = [δ(x), y] + [x, δ(y)]

for all x, y ∈ A. Thus, δ : A→A is a Lie derivation satisfying (24), as desired. �
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