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Abstract. By using contemporary theory of inequalities, this study is devoted to propose a number of
refinements inequalities for the Hermite—Hadamard’s type inequality and conclude explicit bounds for the
trapezoid inequalities in terms of s-convex mappings, at most second derivative through the instrument of
generalized fractional integral operator and a considerable amount of results for special means. The results
of this study which are the generalization of those given in earlier works are obtained for functions f where
|f’l and [f”] (or |f’|7 and |f”|7 for q > 1) are s-convex hold by applying the Holder inequality and the power
mean inequality.

1. Introduction

The Hermite-Hadamard inequality is one of the most well established inequalities in the theory of
convex functions with a geometrical interpretation and many applications. Numerous mathematicians
have devoted their efforts to generalise, refine, counterpart and extend it for different classes of functions
such as using convex mappings.

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are considerable
significant in the literature (see, e.g.,[6], [12, p.137]). These inequalities state that if f : ] — R is a convex
function on the interval I of real numbers and a,b € I with a < b, then

b b
f(”;b)sﬁfa f(x)dxsf—(a);f( ) )

Both inequalities hold in the reversed direction if f is concave. We note that Hadamard’s inequality
may be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality.
Hadamard'’s inequality for convex functions has received renewed attention in recent years and a remarkable
variety of refinements and generalizations have been found (see, for example, [2], [3], [5], [7], [9], [11], [14]-
[20]) and the references cited therein.

The overall structure of the study takes the form of six sections including introduction. The remaining
part of the paper proceeds as follows: In Section 2, the generalised version of fractional integral operator
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is summarised, along with the needed definitions. In section 3, the Hermite-Hadamard type inequalities
for s convex functions via generalized fractional integral operators are introduced while in section 4 and
5 trapezoid type inequalities for functions whose first and second derivatives in absolute value are s-
convex with generalized fractional integral operators are presented and we also provide some corollaries
for theorems. Some conclusions and further directions of research are discussed in Section 6.

2. Definitions and Basic Properties

In this section we will give a brief overview of the basic definitions which will be used in the proof of
our main cumulative results.

Definition 2.1. (s-Convex Functions in The Second Sense) [4] A function f : [0, 00)—[0, o0) is said to be s-convex
(in the second sense), or that f belongs to the class K2, if

fAx+ (1 =Dy) < Af(x) + (A=A f(y)
forall x,y € [0, c0) with A € [0,1] and for some fixed s € (0, 1].
Ans-convex function was introduced in Breckner’s paper [4] and a number of properties and connections

with s-convexity in the first sense were discussed in paper [8]. Also, we note that, it can be easily seen that
for s = 1, s-convexity reduces to the ordinary convexity of functions defined on [0, o).

2.1. Generalized Fractional Integral Operators

In addition to this, in [13], Raina defined the following results connected with the general class of
fractional integral operators.

¢ () = O o () .
Fon @) =T, ()-Zr(pkm)xk (1> 0l <R), @

where the coefficients o (k) (k € Ny = INU {0}) is a bounded sequence of positive real numbers and R is the
set of real numbers. With the help of (2), in [13] and [1], Raina and Agarwal et. al defined the following
left-sided and right-sided fractional integral operators, respectively, as follows:

S/A,H;wf(x) = f (x -t pci/\ [w(@x=tF] f(Hdt, x>a, (3)

ol ¥) = f (t =" Fr [w (- 2] f(Odt, x <b, )

where A,p > 0,w € R, and f (t) is such that the integrals on the right side exists.

It is easy to verify that J*¢ o f(x) and o ) Lb—sof () are bounded integral operators on L (a, b), if
M :=F ) [0 b —a)] < oo (5)
In fact, for f € L(a,b), we have
[Tsssvf @], < =0 |1, ©

and

5.6, <
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where

b ;
I, =] [ 1o a

The importance of these operators stems indeed from their generality. Many useful fractional integral
operators can be obtained by specializing the coefficient ¢ (k). Here, we just point out that the classical
Riemann-Liouville fractional integrals I, and Ii of order a defined by (see, [10])

(1) 0= s [ -0 ot > a0 ®)

and

1 b
(12 f) () == T f (t—x)*" f(Hdt (x <b;a>0) 9)
follow easily by setting
A=a,0(0)=1, andw =0 (10)

in (3) and (4), and the boundedness of (8) and (9) on L (g, b) is also inherited from (6) and (7), (see, [1]).
In [21], Yaldiz and Sarikaya gave the following useful identity for the generalized fractional integral
operators:

Lemma 2.2. Let f : [a,b] — R be differentiable function on (a,b) with a < b. If f* € L[a,b], then we have the
following identity for generalized fractional integral operators:

@) + f(b) 1 ,
= zf 2(b - a)’ 7, [w (b —a)’] [ /\b*;wf(a)+*7Mﬂ+;wf(b)] (11
0,A+1
1
) ZT;AH w(b—a)P f Y [0 —a) (A= 071f (ta+ (1= Dbyt

0
1

- [P -0y ) f G - Db,

0

The main concern in this paper is to investigate Hermite-Hadamard’s inequalities for functions whose
first and second derivatives in absolute value are s-convex with the aid of generalized fractional integral
operators and therefore obtains explicit bounds through the use of Hoélder and power mean inequalities
and the modern theory of inequalities.

3. Hermite-Hadamard Type Inequalities for s-convex functions via Generalized Fractional Integral Op-
erators

In this section, we will present a theorem for Hermite-Hadamard type inequalities with generalized
fractional integral operators which is the generalization of previous work. In other words the main result of
this section is the following refinement of the classical Hermite-Hadamard inequality for fractional integral
operators.
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Theorem 3.1. Let f : [a,b] — R be a function with 0 < a < band f € Ly[a,b]. If f is s-convex function in the
second sense on [a, b], then for all p, A, > 0 and w € IR, we have the following inequalities for generalized fractional
integral operators:

a+b 1
f( ) (b-a) T"Ml[ (b—a)”][

S f O+ T, f@)] (12)

< 1
7:;)\4.1 [a) (b - a)p]

(417, 9) + .5 [w (b - )] [f(a) + f(B)]

where o 5(k) = pk‘i(%, k=0,1,2,..and

1
Ai(A,s) = f A1 -p)° F oy [w b —a) ] dt
0

Proof. Since f is s-convex function in the second sense on [a,b], we have for x, y € [a, D]

x+y\ _ fx)+ f(y)
f(z)S >
Forx=ta+ (1 —-t)band y = (1 —t)a + tb, we obtain
Zsf(a;b)sf(ta+(1—t)b)+f((1—t)a+tb). (13)

Multiplying both sides of (13) by t"‘l?p‘f 1 [w (b — )" t], then integrating the resulting inequality with respect
to t over [0,1], we get

1
2 f(“ +b ) f P [ (b o) 7] dt
0

1 1

< ftA‘lT-pfA [w (b —a) tP]f(m+(1—t)b)dt+ftA‘lsfpf{A [w (b —a)’ 7] f (1 - t)a + th) dt.
0 0
Foru=ta+(1—-tbandv=(1-t)a+tb, we obtain

zsf(a+b) pA+1 [w (b —a)°]
b
1 1 A-1 S 1 P
< b—af(m(b—u)) ?’p,A[w(b—a)P(m(b—u)) ]f(u)du
b

e [ e0) 7 [ww—a)f’(lf:w—a))p]f@)dv

a

b

A
:(bl )f(” uy' 7 F o (b= W]f(u)du+ f(v ' Y [0 (0 - )] £ (@) do

) [ p,Aa+; a) (b) + jg,/\,b—;a)f(a)]
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and the first inequality is proved.
For the proof of the second inequality (12), we first note that if f is s-convex function in the second sense,
it yields

flta+1=-Hb) <Ef@)+1-1) f(b)

and
F((1L=tya+th) < (1 —1t) f(a) + £ F(b).

By adding these inequalities together, one has the following inequality:
flta+ (1 =0b)+ f(1-Da+1th) <[f@) + FO][F + (1 - tF]. (14)

Then multiplying both sides of (14) by t)H?-‘p 7 [w (b —a)” ] and integrating the resulting inequality with
respect to t over [0,1], we obtain

1 1

ftA_l"frpCiA [w (b —a) t°] f (ta + (1 — ) b) dt + ftA‘lTp‘iA [w(®—a)’ t7] f (1 —t)a + tb)dt
0 0
1

< (@ + O [T+ =767 o (o- o ]

0
= [A1(4,9) + F35 [0 0 - )| [f@ + f®)].
That is,

A
(72 ) [T 00ef©)+ T3 f@] < [111,9 4 725 10 @~ @] @) + O]

Hence, the proof is completed. [J

Remark 3.2. If we choose s = 1 in Theorem 3.1, then for all p, A, > 0 and w € R, we have the following inequality

a+b
- b o
f ( 2 ) = 20-a ?"m[ [ arad O+ Ty 1S )

fl@) + f()
- 2
which was given by Yaldiz and Sarikaya in [21].

Remark 3.3. If we choose A = at, 6(0) = 1, w = 0 in Theorem 3.1, then Theorem 3.1 reduces the Theorem 3 proved
by Set et al. in [18].

Remark 3.4. If we choose A = a, 6(0) =1, w = 0and s = 1 in Theorem 3.1, then Theorem 3.1 reduces the Theorem
2 proved by Sarikaya et al. in [15].

4. Trapezoid Type Inequalities for Differentiable Functions with Generalized Fractional Integral Oper-
ators

In this section we will present some refinements of the classical trapezoid type inequalities for function
whose first derivative in absolute value is s-convex via generalized fractional integral operators.
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Theorem 4.1. Let f : [a,b] — R be differentiable function on (a,b) with a < b. If |f’| is s-convex function in the
second sense, then for all p,A,> 0 and w > 0, we have the following inequality for generalized fractional integral
operators:

f@)+ 1) 1
2 20-0)' 57, [wb-a)f

0,A+1
b T [0 -]

s |
2 7—”;“1 [w (b —a)"]

o0 @+ T, 00O

f @]+

f )]

where

1 1 2Pk+A+s _ 1
o15(k) = a(k)[ﬁ(i;s+1,pk+)\+1)—[3(§;pk+/\+1,s+ 1)+ ]

(pk + A + s + 1) 20k+A+s

fork=0,1,2,..

Proof. Using Lemma 2.2 and generalized triangle inequality we have

f@+ fb) 1
2 20-0'F7,, [0b-0a)]

[T e f @ + T fO)] (15)

= 27 [@ -ty = 105 £ (ta + (1= ) b dit

pA+1

b iawwwﬁwl
[ e I'(pk+A+1)
0

—a
w (b —a)’]

1

b-a o 0 () wk (b —a)’™ KA pked

[w(b_a)p]z F(pk+)\+1) ’(1—t)P — P |
0

S 5% £/ (ta+ (1 —1)b)|dt

pA+1 k=0

we find that

Then, using the s-convexity of

f/

f/(ta+ (1 -1 b)|dt (16)

1
f)(l _ t)pk+)\ _ tpk+)\|
0

3 1

= f[(l _ PR _ tpk+/\] f (ta+(1—-t) b)| + f[tpk+/\ - t)pk+/\]

0

f/(ta+ (1 —t)b)|dt

NI=

1
2

< f[(l _ t)pk+A _ tpk+/\] [ts

0

£ @|+@ -ty

' (0)]] dt

@)+ -ty

f ()] dt

+ f [tpk+/\ -(1- t)pk+A] [ts

1

f @)|+

pk+A+s _
:[ﬁ(;;s+1,pk+ﬂt+1)—[3(%;pk+/\+1,s+1)+ 2 L ][

(pk + A + s + 1) 2pk+A+s f (b)” '
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By subsituting the inequality (16) into (15), we find that

fl@) + f(b) 1
- - ) )
2 2(0-a" e a)’] [ pat=sof @)+ Tppaaf( )]
b—a
> 277 b -a ]
o (k) wk (b - a)Pk 1 ke 1
Z T(ok+ A+ 1) ,8( ;5+1, pk+/\+1) ﬁ(ﬁ’pk+/\+1’s+1)+(pk+A+S+1)2pk+A+s

b—a(Fp,Ml [w(®~a)]
2 Tpg,}\_{.l [w (b - )p]

f @] +|f O]

which completes the proof. [

Remark 4.2. If we choose s = 1 in Theorem 4.1, then for all p, A, > 0 and w > 0, we have the following inequality

f@+fo) 1
2 20-0)' 77,

B 1L
-2 7—2/\+1[w(b_a)p]

F@ +T3 0o f O]

=] e

where

9 1,1(k) =

o (k) (1_ 1 )
pk+A+1 20k+A )7

which is the same result given by Yaldiz and Sarikaya in [21].

Corollary 4.3. If we choose A = a, 0(0) =1, w = 0 in Theorem 4.1, then we have the following inequality

@+ fb) T(a+1) 1/,
OO T+ (i) )

b—al, (1 1 2078 —
3—2 [ﬁ(5’5+1’a+1)_ﬁ(§’a+1’s+1) —( ]

a+s+1)2a+s

J

Remark 4.4. If we choose A = @, 6(0) =1, w = 0and s = 1 in Theorem 4.1, then Theorem 4.1 reduces the Theorem
3 proved by Sarikaya et al. in [15].

Theorem 4.5. Let f : [a,b] |, q > 1, is s-convex function in
the second sense, then for all p, A,> 0 and w > 0, we have the following inequality for generalized fractional integral
operators:

f@)+ fb) 1

2 20-0' 7Y, [wb-a)]
<b_ﬂ;";+l[w<b—a>f)1{ @[+ |qr
T2 T wb-a)] s+1

[T0 s @ + T, FO)
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1,1
where ; + ¢ = 1and
1

2 ’ 1y
FaESe) (P (pk + A) + 1) (1 - 2!7(0’“))

fork=0,1,2,...

Proof. Using the well known Hoélder inequality, we obtain

f/(ta+ (1 —t)b)|dt

1
f)(l _ t)pk+)\ _ tpk+)\|
0

1

b

}(1 _ t)pk+)\ _ tpk+A|7’ dt] [
/ I
1

IA

f(ta+(1-1b) dtJ

0
1

r

; 1
<| [ [a-pft = dr s | [ - @ - o] a [
f f f

0

1
2

Now using the fact that (A — B)Y < A? — B?, forany A > B > 0 and p > 1, we find that

1

%
f [ = pret — okt ] g+ f [#7542 — (1 = ] e
0

[T

< f [(1—t)”(P"”)—tP(Pk“)]dH 1 [tP(Pk“)—(1—t)”(’3"”)]dt
0

1

Nl

B 2 [1_ 1 ]
Cp(pk+A)+1 op(pka) |

1 ,q >1,1is s-convex function in the second sense, we have

Since

f,
/

If we put the inequality (18) and (19) in (17), we get

1

f (ta+(1—t)b)(th§f[ts

0

f ol

s+1

@)+ @ -ty

£ )t =

1

@[+

f @)+

ey

f(ta+@Q-1b)| dt] .

f @)

1 1
k+A ok+A| | g7 ; ! - 1 '
E)f)(l—t)ﬁ’ — ¢ |f (ta+(1—t)b)|dts(p(pk+/\)+1) (1 zp(pm)) [

2160

(17)

(18)

(19)

Y. o)
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By substituting the inequality (20) into (15), we obtain

f@)+f®) 1
2 200-a)' 77

,A+1

F@+T700f O]

o] s

g b—a f’(ﬂ)|q+f'(b)|qqio(kw(b—a)pk( 2 )5(1_ 1 )5
277 [w-a)f] s+1 T(pk+A+1) \p(pk+A)+1 op(pk+1)

)A+1
b—aT o [wl-a)] f%wr+f%wf”
s+1 )

2 Fo Jwb-a)f]

pA+1

Thus, the proof is completed. [J
Corollary 4.6. If we choose s = 1 in Theorem 4.5, then for all p, A,> 0 and w > 0, we have the following inequality

f@+f®) 1 ) )
2 2(b-a)’ F o ran [ —a)] [ prpaf @+ Tp e fO )]I
< —(Z?ﬂpoi\ﬁ-l [w(b—a)P ’ + | i
T2 Fwl-a)] 2

1,1
where -~ + = = 1.
P

Corollary 4.7. If we choose A = o, 6(0) = 1, w = 0 in Theorem 4.5, then we have the following inequality for
Riemann-Liouville fractional integrals

@+f0) T@+1)/,
H R s ) () o]

1 L[] PNET
Sb—a( 2 )f(l_i)n[ +(f(b)(l
2 \pa+1 2ra s+1

1,1
where + + = = 1.
P q

Corollary 4.8. Choosing s = 1 in Corollary 4.7, we have the the following inequality

f@+f0) T(+1) /0
| - s @+ (A 0]

boal 2 Vi 1 [lF@ 0]
5‘7{@57)@‘53[———7———1

1,1
where -~ + =+ = 1.
poq

Theorem 4.9. Let f : [a,b] |, q > 1, is s-convex function in
the second sense, then for all p, A,> 0 and w > 0, we have the following inequality for generalized fractional integral
operators:

f@)+f) 1
2 200—a)' 7

A+1
b—aTpin@l-a)]

’ q
N F oo [w (0 = a)] (7 wi

f(ﬂ) + jg,/\,u+;mf(b)]

=] e

| o)’
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where

® =02z [t 5 ]1_;
03 = O ok A +1 2pk+A

x([ﬁ(%;s+1,pk+/\+1)—ﬁ(%;pk+/\+1,s+l)+

2pk+)\+s -1 q
(pk + A + 5+ 1) 20k+A+s ])

fork =0,1,2,...and B (z; x, y) denotes incomplete Beta function.

Proof. Using the well known power mean inequality, we obtain

1
f’(l _ t)pk+)\ _ tpk+)\|
0

< [f’(l — t)Pk+/\ _ tpk+A| dtJ [f‘(l _ t)pk+/\ _ tpk+A|
0 0

-1 1
2 1 i
< (pk+ 1T 1 [1 - 2pk+/\]) [fl(l — p)PkA tpk+/\‘
0

q . .
,q 21, is s-convex function in the second sense, we have

£/ (ta+ (1 - t)b)|dt

fwm+u—gmfm]

f%m+a—ﬂwﬁm].

As

fl

fta+ 1 -Db)| dt

1
f)(l _ pypkeA tpk+A|
0

1

< f|(1 _ t)pk+/\ _ tpk+/\| [ts
0

£ @)+ @ -ty

f )] at

pk+A+s _
:[ﬁ(%;s+1,pk+)\+1)—‘8(%;pk+/\+1,s+1)+ 2 ! ][

(pk + A + s + 1) 20k+A+s
By substituting inequalities (21) and (22) into (15), we find that

fl@)+ fb) 1 7
2 2 (b _ a)/\ 7:5/\_‘_1 [w (b _ {Il)p] pAb—w

@l +|r ®f])

f(ll) + jg,A,a+;a)f(b)]|

et
- 27—’;“1 [w(®-a)’]
Xia@ﬁ@ww 2 [P_l]ﬂ
— IF'(pk+A+1) \pk+A+1 2pk+A
1 1
X([ﬁ(i;s+l,pk+/\+1)—ﬁ(§;pk+)\+1,S+1)—

b—aTpialwE-ay]

pA+1
2 ?‘gﬁ/\ﬂ [w(® - a)’]

2pk+/\+s -1 %
(pk + A + s + 1) 20k+A+s ])

o)

(Il @f+

which completes the proof. [

f/ (ﬂ)’q T

2162

(21)

(22)

F ol
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Corollary 4.10. If we choose s = 1 in Theorem 4.9, then for all p, A, > 0 and w > 0, we have the following inequality

@+ £b) !
_ . .
2 20-0'F, Wb -a)] [T r1f @+ T O

b—a T [w®—a)]

—a’ pA+l

: (
2 fli/\-%—l [w (b~ a)P]

£ @[+ ®f])

where

_ 1-1 1 _ 1
9s1(k) = o277 ( pk+ A +1 (1 20k ))

fork=0,1,2,...

Remark 4.11. If we choose A = a, 6(0) = 1, w = 0 in Theorem 4.9, then Theorem 4.9 reduce to Theorem 4 proved
by Set et al. in [18].

Corollary 4.12. Choosing A = a, 0(0) =1, w = 0 in Corollary 4.10, we get

@+fb) T@+1) 1/, a boa( 1 :
T 10 e o+ (o] S (5 (- )

a+1 2a

@ +|f (b)m)% .

5. Trapezoid Type Inequalities for Twice Differentiable Functions with Generalized Fractional Integral
Operators

Now, similarly, we will present some refinements of the classical trapezoid type inequalities for function
whose second derivative in absolute value is s convex via generalized fractional integral operators.

Lemma 5.1. Let f : [a,b] — R be twice differentiable function on (a,b) with a < b. If f”” € Lla,b], then for all
p,A, > 0and w > 0, we have the following identity for generalized fractional integral operators:

f@ + ) 1 . .
2 20-0' ], [w (b—a)”][ bl @+ T g O) (23)

,A+1

1

f Fonea [0 0 —af’]f7 (ta + (1= ) ) dt

0

B (b—a)?
27, [w -]

1
- f (1-pM! F oo [0 (0 =) (1= D] £ (ta + (1 = 1) b)dt
0

1
_ f PAFe L [wb—a) #] £ (ta+ (1~ 1)) dt},
0
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Proof. We have

K

f Forsa [ @ = a)] f7 (ta + (1 = D) b) dt
0

1

- f (1= Fy o [wb-a) (L= tP]f7 (ta+ (1 - D b)dt
0
1

- f T [w b —a)f ] £ (ta+ (1 - D) dt
0
= K -Ky—Ks.

Integrating K as:

7w -]

1
Kl:7—';A+2[w(b—a)”]ff”(ta+(1—t)b)dt— T— [f'(b) - f'@)].
0

Using integration by parts twice, we have

K>

f DY F [l —a) (1= f" (ta + (1 -t b)dt

0

Fo o0 (b —ay] 1
= )~ f =0 F0 [wb—a) (1= °]F (ta+ (1 - ) b)dt

b
F o pen [0 (0= )] 7’“ [w (b -a)]
pA+2 , pA+1
= b b
O E e e L
1
1 A-1
+ s | A= F [wb-a)f (1-"]f(ta+ (1 -t)b)dt
(b —a) Of o
[w (b - a)°] F o [w b —a)]
_ p A+2 pA+1
- b—-a f (b) (b _ a)z f(b)

b

+m f (c=a) "7y [w(x -] f () at,

and similarly

1
K; = f t“l?p‘j Wl —a) ] f (ta+ (1 —t)b)dt

T wl-ay] F e [0 (0 —a)]
_ p,A+2 , P A+1
- b—a f (ﬂ) (b _ a)2

fl@)

f (0= 7, [0 6= 0] f () .

2164

(24)

(25)

(26)

(27)
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If we put the equalities (25), (26) and (27) in (24), then we obtain

7_-;)\4.1[ w (b _a)p]
= o ar [f(@) + £(b)] (28)

- sz(x—w“sw o - 0] £ @)

—m f (b=0""F [wb -0 f () dt

TpG)Hl [w (b —a)’] 1

(b—a) [f(@) + f(D)] - —( T [J o sad @+ T f(b)] )

Mutiplying both sides of (28) by #ﬁ;_mp],
pA+L

we can obtain desired identity (23). [

Theorem 5.2. Let f : [a,b] — R be twice differentiable function on (a,b) witha < b. If | f”| is s-convex function in
the second sense, then for all p, A,> 0 and w > 0, we have the following inequality for generalized fractional integral
operators:

fla) + f(b) 1
- o . b
2 2(b-a)' f“m [ (b - a)"] [T s10f @ + T3 g O)
_ (-0 IR . y
T2 Pl 7 Al ol o
where
pk+A+1

o4s(k) = G(k)[ j —5(5+1,pk+A+2)]

(s+1)(pk+A+s+2
fork=0,1,2,...and B(x,y) is the Beta function defined by

1

B(x,y) = f £ (1 - pYldt.

0

Proof. Taking modulus both sides of (23) and using the generalized triangle inequality, we have

f(a) + f(b) 1
_ o 4 b
2 2(b—a)’ Forn [w(® - a)’] [ pabmiof @+ T pannf( )] (29)
1
(b — a)? o (k) w* (b — a)™* AT pkidel
2 1-(1-1t)P el B 1-t)b)dt
2?;3“ (b—a)] F(pk+A+2) J r-a- |77t + -0
1
k
(b — El 2 : k) wk (b — a)P [1 _ (1 _ t)pk+/\+l _ tpk+A+l] f// (t()l + (1 _ t) b)|dt

_ZT”AH[w(b—a)p] F(pk+)\+2)

because 1 — (1 — )P+ — pok+A+1 > 0 forall £ € [0,1].
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Since

is s-convex function in the second sense, we obtain

fll

[1 —(1- t)Pk+A+1 _ tpk+)\+1]

£ (ta+ (1 - t)b)|dt (30)

s

1
< f[]. - (]_ — t)Pk+/\+1 _ tpk+/\+1] [ts f// (ﬂ)| + (1 _ t)s f// (b)” dt
0
k+A+1
= [(S+1)p(p;+;+s+2) _ﬁ(s+1,pk+A+2):|[fl/(a)|+ f”(b)”

where B(x, y) is the Beta function. Using the inequality (30) in (29), we have

f@+fb) 1
2 200-a)' 77, [wb-a)]

2

[T5 s f @ + T 0 f O]

G [
[w (b - a)’]

£ @)+

2F©C f” (b)”

p,A+1

00

Xzo(k)wk(b—a)Pk pk+A+1
T(pk+A+2) |(s+D(pk+A+5+2)

—ﬁ(s+1,pk+)\+2)]

k=0

(b —ap T om0 (0 —0)]
2 Fo Jwb-a)l] [

pA+1

f @)+ o]

which completes the proof. [

Corollary 5.3. If we choose s = 1 in Theorem 5.2, then for all p, A, > 0 and w > 0, we have the following inequality

f@)+ f0) !
_ . -
? 2@‘“”7?M1wmb-mﬂ[ s f @+ T O)
(b -ap Fons0@-0"T )
T wema Ol ol

where as(k) = (pk + A)o(k), k=0,1,2,....

Corollary 5.4. If we take A = o, 6(0) = 1, w = 0 in Theorem 5.2, then we have the following inequality for
Riemann-Liouville fractional integral

@+ f0) T(a+1)/, )
‘f : erf B 2(; _+a)a [(5-5) @ + (1::) (b)]’

(b_a)Z[ 1 ,B(s+1,a+2)][

-2 (s+1)(a+s+2)_ a+1

£ @]+ @]

Corollary 5.5. Choosing s = 1 in Corollary 5.4, we obtain

fu (ﬂ)) +
2

f@+fb) T(a+1) a(b - a)? [

o . f ©)
2 uhwwﬁhﬁw“%%ﬂwﬂszm+nm+m }
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Theorem 5.6. Let f : [a,b] — R be twice differentiable function on (a,b) with a < b. If f”’q, g > 1, is s-convex
function in the second sense, then for all p,A,> 0 and w > 0, we have the following inequality for generalized
fractional integral operators:

f@) + f(b) 1 ) U
2 2 (b-a)* Fo o [ (B —=a)] [ P/A,b—;wf @+J, p,/\,a+;mf (b)]
pA+
_t=ap T @O0} (@l + [ o)
T2 Fllw-a)] s+1

where Il—] + % =1and

1

2 P
96(k) = (k) l_;o(karAJrl)Jrl) '

fork=0,1,2,...

Proof. Using the well known Holder inequality, we have

[1 - (1 — t)Pk+A+1 _ tpk+/\+l] f/r (tﬂ + (1 _ t) b)| dt

S

1 1
q

£ (ta+ (1= 1)b)| dt] .

1

1 P
< [1 —(1- t)pk+/1+l _ tpk+A+1]p dt] [
J /

0

Using the fact that
(A-BY <A -PB¥
forany A > B >0andp > 1, we get

[1 -(1- t)pk+/\+1 _ tpk+/\+1]p <1-(1- t)]ﬂ(pkwul) _ tp(pk+A+1) (31)

1 , we obtain

for any t € [0, 1]. Using the inequality (31) and s-convexity of |f”’

[1 — (1 — t)pk+)\+1 _ tkarAJrl] f// (tﬂ + (1 _ t) b)| At (32)

s

1 P g
< {f [1 —(1- t)p(pk+/\+l) _ tp(pk+/\+1)] dt] [f [ts ‘fﬂ(a)ri +(1 -1y I (b)lq] dt
0

0

_(1 ) )}1’ f”(ﬂ)|q+ f// (l’))|q %
U plok+ A+ 1) +1 s+1 '
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By substituting inequality (32) into (29), we have

f@)+ f(b) 1
_ o 0 b
2 206-0)" Ty, [wb-0)] [ 5010 F O+ Ty O
3 (b - a)? @[+ @) % i o (k) w* (b — a)* (1 B 2 )5
_Zf'pﬁﬂ[w(b—a)”] s+1 = T(pk+A+2) plpk+A+1)+1
- T [0 C=ar] (|fr@| + | o))
2 F o [ =] s+1

where o4(k), k = 0,1,2, ... are defined as Theorem 5.6. The proof is completed. [

Corollary 5.7. If we choose s = 1 in Theorem 5.6, then for all p, A, > 0 and w > 0, we have the following inequality

f(a) + £(b) 1 - "
2 2 (b —a)* F O lw(b—a)] [ pab—iof @+ Tp o f (b )]
pA+
b= T [0 ] (|l + [ @f )
T2 Falwt-aP] 2

where o¢(k), k = 0,1,2, ... are defined as Theorem 5.6.

Corollary 5.8. If we take A = a, 0(0) = 1, w = 0 in Theorem 5.6, then we have the following inequality for
Riemann-Liouville fractional integral

@+ fb) T(a+1) /., §
‘fa erf _ z(baja)a (1) (@) + (12 £) (b)]’

_ b-ap > (@ + | o'y
S22+ pla+1)+1 s+1 ‘

Corollary 5.9. Choosing s = 1 in Corollary 5.8, we obtain

f@+f) T(+1)r, a
‘ a ' ‘2(;_+a)“ [(Ib,f)(a)+(la+f)(b)]‘

_b=ap () 2 Y@l + | o)y
“2@+1)\ pla+1)+1 2 ‘

Theorem 5.10. Let f : [a,b] — R be twice differentiable function on (a,b) with a < b. If } f” 7 q = 1, is s-convex
function in the second sense, then for all p,A,> 0 and w > 0, we have the following inequality for generalized
fractional integral operators:

f@)+ f(b) 1
_ 4 o b
2 2(b-a)’ F o [w® - a)’] [ ool @+ Tpraof( )]
(b - 11)2 7:;5\:'2 [w (b B a)p] 17 q 7 q %
< ol @ o]

p,A+1
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where

1

pr+ A+l (s+1 k+/\+2)§
(s+1)(pk+A+s+2) pls+Lp

2 =3
075(k) = (k) (1 - MZ)

fork=0,1,2,....

Proof. Using the well known power mean inequality and s-convexity of we have

f/

f[l —(1- t)pk+A+1 _ tpk+A+1]

0

£ (ta+ (1 - t)b)|dt (33)

_1
1'1

1 1
< [f [1 —(1- t)pk+/\+1 _ tpk+/\+1] dt] [f [1 —(1- t)pk+A+1 _ tpk+A+1]
0 0
pk+A+1 _ pk+A+1] [4s
5(1 pk+/\+2) [f[l — 1) t [t

_(; 2\ pk+A+1 Lok aa2
"\ pk+A+2 (s+1)(pk+A+s+2) “PL+Lpk+a+D) [

where B (x, y) is the Beta function. By substituting inequality (33) into (29), we have
f@)+ 1) 1
2 2(b-a)* 7:"

(b—ay [
[w (b —a)’]

£ (ta+ (1 -1)D)| dt]

1

£ )] dt]

w1 ol

@)+ (@ -ty

f// (ﬂ)|q

f(ll) + jg,/\,u+;mf(b)]

[ZU (b - a)”] [ p,Ab—w

0,A+1

< 57 @l +17 of
0 "+1f ]

o (k) w* (b — a)™ 2 - pk+A+1 i
XZ‘ Tkt A2 (L pkxi+2) |GeD(krasssy PETLPAETAFD)

_(b-ap F o [w (0 =) ]

17 q
2 Foa [w (b —a)] [f (a)|

f// (b ‘ ]
which completes the proof. [

Corollary 5.11. Ifwe choose s = 1 in Theorem 5.10, then for all p, A, > 0 and w > 0, we have the following inequality

fla)+f(b) 1
: —w +j(7 a+;w b
? 200-0)" 7, Forn [w (b —a)’] [ pt=saf @+ Tpppuio )]
(b - a)z p)\+2[ (b - ] " q , g 1
= o @\ +|f” O['|"
7 7@ O O]
where
_ 2 = 1 pk+A+1 1 i
07’1(k)_o(k)(1_pk+A+2) [pk+)\+3( 2 _pk+/\+2)]

fork=0,1,2,..
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Corollary 5.12. If we take A = @, 6(0) = 1, w = 0 in Theorem 5.10, then we have the following inequality for
Riemann-Liouville fractional integral

‘f @ ;f O 2r ((: _+a1)i (1) (@) + (1% £) (b)]’

= 2(120::-1)12) (-3 : 2)1; [(s ¥ 1)0((025 Ty PErlax 2)]}7 [ @l + 7" o]
Corollary 5.13. Choosing s = 1 in Corollary 5.12, we obtain

L0 T D+ ()0

<t - 2) [ (- ) I el o

6. Concluding Remarks

In this paper, we established the Hermite-Hadamard and trapezoid type inequalities for mappings
whose first and second derivatives in absolute value are s-convex and related results to present new type
inequalities involving generalized fractional integral operator. The results presented in this paper would
provide generalizations of those given in earlier works. The findings of this study have several significant
implications for future applications.
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