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Abstract. We present a new spectral conjugate gradient method based on the Dai–Yuan strategy to solve
large-scale unconstrained optimization problems with applications to compressive sensing. In our method,
the numerator of conjugate gradient parameter is a convex combination from the maximum gradient
norm value in some preceding iterates and the current gradient norm value. This combination will try to
produce the larger step-size far away from the optimizer and the smaller step-size close to it. In addition,
the spectral parameter guarantees the descent property of the new generated direction in each iterate.
The global convergence results are established under some standard assumptions. Numerical results are
reported which indicate the promising behavior of the new procedure to solve large-scale unconstrained
optimization and compressive sensing problems.

1. Introduction

Consider the following unconstrained optimization problem

min f (x)
s.t. x ∈ Rn,

(1)

for which f : Rn
−→ R is a continuously differentiable function and bounded from below. There are many

kinds of iterative methods to solve unconstrained optimization problems including the Newton method
[28], the steepest descent method [29], the conjugate gradient methods [11, 13, 16, 23], the quasi-Newton
methods [9, 18–20], line search methods [9, 22] and trust-region methods [26, 34, 37, 40].

Notation: Let us denote ‖ · ‖ as the Euclidean norm, the gradient of f by 1(x) := ∇ f (x) at the point x,
N0 :=N ∪ {0} and ‖x‖M :=

√

xTMx as the associated M-norm where M ∈ Rn×n is a positive-definite matrix.
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Conjugate gradient methods [13, 16, 22, 24, 30] are the powerful classes of iterative methods to solve
unconstrained optimization problems, which are suitable especially for the large-scale problems due to
the simplicity of their iterates and low memory requirements. Furthermore, these methods have strong
local and global convergence properties [3, 11, 23, 31]. A nonlinear conjugate gradient method generates a
sequence {xk}k≥0 by starting from an initial point x0 ∈ Rn and using the iterative scheme

xk+1 := xk + αkdk, k = 0, 1, . . . , (2)

where xk is the current iterate, dk is a search direction and αk > 0 is a step-size, determined by the exact
or inexact line search methods. The exact line search methods are difficult or even impossible to seek in
practical computation. Some inexact line search methods have been provided in [28] such as Armijo and
Wolfe line searches. The Armijo condition is presented as monotone and nonmonotone strategies. The
monotone Armijo line search guarantees the descent property of the sequence { fk}k≥0, i.e.,

fk+1 < fk, ∀k ≥ 1, (3)

in which fk := f (xk). Although the nonmonotone strategies do not guarantee the descent property (3) are
effective or even powerful in some iterates, especially when the iterates are trapped in a narrow curved
valley of objective functions. Recently, several nonmonotone line search methods are presented that may
decrease the number of function evaluations [21, 39].

In conjugate gradient methods, the direction dk is obtained by using the gradient vector of new iterate
and the previous direction. In other words, the direction dk is defined by

dk :=

−1k, if k = 0,
−1k + βkdk−1, if k ≥ 1,

(4)

where 1k := 1(xk) and βk ∈ R is a parameter that its different choices lead to produce various nonlinear
conjugate gradient methods. The most well-known nonlinear conjugate gradient methods are such as

βFR
k :=

‖1k‖
2

‖1k−1‖
2 , Fletcher-Reeves (FR) [16] (5)

βHS
k :=

1T
k yk−1

dT
k−1yk−1

, Hestenes-Stiefel (HS) [24] (6)

βPR
k :=

1T
k yk−1

‖1k−1‖
2 , Polak-Ribière (PR) [31] (7)

βDY
k :=

‖1k‖
2

dT
k−1yk−1

, Dai-Yuan (DY) [13] (8)

βHZ
k := βHS

k − 2‖yk−1‖
2

dT
k−11k

(dT
k−1yk−1)2

, Hager-Zhang (HZ) [22] (9)

where yk−1 := 1k − 1k−1. In the case that the objective function f (x) is strictly convex quadratic and the exact
line search is used, all choices for the parameter βk are equivalent, but each choice for this parameter leads
to different performance for a general function cf. [28].

Content. In this paper, we produce a new spectral conjugate gradient method to solve unconstrained
optimization problems while the βk’s of new approach will be produced based on βk’s of DY method. We
use a kind of nonmonotone line search to determine the step-size in each iterate. The descent property and
global convergence of proposed algorithm will be established. Numerical results show that our method has
low computational cost. Furthermore, the new algorithm will be employed to solve compressive sensing
problems.
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The remaining of this paper is organized as follows. In Section 2, we describe a new spectral conjugate
gradient algorithm to solve unconstrained optimization problems. In next section, descent property and
global convergence of new algorithm will be investigated. Preliminary numerical results are reported
in Section 4 for unconstrained optimization problems. In Section 5, we employ new approach to solve
compressive sensing problems. Finally, some conclusions are given in Section 6.

2. New spectral conjugate gradient method

In this section, we first introduce a new parameter of our conjugate gradient method based on DY
nonlinear conjugate gradient method. Next, the spectral parameter to guarantee the descent property of
our algorithm will be presented and then described a New Spectral Conjugate Gradient Algorithm (NSCG)
to solve (1).

In 1999, Dai and Yuan [13] presented a nonlinear conjugate gradient method that always generates
descent direction by using the standard Wolfe conditions and its global convergence is obtained whenever
the Lipschitz assumption holds for 1. In NSCG Algorithm, wherever 1T

k dk−1 > 0, the new parameter βN
k

is introduced by using βDY
k . In parameter βN

k , the numerator is an efficiency convex combination from the
maximum gradient norm value in some preceding iterates and a current gradient norm value. In other
words, βN

k is presented as follows:

βN
k :=

Γk

dT
k−1yk−1

, (10)

where Γk is the convex combination

Γk := η 1l1(k) + (1 − η)‖1k‖
2, (11)

while η ∈ (0, 1) and

1l1(k) := max
0≤ j≤n1(k)

‖1k− j‖
2, k ∈N0, (12)

in which n1(0) := 0 and 0 ≤ n1(k) ≤ min{n1(k − 1) + 1,N1}, with N1 ≥ 0. Note that l1(k) denotes one of the
iterations where the maximum is attained. For the case that 1T

k dk−1 ≤ 0, we use βFR
k as the conjugate gradient

parameter in NSCG Algorithm.
Birgin and Martı́nez [6] were the first researches to introduce the spectral conjugate gradient method

to solve unconstrained optimization problems. In spectral conjugate gradient methods, the direction is
determined by

dk :=

−1k, if k = 0,
−θk1k + βkdk−1, if k ≥ 1,

(13)

in which θk is called as spectral parameter. To establish the descent property of NSCG Algorithm (see
Lemma 3.2) and to improve the performance numerical, the spectral parameter is chosen by

θ1
k := (1 + η)

1l1(k)

‖1k‖
2 , (14)

whenever 1T
k dk−1 > 0. Otherwise, it is assumed that

θ2
k := 1 +

1T
k dk−1

‖1k−1‖
2 . (15)

Finally, we use a nonmonotone Armijo-type condition to obtain the step-size αk in order to complete
our algorithm. Recently, Ahookhosh et al. [2] presented the following nonmonotone strategy:

f (xk + αkdk) ≤ Rk + γαk1
T
k dk, (16)
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for which γ > 0 and

Rk := νk fl2(k) + (1 − νk) fk, (17)

where νk ∈ [νmin, νmax], νmin ∈ [0, 1) , νmax ∈ [νmin, 1] and

fl2(k) := max
0≤ j≤n2(k)

{ fk− j}, k ∈N0, (18)

in which n2(0) := 0 and 0 ≤ n2(k) ≤ min{n2(k − 1) + 1,N2}, with N2 ≥ 0. Note that l2(k) denotes one of the
iterations where the maximum is attained.

Based on the above expression, a new iterate of NSCG Algorithm can be obtained by (2) for which dk is
computed by

dk :=

−θ1
k1k + βN

k dk−1, if 1T
k dk−1 > 0,

−θ2
k1k + βFR

k dk−1, if 1T
k dk−1 ≤ 0.

(19)

We can outline our new procedure in Algorithm 1.

Algorithm 1: A New Spectral Conjugate Gradient Algorithm (NSCG)
Input: An initial point x0 ∈ Rn; η, σ ∈ (0, 1); γ, ε > 0; ν0 ∈ [νmin, νmax]; N1,N2 > 0, 0 < νmin < νmax < 1

and kmax.
1 begin
2 n1(0) = 0; n2(0) = 0; f0 := f (x0); 10 := 1(x0); d0 := −10; R0 := f0; k := 0;
3 while ‖1k‖ ≥ ε & k ≤ kmax do
4 αk := 1;
5 calculate f (xk + αkdk);
6 while f (xk + αkdk) > Rk + γαk1

T
k dk do

7 αk := σαk;
8 compute f (xk + αkdk);
9 end

10 xk+1 = xk + αkdk; fk+1 := f (xk+1); 1k+1 := 1(xk+1); yk := 1k+1 − 1k;
11 if 1T

k+1dk > 0 then
12 update n1(k + 1) = min{n1(k),N1};
13 calculate Γk+1 by (11), βN

k+1 by (10) and θ1
k+1 by (14);

14 dk+1 := −θ1
k+11k+1 + βN

k+1dk;
15 else
16 determine the parameter βFR

k+1 by (5) and θ2
k+1 by (15);

17 dk+1 := −θ2
k+11k+1 + βFR

k+1dk;
18 end
19 update n2(k + 1) = min{n2(k),N2};
20 generate Rk+1 by (17);
21 k← k + 1;
22 end
23 xb := xk; fb := fk;
24 end

In this algorithm, the cycle starting from Line 6 to Line 9 is called backtraking loop. Such an algorithm
has many benefits some of which are listed as follows:

• Spectral conjugate gradient algorithms have low requirement memory and strong local and global
convergence properties, especially for large-scale problems, see [3, 11, 23, 31].
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• It is believed that we need to produce a larger (smaller) parameter βk whenever iterations are far
away from (near) the optimizer [23, 28] but the DY method can not perform this fact; because the
numerator of βDY

k in the cases where iterations are near the optimizer may tends to zero. On the other
hand, since the numerator of this patameter is the quantity ‖1k‖

2 with high oscillation, it is possible
to be small far away from the optimizer, leading to the unsuitable numerical reasults. To overcome
these shortcomings, NSCG Algorithm by using advantages of 1l1(k), concidered as (12), contorols the
amount βN

k . Let us now describe how to this process. This fact that 1l1(k) is maximum gradient norm
value in some preceding iterations will prevent producing the very smaller βN

k whenevere iterations
are not near the optimizer; in addition, this fact along with how to update n1(k) (Line 12) prevents
producing the large βN

k near the optimizer.

3. Convergence theory

We first investigate the descent property and then global convergence of Algorithm 1 in this section.
Consider the following assumptions to analyze the convergence results of the proposed algorithm:

(H1) For any x0 ∈ Rn, the level set L(x0) := {x ∈ Rn
| f (x) ≤ f (x0)} is bounded.

(H2) The gradient of f is Lipschitz continuous, i.e., there exists constant L > 0 such that

‖1(x) − 1(y)‖ ≤ L‖x − y‖, ∀x, y ∈ Rn.

To simplify the notation of global convergence, let us define

I1 := {k| 1T
k dk−1 > 0}, I2 := {k| 1T

k dk−1 ≤ 0},

where I1 contains the iterations of the extended DY method with the spectral parameter θ1
k and I2 contains

the iterations of FR method with the spectral parameter θ2
k .

Lemma 3.1. Let {xk}k≥0 be the sequence generated by Algorithm 1. Then, for any k ∈ I1, we have ‖1k‖
2
≤ Γk ≤ 1l1(k).

Proof. Using (11) and this fact that ‖1k‖
2
≤ 1l1(k), we get

‖1k‖
2 = η‖1k‖

2 + (1 − η)‖1k‖
2
≤ η1l1(k) + (1 − η)‖1k‖

2 = Γk ≤ η1l1(k) + (1 − η)1l1(k) = 1l1(k).

The following lemma ensures the descent property of the NSCG Algorithm, for any k ∈ I1 ∪ I2.

Lemma 3.2. Suppose that dk is the generated direction by Algorithm 1. Then, dk is a descent direction, i.e., 1T
k dk < 0.

Proof. We use the induction over k to prove this lemma. First, for k = 0, it can simply be obtained by
1T

k dk = −‖1k‖
2 < 0. By using the induction hypothesis, we have 1T

k−1dk−1 < 0. If k ∈ I1, then

dT
k−1yk−1 = 1T

k dk−1 − 1
T
k−1dk−1 > 1

T
k dk−1 > 0,

leading to

0 <
1T

k dk−1

dT
k−1yk−1

< 1. (20)

Recalling (10) and (19), along with Lemma 3.1 give

1T
k dk = −θ1

k‖1k‖
2 +

Γk

dT
k−1yk−1

1T
k dk−1

≤ −θ1
k‖1k‖

2 +
1l1(k)

dT
k−1yk−1

1T
k dk−1.
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From (14) and (20), we get

1T
k dk < −θ

1
k‖1k‖

2 + 1l1(k) = −(1 + η)
1l1(k)

‖1k‖
2 ‖1k‖

2 + 1l1(k) = −η1l1(k) < 0.

This inequality shows that dk is a descent direction.
For k ∈ I2, (15) and (19) result in

1T
k dk = −θ2

k‖1k‖
2 + βFR

k 1
T
k dk−1

= −
(
1 +
1T

k dk−1

‖1k−1‖
2

)
‖1k‖

2 +
‖1k‖

2

‖1k−1‖
2 1

T
k dk−1

= −‖1k‖
2 < 0. (21)

Hence, dk satisfies the descent property, for any k ∈ I1 ∪ I2.

Lemma 3.3. Suppose that the sequence {xk}k≥0 is generated by Algorithm 1 and (H1) holds. Then, we have
(1) the sequence { fl2(k)}k≥0 is non-increasing,
(2) limk→∞ fl2(k) = limk→∞ fk,
(3) limk→∞ Rk = limk→∞ fk.

Proof. See Lemmas 2.1 and 3.2 in [2].

Lemma 3.4. Suppose that dk is a descent direction and (H1) and (H2) hold. Then

∑
l2(k)−1

(
1T

l2(k)−1dl2(k)−1

)2

‖dl2(k)−1‖
2 < ∞.

Proof. First, the definition of fl2(k) implies that

Rk = νk fl2(k) + (1 − νk) fk ≤ νk fl2(k) + (1 − νk) fl2(k) = fl2(k),

leading to

f (xk + αkdk) ≤ fl2(k) + γαk1
T
k dk. (22)

The mean-value theorem, Cauchy-Schwarz inequality and (H2) result in

f (xk + αkdk) − fl2(k) ≤ f (xk + αkdk) − f (xk)

= αk1(xk + αktkdk)Tdk

= αk1
T
k dk + αk

(
1(xk + αktkdk) − 1k

)T
dk

≤ αk1
T
k dk + Lα2

k‖dk‖
2,

in which tk ∈ (0, 1). As long as the condition (16) is not satisfied

γαk1
T
k dk < f (xk + αkdk) − fk ≤ αk1

T
k dk + Lα2

k‖dk‖
2,

we obtain

αk1
T
k dk + Lα2

k‖dk‖
2
− γαk1

T
k dk > 0,

(1 − γ)αk1
T
k dk + Lα2

k‖dk‖
2 > 0,



H. Esmaeili, M. Rostami, M. Kimiaei / Filomat 32:6 (2018), 2173–2191 2179

yielding to

Lα2
k‖dk‖

2 > (γ − 1)αk1
T
k dk,

therefore

αk >
(γ − 1)1T

k dk

L‖dk‖
2 .

From (22), we now have∑
k

(−γαk1
T
k dk) ≤

∑
k

( fl2(k) − f (xk + αkdk)). (23)

Since l2(k) ≤ k, replacing k by l2(k) − 1 in (23) along with Lemma 3.3 implies that∑
l2(k)−1

(−γαl2(k)−11
T
l2(k)−1dl2(k)−1) ≤

∑
l2(k)−1

(
fl2(l2(k)−1) − fl2(k)

)
< C,

in which C > 0. Therefore,

C >
∑

l2(k)−1

(−γαl2(k)−11
T
l2(k)−1dl2(k)−1) >

∑
l2(k)−1

(1 − γ)γ
L

(
1T

l2(k)−1dl2(k)−1

)2

‖dl2(k)−1‖
2 ,

giving

∑
l2(k)−1

(
1T

l2(k)−1dl2(k)−1

)2

‖dl2(k)−1‖
2 < ∞.

Lemma 3.5. For any k ∈ I1, we have

0 ≤ βN
k ≤

1T
k dk

1T
k−1dk−1

.

Proof. From (11), it is clear that Γk ≥ 0. Also, we have 1T
k dk−1 > 0 for any k ∈ I1, therefore Lemma 3.2 implies

dT
k−1yk−1 = 1T

k dk−1 − 1
T
k−1dk−1 > 0.

By using (10), the parameter βN
k is non-negative.

For k ∈ I1, from (10), we have

η1l1(k) + (1 − η)‖1k‖
2 = βN

k dT
k−1yk−1 = βN

k 1
T
k dk−1 − β

N
k 1

T
k−1dk−1. (24)

By substituting the βN
k 1

T
k dk−1 = 1T

k dk + θ1
k‖1k‖

2 in (24) and with the use of (14), we obtain

βN
k =
1T

k dk + 1l1(k) + (η − 1)‖1k‖
2

1T
k−1dk−1

.

Since ‖1k‖
2
≤ 1l1(k), then 1l1(k) + (η − 1)‖1k‖

2
≥ 0 and therefore

1l1(k) + (η − 1)‖1k‖
2

1T
k−1dk−1

≤ 0.
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Finally, we get

βN
k =

1T
k dk

1T
k−1dk−1

+
1l1(k) + (η − 1)‖1k‖

2

1T
k−1dk−1

≤
1T

k dk

1T
k−1dk−1

.

In the next theorem, we prove global convergence of new algorithm.

Theorem 3.6. Let dk be a descent direction and {xk}k≥0 be the generated sequence by Algorithm 1. Moreover, suppose
that (H1) and (H2) hold. Then limk−→∞ inf ‖1k‖ = 0.

Proof. By contradiction, suppose that there exists a constant ζ > 0 such that ‖1k‖ > ζ, for any k. Let dk be the
generated spectral direction by (19). For i = 1, 2 and βk = βN

k , β
FR
k , we can obtain

‖dk‖
2 = (−θi

k1k + βkdk−1)T(−θi
k1k + βkdk−1)

=
(
θi

k‖1k‖
)2
− 2θi

kβkdT
k−11k + β2

k‖dk−1‖
2

=
(
θi

k‖1k‖
)2
− 2θi

k(dk + θi
k1k)T1k + β2

k‖dk−1‖
2

=
(
θi

k‖1k‖
)2
− 2θi

k1
T
k dk − 2

(
θi

k‖1k‖
)2

+ β2
k‖dk−1‖

2

= β2
k‖dk−1‖

2
− 2θi

k1
T
k dk −

(
θi

k‖1k‖
)2
.

By dividing both sides of this equality in (1T
k dk)2, we have

‖dk‖
2

(1T
k dk)2

=
β2

k‖dk−1‖
2

(1T
k dk)2

− 2θi
k

1T
k dk

(1T
k dk)2

−

(
θi

k‖1k‖
)2

(1T
k dk)2

. (25)

The remaindering of proof follows in the two cases:

Case (i): For k ∈ I1, by (25) and Lemma 3.5, we have

‖dk‖
2

(1T
k dk)2

=

(
βN

k

)2
‖dk−1‖

2

(1T
k dk)2

−

(θ1
k‖1k‖

1T
k dk

+
1
‖1k‖

)2
+

1
‖1k‖

2 ≤
‖dk−1‖

2

(1T
k−1dk−1)2

+
1
‖1k‖

2 .

Case (ii): For k ∈ I2, from (21) we have 1T
k dk = −‖1k‖

2. By setting this equation and (5) in (25) imply that

‖dk‖
2

(1T
k dk)2

=
‖dk‖

2

‖1k‖
4 =

(
βFR

k

)2
‖dk−1‖

2

‖1k‖
4 +

2θ2
k

‖1k‖
2 −

(
θ2

k‖1k‖
)2

‖1k‖
4

=
‖dk−1‖

2

‖1k−1‖
4 −

( 1
‖1k‖

−
θ2

k

‖1k‖

)2
+

1
‖1k‖

2

≤
‖dk−1‖

2

(1T
k−1dk−1)2

+
1
‖1k‖

2 .

For both cases, since ‖1k‖ > ζ, we have

‖dk‖
2

(1T
k dk)2

≤
‖dk−1‖

2

(1T
k−1dk−1)2

+
1
‖1k‖

2 ≤
‖dk−2‖

2

(1T
k−2dk−2)2

+
1

‖1k−1‖
2 +

1
‖1k‖

2 ≤ · · · ≤

k∑
i=0

1
‖1i‖

2 ≤
k
ζ2 .
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Therefore,

(1T
k dk)2

‖dk‖
2 ≥

ζ2

k
. (26)

Without loss of generality, we can let k := l2(k) − 1 in (26). Hence, we get

∑
l2(k)−1

(
1T

l2(k)−1dl2(k)−1

)2

‖dl2(k)−1‖
2 ≥

∑
l2(k)−1

( ζ2

l2(k) − 1

)
= ∞, (27)

which contradicts with Lemma 3.4. Therefore, the desired result is valid.

4. Preliminary numerical experiments

In this section, we investigate the efficiency of NSCG Algorithm to solve unconstrained optimization
problems. In experiments, we compare NSCG Algorithm with several versions of conjugate gradient meth-
ods, the details of which are as follows:

• CGDY: conjugate gradient proposed by Dai–Yuan [13],

• CGFR: conjugate gradient proposed by Fletcher–Reeves [16],

• CGPR: conjugate gradient proposed by Polak–Ribière [31],

• CGHZ: conjugate gradient proposed by Hager–Zhang [22].

All algorithms are implemented in Matlab 2011 programming environment on a 2.3Hz Intel core i3 processor
laptop and 4GB of RAM with the double precision data type in Linux operations system. Our experiments
are performed on a large-scale test functions of the nonlinear unconstrained optimization problems from
the CUTEst [10] library. The initial points are standard ones proposed in CUTEst. Since we are interested
in large-scale problems, we only consider problems with dimension at least 1000. Given in Table 1 are these
problems.

Here, we choose the parameters σ := 0.5, γ := 10−4 and N1 = N2 := 10. The parameter νk is updated by

νk :=

ν0/2, if k = 1,
(νk−1 + νk−2)/2, if k > 1,

in which ν0 := 0.15.
All algorithms are stopped whenever ‖1k‖ < 10−5 or the total number of iterates exceeds 20000. We have

implemented the NSCG Algorithm for several values of η ∈ {0.1, 0.15, 0.45, 0.85}, considered as NSCG-0.1,
NSCG-0.15, NSCG-0.45 and NSCG-0.85, respectively. We have used the performance profiles proposed
by Dolan and Moré [14] to display the performance of each algorithm where Ni, N f and Ct indicate the
total number of iterations, the total number of function evaluations and CPU times, respectively. Let us
consider P as designates the percentage of problems which are solved within a factor τ of the best solver.
The horizontal axis of the figure gives the percentage of the test problems for which a method is the fastest
(efficiency), while the vertical axis gives the percentage of the test problems that were successfully solved by
each method (robustness). Here, we have illustrated the results of NSCG Algorithm for values of parameter
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Table 1: List of test functions

Problem name Dim Problem name Dim
ARWHEAD 3000 DQRTIC 5000
BRYBND 10000 EDENSCH 10000
CHAINWOO 1000 ENGVAL1 10000
CRAGGLVY 1000 FMINSRF2 1024
DIXMAANA 9000 MOREBV 15000
DIXMAANB 9000 NLMSURF 5625
DIXMAANC 9000 PENALTY1 5000
DIXMAAND 9000 POWELLSG 1000
DIXMAANE 9000 POWER 1000
DIXMAANF 9000 QUARTC 5000
DIXMAANG 3000 RAYBENDL 2050
DIXMAANH 3000 SCHMVETT 2000
DIXMAANI 9000 SPARSQUR 10000
DIXMAANJ 3000 SPMSRTLS 1000
DIXMAANK 9000 SROSENBR 5000
DIXMAANL 9000 TOINTGSS 5000
DIXON3DQ 1000 VARDIM 3000
DQDRTIC 5000 WOODS 10000

η in Figure 1. Subfigures (a)-(c) of Figure 1 show that NSCG-0.1 is better than NSCG-0.15, NSCG-0.45 and
NSCG-0.85 about 37%, 33% and 30% of the most wins in Ni, N f and Ct, respectively.

In addition, NSCG-0.1 is compared with other conjugate gradient methods in Figure 2. Subfigures (a)-(c)
of Figure 2 show that NSCG-0.1 is better than CGDY, CGFR, CGPR and CGHZ about 30%, 39% and 30% of
the most wins in Ni, N f and Ct, respectively. Summarizing the results of this section, we see that NSCG-0.1
is comparable for large-scale unconstrained optimization problems.
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Figure 1: A comparison among NSCG-0.1, NSCG-0.15, NSCG-0.45 and NSCG-0.85 by performance profiles using the measures Ni,
N f and Ct: (a) displays the number of iterations (top); (b) shows the number of function evaluations (middle); (c) displays CPU times
(down), respectively.

5. Compressive sensing

Compressive sensing (CS) is a framework for signal reconstruction from a measurement vector, which is
inherently sparse. A signal x ∈ Rn is called sparse if most of its components are zero, i.e., ‖x‖0 := |{i | xi , 0}|
is small or there exists an orthonormal basis Φ such that x := Φc with c being sparse. Note that Φ is the
matrix with orthonormal column vectors. CS plays an important role in medical and astronomical imaging,
file restoration, image and video coding and other applications. This new research field was presented by
Donoho [15] and Candès et al. [7].

Put A ∈ Rm×n, m� n, is called sensing matrix. Then, CS problem is recover sparse signal x from

Ax = b,
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where b ∈ Rm is the vector of observations. The CS problem can be expressed as a constrained optimization
problem

min ‖x‖0
s.t. Ax = b

x ∈ Rn.
(28)

Therefore, we search for the most sparse vector consistent with the measured data Ax = b. Unfortunately,
`0-minimization is NP-hard in general. Hence, Chen et al. in [8] replaced the `0-norm by the closest convex
norm, which is the `1-norm. This leads to the minimization problem

min ‖x‖1
s.t. Ax = b

x ∈ Rn.
(29)
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Figure 2: A comparison among CGDY, CGFR, CGPR, CGHZ and NSCG-0.1 by performance profiles using the measures Ni, N f and
Ct: (a) displays the number of iterations (top); (b) shows the number of function evaluations (middle); (c) displays CPU times (down),
respectively.
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If the measurements are affected by noise, a conic constraint is required; i.e., the minimization problem
needs to be changed to

min ‖x‖1
s.t. ‖Ax − b‖2M ≤ ξ

x ∈ Rn,
(30)

with a carefully chosen ξ > 0. For a regularization parameter µ > 0, the problem (30) is equivalent to
unconstrained optimization problem

min Ψ(x) := f (x) + µ‖x‖1, (31)
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Figure 3: A comparison among CGDY, CGFR, CGPR, CGHZ and NSCG-0.1 by performance profiles using the measures Ni, N f and
Ct: (a) displays the number of iterations (top); (b) shows the number of function evaluations (middle); (c) displays CPU times (down),
respectively.

in which f (x) := 1
2‖Ax− b‖2M. Here, M is the m×m identity matrix. Since ‖x‖1 is not differentiable, (31) is not

smooth; hence, the smooth function is used

F(x) :=
n∑

i=1

√
x2

i + ε, (32)

in which ε > 0, to approximate the non-smooth term ‖x‖1 in problem (31). It is clear that F(x) tends to ‖x‖1
whenever ε→ 0. So, we have the smooth problem

min Ψ̃(x) := f (x) + µ
n∑

i=1

√
x2

i + ε, (33)
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Figure 4: A comparison among all algorithms. (a)-(d) show the diagrams of relative errors versus iterations for the Type 1 of matrix
A, respectively, with the noise levels (a) σ1 = σ2 = 10−1, ρ = 0.1, δ = 0.3; (b) σ1 = σ2 = 10−1, ρ = 0.2, δ = 0.2; (c) σ1 = σ2 = 10−7, ρ = 0.2,
δ = 0.3; (d) σ1 = σ2 = 10−7, ρ = 0.3, δ = 0.2.

for which µ := 2−4 and the gradient of Ψ̃(x) is considered as ∇Ψ̃(x) := ∇ f (x) + µ∇F(x), in which

∇ f (x) := ATM(Ax − b), ∇F(x) :=
( x1√

x2
1 + ε

, · · · ,
xn√

x2
n + ε

)
.

Now, we use NSCG-0.1 Algorithm to solve smooth problem (33) and compare it with several versions
of conjugate gradient methods, presented in Section 4, for which dk is computed by

dk :=

−θ1
k∇Ψ̃(xk) + ϑβN

k dk−1, if ∇Ψ̃(xk)Tdk−1 > 0,
−θ2

k∇Ψ̃(xk) + ϑβFR
k dk−1, if ∇Ψ̃(xk)Tdk−1 ≤ 0,

where ϑ = 10−9, θ1
k and θ2

k compute by (14) and (15), respectively. All parameters of proposed algorithms
are choosen similar to the previous section. We consider an average of five implementations of these
algorithms.
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Figure 5: A comparison among all algorithms. (a)-(d) show the diagrams of relative errors versus iterations for the Type 2 of matrix
A, respectively, with the noise levels (a) σ1 = σ2 = 10−1, ρ = 0.1, δ = 0.3; (b) σ1 = σ2 = 10−1, ρ = 0.2, δ = 0.2; (c) σ1 = σ2 = 10−7, ρ = 0.2,
δ = 0.3; (d) σ1 = σ2 = 10−7, ρ = 0.3, δ = 0.2.

To solve (33), all algorithms employ the parameters m := δn (the number of observations) and o := ρm
(the number of nonzeros) in which n ∈ {210, 211, 212

} and the amounts δ and ρ are given in Table 2.

We now introduce how to contaminate x̄ and b by impulse noise in the following in the procedure 1.
In this procedure, Line 2 returns the n-by-1 matrix containing zeros, Line 3 returns a random permutation
of the integers from 1 to n, Line 4 returns an o-by-1 matrix containing pseudo random values drawn from
the standard normal distribution and Lines 5 and 7 return x̄ and b, respectively, contaminated by impulsive
noise. In addition, σ1 and σ2 are presented in Table 3.

By the cosidered amounts for σ1, σ2, δ, ρ and the four proposed matrices for A, as follows:

Type 1. Gaussian matrix whose elements are generated from i.i.d normal distributionN(0, 1) (randn(m,n)),
Type 2. Gaussian matrix whose elements are generated from i.i.d normal distribution N(0, 1), which has
their columns scaled to unit norm,
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Procedure 1(for generating x̄ and b)
Input: n, o, σ1, σ2 and A

1 begin
2 x̄ := zeros(n, 1);
3 p := randperm(n);
4 x̄(p(1 : o)) := 2randn(o, 1);
5 x̄ := x̄ + σ2randn(n, 1);
6 sI := randn(m, 1);
7 b := Ax̄ + σ1sI;
8 end

Output: x̄ and b

Type 3. Hadamard matrix H which is a matrix of 1’s and -1’s whose columns are orthogonal,
Type 4. Partial 1-d discrete cosine transform matrix,
we get a total of 144 problems.

Table 2: Amounts of parameters ρ and δ

ρ δ ρ δ ρ δ
0.1 0.1 0.1 0.3 0.3 0.1
0.3 0.3 0.1 0.2 0.2 0.1
0.2 0.2 0.2 0.3 0.3 0.2

Table 3: Amounts of parameters σ1 and σ2

σ1 σ2 σ1 σ2

10−1 10−1 10−5 10−5

10−3 10−3 10−7 10−7

We update εk for function F(x) in each iteration by the following formula

εk := max{0.5εk−1, εm},

where ε0 := 50 and εm is precision machine.
In Subfigures (a)-(c) of Figure 3, NSCG-0.1 is compared with CGDY, CGFR, CGPR and CGHZ to solve

smooth CS problem. From Figure 3, it is clear that NSCG-0.1 in Ni, N f and Ct wins about 46%, 62% and
53%, respectively. Finally, Figures 4 and 5 report that NSCG-0.1 outperforms others algorithms with respect
to the relative error of step points via iterations.

6. Conclusion

In this paper, we have proposed a new spectral conjugate gradient method to solve unconstrained
optimization and CS problems. In the sense, the new conjugate gradient parameter has been introduced
based on DY method that try to produce the larger step-size far away from the optimizer and the smaller
step-size close to it. Also, the spectral parameter guarantees the descent property of the new approach.
Moreover, the global convergence of the new algorithm is investigated under some standard assumptions.
Finally, numerical experiments on the set of large-scale standard test problems point out that the proposed
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algorithm is efficient to solve unconstrained optimization problems. Furthermore, the new algorithm is
more efficient than some versions of conjugate gradient methods to solve CS problem.
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