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Abstract. In this paper, we study properties of the operator equation TT∗ = T+T∗ which T.T. West observed
in [12]. We first investigate the structure of solutions T ∈ B(H) of such equation. Moreover, we prove that
if T is a polynomial root of solutions of that operator equation, then the spectral mapping theorem holds
for Weyl and essential approximate point spectra of T and f (T) satisfies a-Weyl’s theorem for f ∈ H(σ(T)),
where H(σ(T)) is the space of functions analytic in an open neighborhood of σ(T).

1. Introduction

LetH be an infinite dimensional separable Hilbert space and let B(H), B0(H) denote, respectively, the
algebra of bounded linear operators, the ideal of compact operators acting on H . If T ∈ B(H), we shall
denote σ(T), σa(T), and σp(T) for the spectrum, approximate point spectrum, and point spectrum of T,
respectively. For T ∈ B(H), the smallest nonnegative integer p such that ker(Tp) = ker(Tp+1) is called the
ascent of T. If no such integer exists, we say that T has the infinite ascent. The smallest nonnegative integer
q such that ran(Tq) = ran(Tq+1) is called the descent of T. If no such integer exists, we say that T has the
infinite descent.

Let T ∈ B(H) be a solution of the operator equation

TT∗ = T + T∗. (1)

In [12], T. T. West observed that if T ∈ B(H) is compact and normal, then σ(T) is contained in the unit circle
with centre at 1 if and only if the operator equation (1) holds. From this paper we are interested in what
spectral properties hold for nonnormal solutions of the operator equation (1). In particular, we prove that
T ∈ B(H) is a polynomial root of solutions of the operator equation (1), then the spectral mapping theorem
holds for Weyl and essential approximate point specta of T, and from this, f (T) satisfies a-Weyl’s theorem
for f ∈ H(σ(T)), where H(σ(T)) is the space of functions analytic in an open neighborhood of σ(T).
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2. Preliminaries

An operator T ∈ B(H) is called upper semi-Fredholm if it has closed range and finite dimensional kernel
and is called lower semi-Fredholm if it has closed range and its range has finite co-dimension. If T ∈ B(H) is
either upper or lower semi-Fredholm, then T is called semi-Fredholm, and index of a semi-Fredholm operator
T ∈ B(H) is defined by

ind(T) := dimker(T) − dimker(T∗).

If the dimensions of ker(T) and ker(T∗) are finite, then T is called Fredholm. T ∈ B(H) is called Weyl if it
is Fredholm of index zero, and T is called Browder if it is Fredholm with finite ascent and descent. The
essential spectrum σe(T), the Weyl spectrum σw(T), and the Browder spectrum σb(T) of T ∈ B(H) are defined
as follows.

σe(T) := {λ ∈ C : T − λ is not Fredholm},

σw(T) := {λ ∈ C : T − λ is not Weyl},

and
σb(T) := {λ ∈ C : T − λ is not Browder},

respectively. Evidently
σe(T) ⊆ σw(T) ⊆ σb(T) = σe(T) ∪ acc σ(T),

where we write accK for the accumulation points of K ⊆ C.
By definition,

σea(T) := ∩{σa(T + K) : K ∈ B0(H)}

is the essential approximate point spectrum,

σab(T) := ∩{σa(T + K) : TK = KT and K ∈ B0(H)}

is the Browder essential approximate point spectrum.
If we write isoK = K \ accK, then we let

π00(T) := {λ ∈ isoσ(T) : 0 < dimker(T − λ) < ∞ },

πa
00(T) := {λ ∈ isoσa(T) : 0 < dimker(T − λ) < ∞ },

p00(T) := σ(T) \ σb(T),

and
pa

00(T) := σa(T) \ σab(T).

We say that Weyl’s theorem holds for T ∈ B(H) if there is equality

σ(T) \ σw(T) = π00(T),

that Browder’s theorem holds for T ∈ B(H) if there is equality

σ(T) \ σw(T) = p00(T),

that a-Weyl’s theorem holds for T ∈ B(H) if there is equality

σa(T) \ σea(T) = πa
00(T),

and that a-Browder’s theorem holds for T ∈ B(X) if there is equality

σa(T) \ σea(T) = pa
00(T).



I. J. An, E. Ko / Filomat 32:6 (2018), 2247–2256 2249

It is known ([6, 7, 9]) that we have

a-Weyl’s theorem ⇒ Weyl’s theorem ⇒ Browder’s theorem;

a-Weyl’s theorem ⇒ a-Browder’s theorem ⇒ Browder’s theorem.

In terms of local spectral theory ([1]) we recall that the local resolvent set ρT(x) of T at the point x ∈ H is
defined as the union of all open subsets U of C for which there is an analytic function f : U → H which
satisfies (T − λ) f (λ) = x for all λ ∈ U. The local spectrum σT(x) of T at the point x ∈ H is defined as
σT(x) := C \ ρT(x). We define the local spectral subspaces of T by

HT(F) := {x ∈ H : σT(x) ⊆ F} for all sets F ⊆ C.

We say that T ∈ B(H) has the single valued extension property at λ0 ∈ C if for every open neighborhood U
of λ0 the only analytic function f : U −→ H which satisfies the equation

(T − λ) f (λ) = 0

is the constant function f ≡ 0 on U. The operator T is said to have the single valued extension property if
T has the single valued extension property at every λ ∈ C.
Evidently, every operator T, as well as its dual T∗, has the single valued extension property at every point
of the boundary ∂σ(T) of the spectrum σ(T), in particular, at every isolated point of σ(T). We also have (see
[1, Theorem 3.8]) that if T − λ has finite ascent, then T has the single valued extension at λ, and dually, if
T − λ has finite descent, then T∗ has the single valued extension property at λ. Moreover, it is well known
from [1] that if T − λ is semi-Fredholm, then their converses hold.

3. Main results

In this section, we study properties of solutions T satisfying the operator equations TT∗ = T∗ + T.
Throughout this papaer, we denote by S(H) the collection of all solutions that the operator equation TT∗ = T∗ + T
holds, i.e.,

S(H) = {T ∈ B(H) : TT∗ = T∗ + T}.

We start this section with the following theorem.

Theorem 3.1. An operator T belongs to S(H) if and only if T = U∗ + I where U is an isometry. In particular,
if T ∈ S(H), the following statements hold.
(i) T = V ⊕ S∗+ + I on H =M⊕M⊥ for some subspaceM of H that reduces U, where V∗ is unitary onM
and S+ is a unilateral shift onM⊥.
(ii) ker(T∗ − λ) ⊆ ker(T − µ) if λ , 1, where µ = λ

λ−1 and ker(T∗ − I) = {0}.
(iii) If λ ∈ σa(T∗) (respectively, λ ∈ σp(T∗)), then µ ∈ σa(T) (respectively, µ ∈ σp(T)), where µ = λ

λ−1 . In
particular, if T∗ − I has dense range, then σa(T∗) ⊂ σa(T(T − I)−1) (respectively, σp(T∗) ⊂ σp(T(T − I)−1)).

Proof. If T ∈ S(H), then TT∗ − T − T∗ = 0. So we have that T(T∗ − I) − (T∗ − I) = I or (T − I)(T − I)∗ = I.
This means that T∗ − I is an isometry. Set U := T∗ − I. Then T = U∗ + I. Conversely, if T = U∗ + I, then
TT∗ = (U∗ + I)(U + I) = T + T∗, so that T ∈ S(H).

(i) Since U is an isometry, in this case, the result follows from [10].
(ii) Suppose that x ∈ ker(T∗−λ). Then T∗x = λx. Since TT∗ = T∗+T and λ , 1, we have that λ

λ−1 T∗x = Tx.
Therefore if µ = λ

λ−1 , then x ∈ ker(T − µ), so that we get that ker(T∗ − λ) ⊆ ker(T − µ). Since T∗ − I is an
isometry, it is trivial that ker(T∗ − I) = {0}.
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(iii) Suppose that λ ∈ σa(T∗). Then there exists a sequence (xn) ⊂ H with ‖xn‖ = 1 for all positive integer
n and (T∗ − λI)xn → 0 as n→∞. Let yn := (T∗ − λI)xn. Then T∗xn = λxn + yn and yn → 0. So we have that

TT∗xn = λTxn + Tyn,

and
Txn + λxn + yn = λTxn + Tyn.

Therefore
{(1 − λ)T + λI}xn = (T − I)yn,

and then it follows from λ , 1 and limn→∞ yn = 0 that limn→∞(T − µ)xn = 0 for µ = λ
λ−1 . This means that

µ ∈ σa(T). In particular, if T∗ − I has dense range, then T∗ − I = U is bounded below where U is an isometry,
and hence T∗−I is invertible by (i). Thus 1 < σ(T∗) = σ(T). If λ ∈ σa(T∗), then λ , 1 and limn→∞(T∗−λI)xn = 0.
Hence

lim
n→∞

(T + T∗ − λT)xn = lim
n→∞

(TT∗ − λT)xn = 0.

Since limn→∞(T∗ − λI)xn = 0, we have that

lim
n→∞

[T − λ(T − I)]xn = lim
n→∞

(T + λI − λT)xn = 0.

Since T − I is invertible, we get that limn→∞(T(T − I)−1
− λ)xn = 0, so that λ ∈ σa(T(T − I)−1). Thus it follows

that σa(T∗) ⊂ σa(T(T − I)−1). Similarly, it follows that σp(T∗) ⊂ σp(T(T − I)−1). �

We next give some examples for operators in S(H).

Example 3.2. Let T =
(

I U∗

U∗ I

)
∈ B(H ⊕H), where U is the unilateral shift. Then T =

(
0 U
U 0

)∗
+

(
I 0
0 I

)
and

it follows from Theorem 3.1 that TT∗ = T + T∗, that is, T ∈ S(H).

Also, we let T =
(
U∗2 + I 0

0 0

)
∈ B(H ⊕H), where U is the unilateral shift. Then T =

(
U2 0
0 −I

)∗
+

(
I 0
0 I

)
,

and hence T ∈ S(H) from Theorem 3.1. �

Recall that T ∈ B(H) is said to be subnormal if T has a normal extension, that is, there exists a Hilbert
spaceK such thatH can be embedded inK and there exists a normal operator N of the following form

N =
(
T S
0 R

)
for some bounded operators S : H⊥ → H and R : H⊥ → H⊥, and T is called hyponormal if TT∗ ≤ T∗T.
We now consider the following corollary in terms of the localized single valued extension property for the
solution T ∈ S(H).

Corollary 3.3. If T ∈ S(H), then T∗ has the single valued extension property. However, it is not necessary
that T has the single valued extension property.

Proof. Since T ∈ S(H), it follows from Theorem 3.1 that T = U∗ + I where U is an isometry. So
T∗ = U + I. Since U is an isometry, it has the unitary extension, so that it is subnormal, which implies that it
is hyponormal. Thus U + I is also hyponormal. Therefore T∗ has the single valued extension property. On
the other hand, since U∗ is a coisometry, it is not necessary that U∗ has the single valued extension property
from [5]. Hence T = U∗ + I does not have the single valued extension property in general. �
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Corollary 3.4. If T ∈ S(H), then the following statements hold.
(i) σT⊕T∗ (x1 ⊕ x2) = σT(x1) ∪ σT∗ (x2).
(ii) σ(T) = σs(T) = σa(T) = σse(T).
(iii) If Q is quasinilpotent, then T∗ +Q∗ has the single valued extension property.
(iv) If F is a close subset in C such thatHT∗ (F) is closed, then σ(T∗|HT∗ (F)) ⊆ F ∩ σ(T∗).
(v) If F1 and F2 are two closed and disjoint subsets of C, thenHT∗ (F1 ∪ F2) = HT∗ (F1) ⊕HT∗ (F2).

Proof. Since T ∈ S(H), it follows from Corollary 3.3 that T∗ has the single valued extension property.
Hence these statements are shown by [1]. In particular, if Q is quasinilpotent then so is Q∗, hence this
implies from [1, Corollary 2.12] that (iii) is proved. �

In the following corollary, we consider operators in S(H) on a finite dimensional space.

Corollary 3.5. If T ∈ S(Cn), then it is normal. In particular, if n = 2, then T can be written by

T =
(
a∗ + 1 −be−iθ

b∗ ae−iθ + 1

)
, |a|2 + |b|2 = 1. (2)

Proof. Since T ∈ S(Cn). However, since T = U∗ + I where U is isometry on Cn. But, U is unitary on
finite dimensional spaces, it follows from Theorem 3.1 that T is normal. It is known that the general unitary
matrix form on C2 as follows.

U =
(

a b
−b∗eiθ a∗eiθ

)
, |a|2 + |b|2 = 1.

Thus if T ∈ S(C2), then it follows from T = U∗ + I that (2) is satisfied. �

Remark 3.6. The converse of Corollary 3.5 does not hold. For example, T =
(

1
2 0
0 1

3

)
∈ B(C2), then it is a

compact and normal operator. However, σ(T) = { 12 ,
1
3 } = σ(T∗) is not contained in the unit circle with centre

1, hence T < S(C2) from Theorem 4.2 of T. T. West (see [12]). On the other hand, T ∈ S(Cn) if and only if
σ(T) lies on the unit circle with centre 1.

The following example shows that S(H) contains non-hyponormal operators. Moreover, there are no
inclusions between the two collections, S(H) and the set of hyponormal operators.

Example 3.7. Let T := U∗ + I, where U is the unilateral shift and I is the identity operator in B(H). Since U
is a non-unitary isometry, it follows from Theorem 3.1 that T ∈ S(H). However, T∗T − TT∗ = UU∗ − I < 0,
and hence T is not hyponormal. However, T∗ is hyponormal. Furthermore, we can have many examples
which T is hyponormal but is not contained in S(H). For a simple example, if T is the identity operator in
B(H), then T < S(H) and TT∗ = T∗T.

We say that T ∈ B(H) is quasinormal if T commutes with T∗T, that is, T(T∗T) = (T∗T)T, 2-normal if T is
unitarily equivalent to a 2×2 operator matrix whose entries are commuting normal operators, and binormal
if T∗T commutes TT∗. We next characterize operators in S(H) which are hyponormal, quasinormal, and
binormal.

Theorem 3.8. If T ∈ S(H), then the following statements hold.
(i) T is quasinormal if and only if

T =
(
A 0
0 0

)
on ker|T|⊥ ⊕ ker|T|,

where A = U2 + I and U is unitary defined on ker|T|⊥.
(ii) T is binormal if and only if T is hyponormal.
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Proof. (i) Suppose that T = U|T| ∈ S(H). Then U|T|+ |T|U∗ = U|T|2U∗. If T is quasinormal, then it follows
from the Fuglede-Putnam theorem that U∗|T| = |T|U∗, and hence we have U|T| + U∗|T| = UU∗|T|2, so that
(U+U∗−UU∗|T|)|T| = 0. Since T is quasinormal, we have (U+U∗−UU∗|T|)|T|U = (U+U∗−UU∗|T|)U|T| = 0. On
ran|T|, U2+U∗U−UU∗U|T| = 0. Since U∗U = I, U2+I = T on ran|T|. Since (ker|T|)⊥ = (ker(U))⊥ = ran|T|, U is
an isometry on ran|T|. Since T is quasinormal, it is hyponormal, so that T+T∗ ≤ T∗T. Since (T− I)∗(T− I) ≥ I,
T − I is bounded below. Moreover, Since T ∈ S(H), we have that (T − I)(T − I)∗ = I. Hence T − I is right
invertible. Then T − I is surjective. Hence T − I = U∗ is invertible. This means that U is unitary on ran|T|.
Therefore we can write T as follows,

T =
(
A 0
0 0

)
on ker|T|⊥ ⊕ ker|T|,

where A = U2 + I and U is unitary defined on ker|T|⊥.
(ii) If T ∈ S(H), then T = U∗ + I by Theorem 3.1, where U is an isometry. Since (T∗T)(TT∗) = (TT∗)(T∗T)

and U∗U = I, we get that (U + I)(U∗ + I)(U∗ + I)(U + I) = (U∗ + I)(U + I)(U + I)(U∗ + I), so that UU∗ = I. Thus
U is a unitary and T = U∗ + I. This implies that T is normal, so that it is hyponormal.

Conversely, Since T ∈ S(H) and hyponormal, it follows from the proof of (i) that T − I is invertible.
Moreover, since T ∈ S(H), we get from Theorem 3.1 that T = U∗+I, where U is an isometry. Hence T∗ = U+I
is hyponormal. Since T is hyponormal by hypothesis, T is normal. Therefore it follows that T is binormal.
�

Corollary 3.9. If T ∈ S(H) and is binormal, then the following statements hold.
(i) T has a nontrivial invariant subspace and
(ii) Tn is hyponormal for n ≥ 1.

Proof. (i) By Theorem 3.8, T is binormal and hyponormal. So it follows from [2, Theorem 2] that T has a
nontrivial invariant subspace.

(ii) It is obvious from [3, Theorem 3]. �

Let A :=
(

I iI
iI I

)
∈ B(H ⊕H). Then AA∗ = A∗A = A + A∗. We now letK := H ⊕H and define T by

T :=
1
2

(
A A∗

A A∗

)
∈ B(K ⊕K ).

Then TT∗ = T + T∗ and T is 2-normal. So there are mutually commuting normal operators N1, N2, and

N3 in B(K ) such that T is unitary equivalent to an upper triangular operator matrix S :=
(
N1 N2
0 N3

)
. Then

S = UTU∗ for some unitary operator U ∈ B(K ⊕K ). Since T ∈ S(K ⊕K ), we get that SS∗ = S + S∗. Hence
S ∈ S(K ⊕K ). Moreover, S has the single valued extension property, so does S∗ by Corollary 3.3. Since S∗

is also unitary equivalent to T∗, we have that T∗ has the single valued extension property.

In general, 2-normal operators do not belong to S(H). The following proposition state some conditions
for which 2-normal operators are included in S(H).

Proposition 3.10. Suppose that T is a 2-normal operator and is unitary equivalent to the operator matrix(
N1 N2
0 N3

)
, where N1, N2, and N3 are mutually commuting normal operators. Then the following statements

are valid.
(i) If N1, N2, and N3 are in S(H) and N∗2 = −N2, then T ∈ S(H).
(ii) If Ni are compact for i = 1, 2, 3, N1 and N3 are in S(H), and σ(N1) ∩ σ(N3) has no interior points, then
T ∈ S(H).
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Proof. (i) We note that a skew symmetric operator in S(H) is only the zero. Since N2 = 0, we have

that
(
N1 N2
0 N3

)
is contained in S(H). Since T is unitary equivalent to such operator matrix, it follows that

T ∈ S(H). The second implication is satisfied by the similar method.
(ii) If σ(N1) ∩ σ(N3) has no interior points, then it follows from [8] that

σ(N1) ∪ σ(N2) = σ
(
N1 N2
0 N3

)
.

Since N1 and N3 are in S(H), it follows from [12] that σ
(
N1 N2
0 N3

)
is contained in the unit circle with centre

at 1. So this means that
(
N1 N2
0 N3

)
∈ S(H). Therefore T ∈ S(H). �

For operators A, B we let [A,B] = AB − BA and θ := {T ∈ B(H) : [T∗T,T + T∗] = 0} (see [4]). And
we recall that T is isoloid (respectively, a-isoloid) if every isolated point of σ(T) (respectively, σa(T)) is
an eigenvalue. Also we say that T is polaroid (respectively, a-polaroid) if every isolated point of σ(T)
(respectively, σa(T)) is a pole of the resolvent of T. It is well known that a-polaroid =⇒ polaroid =⇒ isoloid
and a-polaroid =⇒ a-isoloid =⇒ isoloid. We say that T is normaloid if ‖T‖ = r(T) for the spectral radius r(T)
of T ∈ B(H) and convexoid if the closure of the numerical range W(T) coincides with the convex hull of its
spectrum. Then we have the following lemma.

Lemma 3.11. If T ∈ S(H), then the following statements hold.
(i) If T is invertible, then both T and T−1 are normal.
(ii) T is normaloid.
(iii) If σ(T) = {λ}, then T = λI.
(iv) π00(T) = ∅ and T is isoloid.
(v) σ(T) = σw(T) and Weyl’s theorem holds for T.

Proof. (i) If T is invertible, there exists an inverse S of T such that TS = ST = I. Since T ∈ S(H), we have
that TT∗ = T + T∗, or T∗ = I + ST∗. This implies that (I − S)T∗ = I, so that I − S = S∗. Thus SS∗ = S∗S and this
means that both T and T−1 are normal.

(ii) If T ∈ S(H), then T∗ ∈ θ and it follows from [4, Theorem 2] that ‖T∗‖ = r(T∗), where r(T) denote the
spectral radius of T. This means that T∗ is normaloid. Hence T is also normaloid.

(iii) If λ = 0, then T is normaloid from (ii). Since ‖T‖ = r(T) = 0, that is, T = 0. Now, we suppose
that λ , 0. Since T is invertible, by part (i), T−1 is normal. Hence T−1 is normaloid. On the other hand,
σ(T−1) = { 1

λ }. So ‖T‖‖T−1
‖ = |λ|| 1λ | = 1. It follows from [11, Lemma 3] that T is convexoid, so W(T) = {λ}.

Therefore T = λI.
(iv) Assume that λ ∈ π00(T). Then λ ∈ isoσ(T) and 0 < dimker(T) < ∞. Using the spectral projection

P := 1
2πi

∫
∂D(µ − T)−1dµ, where D is a closed disk of center λ which contains no other points of σ(T), we can

represent T as the direct sum

T =
(
T1 0
0 T2

)
, where σ(T1) = {λ} and σ(T2) = σ(T) \ {λ}.

However, T1 ∈ S(H), and hence T1 = λI by part (iii). Therefore T−λI = 0⊕ (T2−λI), so ker(T−λI) = H⊕{0}.
It follows that dimker(T − λI) = ∞. This is a contradiction. This means that π00(T) = ∅. Moreover, if
λ ∈ isoσ(T), then λ is an eigenvalue of T, and so T is isoloid.

(v) Suppose that λ ∈ σ(T) \ σw(T). Then T − λ is Weyl but not invertible. But since T∗ has the single
valued extension property, T−λ is Browder, so that α(T−λ) < ∞ and λ is a pole of the resolvent of T. Thus
λ ∈ isoσ(T). If T − λ is injective, then it is invertible, however, this is contradiction. So λ ∈ π00(T). Hence
σ(T) \ σw(T) ⊆ π00(T). However, it follows from (iv) of this lemma that σ(T) = σw(T) and Weyl’s theorem
holds for T. �
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Remark 3.12. In fact, if T ∈ S(H), then T∗ has the single valued extension property, so that all of Weyl’s
theorem, Browder’s theorem, a-Weyl’s theorem, and a-Browder’s theorem hold for T by (v) of Lemma 3.11.

Recall that T is a polynomial root of operators inS(H) if p(T) ∈ S(H) for some nonconstant polynomial p.
In general, if T ∈ S(H), then it is a polynomial root of operators inS(H). Indeed, if T ∈ S(H), then there exist
nonconstant polynomials p(z) = z and q(z) = p(z) such that p(T)p(T)∗ = p(T)+p(T)∗ by the functional calculus,

so that q(T) ∈ S(H). However, the converse does not hold. For example, if T =
(

0
√

2I
√

2I 0

)
∈ B(H ⊕H),

then T2 =

(
2I 0
0 2I

)
∈ S(H ⊕H), but T < S(H ⊕H). We now have the following corollary for a polynomial

root of operators in S(H).

Corollary 3.13. If T is a polynomial root of operators in S(H) with σ(T) = {0}, then T is nilpotent.

Proof. Suppose that p(T) ∈ S(H) for some nonconstant polynomial p. Since σ(p(T)) = p(σ(T)) = {p(0)},
we get that p(T) − p(0) is quasinilpotent. It follows from (iii) of Lemma 3.11 that for a nonzero constant c
and an integer m ≥ 1,

cTm(T − λ1)(T − λ2) · · · (T − λn) = p(T) − p(0) = 0.

Since T − λi is invertible for every λi , 0 for 1 ≤ i ≤ n, we have Tm = 0. Therefore T is nilpotent. �

Recall that H(σ(T)) is the space of functions analytic in an open neighborhood of σ(T). We next consider
the spectral mapping theorem for Weyl spectrum and essential approximate point spectrum of T, when T
is a polynomial root of operators in S(H).

Theorem 3.14. If T is a polynomial root of operators in S(H), then we have that for f ∈ H(σ(T)),

σw( f (T)) = f (σw(T)), (3)

and Weyl’s theorem holds for f (T).

Proof. Let λ ∈ σw( f (T)). Then f (T) − λ is Weyl and

f (T) − λ = c(T − α1)(T − α2) · · · (T − αn)1(T), (4)

where c, α1, α2, · · · , αn are complex numbers and 1(T) is invertible. Since the operators in the right side
of (4) commute, every T − αi is Fredholm. Since p(T) ∈ S(H) for some nonconstant complex polynomial
p(z) = a0 + a1z + · · · + anzn, we get that p(T)∗ has the single valued extension property. Let q(z) = p(z), and
q(T∗) = p(T)∗. So q(T∗) has the single valued extension property, equivalently, so does T∗. So ind(T − αi) ≥ 0
for each i = 1, 2, · · · ,n. This implies that

0 ≤
∑

ind(T − αi) = ind( f (T) − λ) = 0,

so that T − αi is Weyl for each i = 1, 2, · · · ,n. Hence λ < f (σw(T)) and this means that f (σw(T)) ⊂ σw( f (T)).
Since the converse inclusion holds with no other restriction on T, it follows that (3) holds. This implies from
(iv) and (v) of Lemma 3.11 that

σ( f (T)) \ π00( f (T)) = f (σ(T) \ π00(T))
= f (σw(T)) = σw( f (T)).

Therefore f (T) satisfies Weyl’s theorem for f ∈ H(σ(T)). �
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Theorem 3.15. If T is a polynomial root of operators in S(H), then we have that for f ∈ H(σ(T)),

σea( f (T)) = f (σea(T)), (5)

and a-Browder’s theorem holds for f (T).

Proof. Let λ ∈ σea( f (T)). Then f (T) − λ is upper semi-Fredholm and ind( f (T) − λ) ≤ 0. And we have that

f (T) − λ = c(T − µ1)(T − µ2) · · · (T − µn)1(T), (6)

where c, µ1, µ2, · · · , µn are complex numbers and 1(T) is invertible. Then (5) is proved by the similar way
to the proof of Theorem 3.14. Now, since T satisfies a-Weyl’s theorem from Remark 3.12, we get that
σea(T) = σab(T). This implies that

σab( f (T)) = f (σab(T)) = f (σea(T)) = σea( f (T)),

and hence f (T) obeys a-Browder’s theorem. �

From this, the following theorem says that f (T) satisfies a-Weyl’s theorem whenever T is a polynomial
root of operators in S(H).

Theorem 3.16. If T is a polynomial root of operators in S(H), then a-Weyl’s theorem holds for f (T) for
every f ∈ H(σ(T)).

Proof. Suppose that p(T) ∈ S(H) for some nonconstant polynomial p. We first claim that a-Weyl’s
theorem holds for T. Suppose that λ ∈ σa(T) \σea(T). Then T−λ is upper semi-Fredholm and ind(T−λ) ≤ 0.
We let q(T∗) = p(T)∗ for some nonconstant polynomial q. Since p(T)∗ has the single valued extension property,
q(T∗) also has. It follows from [1] that T∗ has the single valued extension property. Since T − λ is a semi
Fredholm operator, it has finite descent and ind(T − λ) ≥ 0. Since dimker(T∗ − λ) = dimker(T − λ) < ∞ and
T−λ has finite descent, it has also finite ascent, so that λ ∈ isoσa(T). This implies that λ ∈ πa

00(T). Conversely,
let λ ∈ πa

00(T). Since T∗ has the single valued extension property, λ ∈ isoσ(T). Using the spectral projection
P = 1

2πi

∫
∂D(µ − T)−1dµ, where D is a closed disk of center λ which contains no other points of σ(T), we can

represent T as the direct sum

T =
(
T1 0
0 T2

)
where σ(T1) = {λ} and σ(T2) = σ(T) \ {λ}.

Since σ(p(T1)) = p(σ(T1)) = {p(λ)} and p(T1) ∈ S(H), we have that p(T1) = p(λ). Thus it follows that for a
nonzero constant c and an integer n ≥ 1,

c(T1 − λ)(T1 − α1)(T1 − α2) · · · (T1 − αn) = p(T1) − p(λ) = 0.

But, T1 − αi is invertible for i = 1, 2, · · · ,n, we get that T1 = λI. Since T2 − λ is invertible, we have that
ker(T−λ) = H⊕{0}, so that dimker(T−λ) = ∞. This is a contradiction. Thusπa

00(T) = ∅. Thusλ ∈ σa(T)\σea(T).
So a-Weyl’s theorem holds for T. We know that if λ ∈ isoσa(T), then T is a-polaroid from the preceding
proof. This implies that T is a-isoloid, and then we have that

f (σa(T) \ πa
00(T)) = σa( f (T)) \ πa

00( f (T)) for every f ∈ H(σ(T)).

Moreover, it follows from Theorem 3.15 that

σea( f (T)) = f (σea(T)) = f (σ(T) \ πa
00(T)) = σa( f (T)) \ πa

00( f (T)),

which means that a-Weyl’s theorem holds for f (T). �
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