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A Note on Convergence of Nets of Multifunctions

Marian Przemskia

aŁomża State University of Applied Sciences (LSUAS) Akademicka 14, 18-400 Łomża

Abstract. The purpose of this paper is to investigate some new types of continuous convergence and
quasi-uniform convergence of nets of multifunctions. The main three theorems describe a general types of
interrelationships between forms of convergence, the continuity of the limits of nets of multifunctions and
the continuity of members of such nets.

1. Introduction and preliminary

Throughout the present paper, (X, π) and (Y, τ) will denote a topological space with no separation
properties assume. For a subset A of a topological space (X, π) we denote by Cl(A) and Int(A) the closure
and the interior of A, respectively. By a multifunction F : X→ Y we mean a correspondence which assigns
to each element x of X a nonempty subset F(x) of Y. The upper and lower inverse images of a set B ⊂ Y
under F are defined by F+(B) = {x ∈ X : F(x) ⊂ B} and F−(B) = {x ∈ X : F(x) ∩ B , ∅}, respectively. The image
of any set A ⊂ X under F is defined as F(A) =

⋃
{F(x) ⊂ Y : x ∈ A}.

A multifunction F : (X, π)→ (Y, τ) is said to be upper semi continuous (briefly u.s.c.) (resp. lower semi
continuous (briefly l.s.c.)) at a point
x ∈ X if x ∈ Int(F+(V)) (resp. x ∈ Int(F−(V))) for each subset V ∈ τ such that x ∈ F+(V) (resp. x ∈ F−(V)).

The set of all points at which F is u.s.c. (resp. l.s.c.) is denoted by Cu(F) (resp. Cl(F)), [10], [19].
Of course, if a single-valued function f : (X, π) → (Y, τ) is treated as a multifunction F given by

F(x) =
{
f (x)

}
then, each of the properties x ∈ Cu(F), x ∈ Cl(F) is equivalent to the continuity of f at x, i.e.,

x ∈ C( f ).
A multifunction F : (X, π) → (Y, τ) is u.s.c. (resp. l.s.c.) if and only if the function F : (X, π) → (Y, τV)

(resp. F : (X, π) → (Y, τV)) is continuous, where τV (resp. τV) is the upper (resp. lower) Vietoris topology
induced by τ on the family P(Y) of all nonempty subsets of Y (see [9], [15])).

Our basic references for quasi-uniform spaces are [17], [18], [7] and [11]. A quasi-uniformity on Y is a
filterV on Y × Y which satisfies:

A quasi-uniformity on Y is a filterV on Y × Y which satisfies:

(a) ∆ ⊂ V for all V ∈ V and

(b) given V ∈ V there exists W ∈ V such that W ◦W ⊂ V, where

∆ =
{
(y, y) ∈ Y × Y : y ∈ Y

}
and

W ◦W = {(x, y) ∈ Y × Y : (x, z), (z, y) ∈W for some z ∈ Y}.
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The pair (Y,V) is called a quasi-uniform space. A family B ⊂ V is a base for V if each member of
V contains a member of B. If V is a quasi-uniformity, then so its conjugate V−1 =

{
V−1 : V ∈ V

}
, where

V−1 =
{
(x, y) ∈ Y × Y : (y, x) ∈ V

}
.

Every quasi-uniformityV on Y generates the topology t(V) given by the neighborhood base{
V(y) : V ∈ V

}
for each point y ∈ Y, where V(y) =

{
z ∈ Y : (y, z) ∈ V

}
.

Throughout the present paper, the space (Y,V) will always mean the topological space with the topology
t(V) unless explicitly stated otherwise.

According to [14], [2] and [12], for a quasi-uniform space (Y,V) and V ∈ V we define
V+ = {(A,B) ∈ P(Y) × P(Y) : B ⊂ V(A)} and
V− =

{
(A,B) ∈ P(Y) × P(Y) : A ⊂ V−1(B)

}
.

The family {V+ : V ∈ V} (resp. {V− : V ∈ V}) is a base for the upper Hausdorff quasi-uniformity Vu
(resp. lower Hausdorff quasi-uniformityVl) on P(Y).

So, every quasi-uniformity V on Y generates the following two pairs of topologies on the family P(Y)
of all nonempty subsets of Y: (t(Vu), t(Vl)) and ((t(V))V, (t(V))V).

Analogously to the u.s.c. and l.s.c. case, one can consider the continuity of multifunctions with respect to
t(Vu) or t(Vl). We will call themV-upper orV-lower semi-continuity (brieflyVu.s.c.orVl.s.c., respectively)
[20]. The set of all points at which F isV.u.s.c. (resp. V.l.s.c.), is denoted byVCu(F) (resp. VCl(F)).

As was noted in [2, Lemma 2.4.], the topology t(Vu) is coarser than (t(V))V and, the topology t(Vl) is
finer than (t(V))V. Therefore, the following property is an immediate consequence of the definition.

Remark 1.1. The inclusions Cu(F) ⊂ VCu(F) and VCl(F) ⊂ Cl(F) hold for any multifunction F : (X, π) →
(Y,V).

TheV-lower semi-continuity has been studied in [21] under the name H-lsc. Note also that, in the case
of single-valued functions, we have the following

Remark 1.2. If we consider a single-valued function f : (X, π) → (Y,V) as a multifunction F given by
F(x) =

{
f (x)

}
, thenVCu(F) =VCl(F) = Cu(F) = Cl(F) = C( f ).

Now let us consider the general form of convergence for multifunction. Given a topology T on P(Y), a
net {Fσ : σ ∈ Σ} of multifunctions from X to Y is said to be T-convergent at x ∈ X to a multifunction F : X→ Y,
if the net {Fσ(x) : σ ∈ Σ} is T-convergent to F(x), [8, p.364].

The (t(V))V-convergence (resp. (t(V))V-convergence) is known as the upper (resp. lower) pointwise
convergence [4,6] defined as follows:

Definition 1.3. A net {Fσ : σ ∈ Σ} of multifunctions Fσ : (X, π) → (Y,V), σ ∈ Σ, is said to be upper (resp.
lower) pointwise convergent to F : (X, π) → (Y,V) at x, if for every open set G ⊂ Y with F(x) ⊂ G (resp.
F(x) ∩ G , ∅) there exists γ ∈ Σ such that x ∈ F+

σ (G) (resp. x ∈ F−σ (G)) for all σ ≥ γ; briefly x ∈ Cu(F, (Fσ))
(resp. x ∈ Cl(F, (Fσ))).

Below, we give several characterizations of these types of convergence. Before doing so let us recall
some classical definitions.

For a net {Aσ : σ ∈ Σ} of subsets Aσ of a topological space X we denote by lim inf Aσ and lim sup Aσ the
sets

⋃
{
⋂
{Aσ : σ ≥ δ} : δ ∈ Σ} and

⋂
{
⋃
{Aσ : σ ≥ δ} : δ ∈ Σ}, respectively. We say that {Aσ : σ ∈ Σ} converges

to A ⊂ X, denoted by lim Aσ = A, if A = lim inf Aσ = lim sup Aσ.
Furthermore, a point x ∈ X is called a limit point (resp. cluster point) of {Aσ : σ ∈ Σ}, denoted by x ∈ Li

Aσ (resp. x ∈ Ls Aσ) if each neighbourhood of x meets {Aσ : σ ∈ Σ} eventually (resp. frequently).
A net {Aσ : σ ∈ Σ} is said to be K+-convergent (resp. K−-convergent) to A if Ls Aσ ⊂ A (resp. A ⊂ Li Aσ).
We say that {Aσ : σ ∈ Σ} topologically convergent to A, denoted by A =Lt Aσ, if A = Li Aσ = Ls Aσ,

(see [1], [10], [16]).
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Lemma 1.4. For every multifunctions F,Fσ : (X, π)→ (Y,V), σ ∈ Σ, the following conditions are equivalent:

(a) x ∈ Cu(F, (Fσ));

(b) x ∈ lim inf F−1
σ (A) for everyA ∈ (t(V))V such that F(x) ∈ A.

Lemma 1.5. For every multifunctions F,Fσ : (X, π)→ (Y,V), σ ∈ Σ, the following conditions are equivalent:

(a) x ∈ Cl(F, (Fσ));

(b) x ∈ lim inf F−1
σ (A) for everyA ∈ (t(V))V such that F(x) ∈ A.

(c) F(x) ⊂ Li Fσ(x).

The t(Vu)-convergence (resp. t(Vl)-convergence) is called upper (resp. lower)V-convergence [20].
By VCu(F, (Fσ)) (resp. VCl(F, (Fσ)) we denote the set of all points x ∈ X at which the net {Fσ : σ ∈ Σ} is

t(Vu)-convergent (resp. t(Vl)-convergent) to F.
This type of convergence can be characterized by the following convenient notion:
Given a pair (F,H) of multifunctions from (X, π) to (Y,V) and V ∈ V, let us denote
Du(F,H,V) =

{
p ∈ X : (F(p),H(p)) ∈ V+} and

Dl(F,H,V) =
{
p ∈ X : (F(p),H(p)) ∈ V−

}
.

Thus we have the following remark.

Remark 1.6. For every multifunctions F,Fσ : (X, π)→ (Y,V), σ ∈ Σ, the following conditions are equivalent:

(a) x ∈ VCu(F, (Fσ)) (resp. x ∈ VCl(F, (Fσ)))

(b) x ∈ lim inf Du(F,Fσ,V) (resp. x ∈ lim inf Dl(F,Fσ,V)) for all V ∈ V .

(c) x ∈ lim inf F−1
σ (A) for everyA ∈ t(Vu) (resp. A ∈ t(Vl)) such that F(x) ∈ A.

For the same reasons as in Remark 1.1. we have

Remark 1.7. The inclusions Cu(F, (Fσ)) ⊂ VCu(F, (Fσ)) andVCl(F, (Fσ)) ⊂ Cl(F, (Fσ)) hold for any multifunc-
tions F,Fσ : (X, π)→ (Y,V), σ ∈ Σ.

It is easy to show that in the case of the single valued functions f , fσ : (X, π) → (Y,V), σ ∈ Σ, treated as
multifunctions F,Fσ given by F(x) =

{
f (x)

}
,Fσ(x) =

{
fσ(x)

}
, the equality

Du(F,Fσ,V) = Du(F,Fσ,V) =
{
p ∈ X : fσ(p) ∈ V( f (x))

}
holds . So, analogously to Remark 1.2 we have

Remark 1.8. If we consider single-valued functions f , fσ : (X, π) → (Y,V), σ ∈ Σ, as multifunctions F,Fσ
given by F(x) =

{
f (x)

}
,Fσ(x) =

{
fσ(x)

}
, thenVCu(F, (Fσ)) = VCl(F, (Fσ)) = Cu(F, (Fσ)) = Cl(F, (Fσ)) and, this is

the set of all points x ∈ X at which the net
{
fσ : σ ∈ Σ

}
is pointwise convergent to f .

A net of functions fσ : (X, π) → (Y,V) is called V-locally uniformly convergent to f at a point x ∈ X, if
for every V ∈ V there exists γ ∈ Σ such that for any σ ≥ γ there exists an open subset U such that x ∈ U and
fσ(p) ∈ V( f (p)) for all p ∈ U, [8].

The above consideration imply that this definition can be formulated by:
x ∈ lim inf Int(Du(F,Fσ,V)) for all V ∈ V, where F(x) =

{
f (x)

}
,Fσ(x) =

{
fσ(x)

}
, σ ∈ Σ. So, this type of

convergence for multifunctions is defined as follows

Definition 1.9. A net {Fσ : σ ∈ Σ} of multifunctions from a topological space (X, π) to a quasi-uniform space
(Y,V) is said to be upper (resp. lower) quasi-uniformly V-convergent to a multifunction F : X → Y at a
point x ∈ X [20], if
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x ∈ lim inf Int(Du(F,Fσ,V)) (resp. x ∈ lim inf Int(Dl(F,Fσ,V)), for all V ∈ V;
briefly x ∈ VUCu(F, (Fσ)) (resp. x ∈ VUCl(F, (Fσ))).

In [4] and [5], the simultaneous upper and lower quasi-uniformly V-convergence was called almost
quasuniformly convergence. The simultaneous upper and lower V-convergence was called in [3] as
quasiuniformly convergence. Let us remark also that in [13], the lower and upper V-convergence was
treated as some type of the bornological convergence.

As an immediate consequence of Remark 1.6. we have

Remark 1.10. The inclusions VUCu(F, (Fσ)) ⊂ VCu(F, (Fσ)) and VUCl(F, (Fσ))) ⊂ VCl(F, (Fσ)) hold for any
multifunctions F,Fσ : (X, π)→ (Y,V), σ ∈ Σ.

The following result is obtained as a corollary in [8]:
Let

{
fσ : σ ∈ Σ

}
be a net of continuous functions at x0 ∈ X which is pointwise convergent at x0 to a

function f. Then f is continuous at x0 if and only if the net
{
fσ : σ ∈ Σ

}
isV-locally uniformly convergent to

f at x0.
The content of this result is related to the three issues:
- the assumption about the type of convergence which provides the continuity of the limit function

without the assumptions about the continuity of functions in the net;
- the assumption about the type of convergence which provides the continuity of the limit function

under some weak assumptions about the continuity of functions in the net;
- weak assumptions about the continuity of functions in the net which provides

V-locally uniformly convergence if the limit function is continuous.
In this paper we investigate those issues for nets of multifunctions. The result obtained as a corollary

for uniform spaces is stronger than the result cited above due to the weakening of the assumption about
the continuity of all functions in the net. For this purpose we need some special types of convergence.

Definition 1.11. A net {Fσ : σ ∈ Σ} of multifunctions from a topological space (X, π) to a quasi-uniform space
(Y,V) is said to be

(a) upper (resp. lower) w-continuously convergent to F at x if

x ∈ lim inf Int(F−1
σ (A)) for everyA ∈ (t(V))V (resp. A ∈ (t(V))V)

such that F(x) ∈ A; briefly x ∈WCCu(F, (Fσ)) (resp. x ∈WCCl(F, (Fσ)));

(b) upper (resp. lower) w-continuouslyV-convergent to F at a point x, if

x ∈ lim inf Int(F−1
σ (A)) for everyA ∈ t(Vu) (resp. A ∈ t(Vl))

such that F(x) ∈ A; briefly x ∈ VWCCu(F, (Fσ)) (resp. x ∈ VWCCl(F, (Fσ))).

The following diagram illustrates the relations among the types of convergence defined so far.
Diagram 1.12.

VUCu(F, (Fσ)) -
VCu(F, (Fσ))

6

Cu(F, (Fσ))

��
��
�1

WCCu(F, (Fσ))

VWCCu(F, (Fσ))
��

��
�1

6

VUCl(F, (Fσ)) -
VCl(F, (Fσ))

Cl(F, (Fσ))
6

WCCl(F, (Fσ))
��

��
�1

��
��
�1

VWCCl(F, (Fσ))

6
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In [8, Definition 6.1 (iii)], the following concept was introduced:
Let P be a composable subbase for a quasi-uniformityV; a net of functions fσ : (X, π)→ (Y,V), σ ∈ Σ, is

V-quasi-locally uniformly convergent at x ∈ X to a function f : (X, π)→ (Y,V) if for every V ∈ P and every
γ ∈ Σ there exist σ ≥ γ and open subset U ⊂ X such that fσ(p) ∈ V( f (p)) for all p ∈ U, where a subbase P of
V is composable if for every V ∈ P there are W, U ∈ P such that W ◦U ⊂ V.

It it easy to see the following equivalent formulation:
x ∈ lim sup IntDu(F,Fσ,V) for all V ∈ P, where F(x) =

{
f (x)

}
,Fσ(x) =

{
fσ(x)

}
, which exhibits significant

similarity with the quasi-uniformlyV-convergence. This suggests considering such generalisations for all
five types of convergence defined so far.

Definition 1.13. A net {Fσ : σ ∈ Σ} of multifunctions from a topological space (X, π) to a quasi-uniform space
(Y,V) is said to be

(a) upper (resp. lower) quasi-uniformlyV-subconvergent to F at a point x ∈ X, if

x ∈ lim sup Int(Du(F,Fσ,V)) (resp. x ∈ lim sup Int(Dl(F,Fσ,V)) for all V ∈ V;

briefly x ∈ VUSu(F, (Fσ)) (resp. x ∈ VUSl(F, (Fσ)));

(b) upper (resp. lower)V-subconvergent to F at a point x ∈ X, if

x ∈ lim sup Du(F,Fσ,V) (resp. x ∈ lim sup Dl(F,Fσ,V)) for all V ∈ V;

briefly x ∈ VSu(F, (Fσ)) (resp. x ∈ VSl(F, (Fσ));

(c) upper (resp. lower) pointwise subconvergent to F at a point x ∈ X, if

x ∈ lim sup F−1
σ (A) for everyA ∈ (t(V))V (resp. A ∈ (t(V))V) such that F(x) ∈ A

briefly x ∈ Su(F, (Fσ)) (resp. x ∈ Sl(F, (Fσ));

(d) upper (resp. lower) w-continuously subconvergent to F at x if

x ∈ lim sup Int(F−1
σ (A)) for everyA ∈ (t(V))V (resp. A ∈ (t(V))V)

such that F(x) ∈ A; briefly x ∈WCSu(F, (Fσ)) (resp. x ∈WCSl(F, (Fσ)));

(e) upper (resp. lower) w-continuouslyV-subconvergent to F at a point x, if

x ∈ lim sup Int(F−1
σ (A)) for everyA ∈ t(Vu) (resp. A ∈ t(Vl))

such that F(x) ∈ A; briefly x ∈ VWCSu(F, (Fσ)) (resp. x ∈ VWCSl(F, (Fσ))).

The relationships between those types of convergence are analogous to those presented in the above
diagram, i.e.,

Diagram 1.14.

VUSu(F, (Fσ)) -
VSu(F, (Fσ))

6

Su(F, (Fσ))

��
��
�1

WCSu(F, (Fσ))

VWCSu(F, (Fσ))
��

��
�1

6

VUSl(F, (Fσ)) -
VSl(F, (Fσ))

Sl(F, (Fσ))
6

WCSl(F, (Fσ))
��

��
�1

��
��
�1

VWCSl(F, (Fσ))

6

As an immediate consequence of the definition and Lemmas 1.4, 1.5 and 1.6 we have



M. Przemski / Filomat 32:6 (2018), 2019–2028 2024

Remark 1.15. For any multifunctions F,Fσ : (X, π)→ (Y,V), σ ∈ Σ, the following inclusions hold:
(a)VUCu(F, (Fσ)) ⊂ VUSu(F, (Fσ)) (resp. VUCl(F, (Fσ)) ⊂ VUS(F, (Fσ));
(b)VCu(F, (Fσ)) ⊂ VSu(F, (Fσ)) (resp. VCl(F, (Fσ)) ⊂ VSl(F, (Fσ));
(c) Cu(F, (Fσ)) ⊂ Su(F, (Fσ)) (resp. Cl(F, (Fσ)) ⊂ Sl(F, (Fσ)));
(d) WCCu(F, (Fσ)) ⊂WCSu(F, (Fσ)) (resp. WCCl(F, (Fσ)) ⊂WCSl(F, (Fσ))) and
(e)VWCCu(F, (Fσ)) ⊂ VWCSu(F, (Fσ)) (resp.
VWCCl(F, (Fσ)) ⊂ VWCS(F, (Fσ))).

2. Main results

We begin with a theorem that shows which types of convergences guarantee some kind of continuity.

Theorem 2.1. For every multifunctions F, Fσ : (X, π)→ (Y,V), σ ∈ Σ, the following hold:

(a) WCCl(F, (Fσ)) ∩V−1USu(F, (Fσ)) ⊂ Cl(F) and

WCSl(F, (Fσ)) ∩V−1UCu(F, (Fσ)) ⊂ Cl(F);

(b) VWCCl(F, (Fσ)) ∩V−1USu(F, (Fσ)) ⊂ VCl(F) and

VWCSl(F, (Fσ)) ∩V−1UCu(F, (Fσ)) ⊂ VCl(F);

(c) VWCCu(F, (Fσ)) ∩V−1USl(F, (Fσ)) ⊂ VCu(F) and

VWCSu(F, (Fσ)) ∩V−1UCl(F, (Fσ)) ⊂ VCu(F).

Proof. (a): Let x ∈WCCl(F, (Fσ))∩V−1USu(F, (Fσ)) (resp. x ∈WCSl(F, (Fσ))∩V−1UCu(F, (Fσ))), let G be an
open subset of Y such that F(x) ∩ G , ∅ and let us take W,V ∈ V such that V(y) ⊂ G for some y ∈ F(x), and
W ◦W ⊂ V. Since x ∈WCCl(F, (Fσ)) (resp. x ∈ V−1UCu(F, (Fσ))), there exists γ ∈ Σ such that
x ∈ Int(F−σ (W(y)) (1)
(resp. x ∈ Int(Dl(Fσ,F,W))) (2)
for all σ ≥ γ and, because x ∈ V−1USu(F, (Fσ)) (resp. x ∈ WCSl(F, (Fσ)) we may find δ ≥ γ such that each of
the statements (1) and (2) implies that x ∈ U = Int(F−δ (W(y)) ∩ Int(Dl(Fσ,F,W)). Therefore, for every p ∈ U
we have Fδ(p)∩W(y) , ∅ and Fδ(p) ⊂W−1(F(p)). So, (y, a) ∈W and (a, b) ∈W for some a ∈ Fδ(p) and b ∈ F(p)
which shows that b ∈ F(p) ∩ V(y) and consequently, that x ∈ Int(F−(G)). This finishes the proof of (a).
(b): Let x ∈ VWCCl(F, (Fσ)) ∩ V−1USu {F, (Fσ)} (resp. x ∈ VWCSl(F, (Fσ)) ∩ V−1UCu(F, (Fσ)), let V ∈ V be
established and let W ∈ V be such that W ◦W ⊂ V. Since x ∈ VWCCl(F, (Fσ)) (res.x ∈ V−1UCu(F, (Fσ))),
there exists γ ∈ Σ such that
x ∈ Int(F−1

σ (W−(F(x)))) (3)
(resp. x ∈ Int(Dl(Fσ,F,W))) (4)
for all σ ≥ γ and, since x ∈ V−1USu(F, (Fσ)) (resp. x ∈ VWCSl(F, (Fσ))), there exists δ ≥ γ such that each
of the statements (3) and (4) implies that x ∈ U = Int(F−1

δ (W−(F(x)))) ∩ Int(Dl(Fδ,F,W)). If p ∈ U, then
Fδ(p) ⊂W−1(F(p)) and (F(x),Fδ(p)) ∈W− which implies F(x) ⊂W−(Fδ(p)) and consequently, for every a ∈ F(x)
we have (a, b) ∈ W and (b, c) ∈ W for some b ∈ Fδ(p) and c ∈ F(p). So, F(x) ⊂ V−1(F(p)) which means that
F(p) ∈ V−(F(x)) for any p ∈ U, and proves that x ∈ Int(F−1(V−(F(x)))). This shows that x ∈ VCl(F).
(c): Let x ∈ VWCCu(F, (Fσ)) ∩ V−1USl(F, (Fσ)) (resp. x ∈ VWCSu(F, (Fσ)) ∩ V−1UCl(F, (Fσ)), let V ∈ V and
W ∈ V be as above. Since x ∈ VWCCu(F, (Fσ)) (resp. x ∈ V−1UCl(F, (Fσ))), there exists γ ∈ Σ such that
x ∈ Int(F−1

σ ((W+)(F(x)))) (5)
(resp. x ∈ Int(Dl(F,Fσ,W−1))) (6)
for all σ ≥ γ and, x ∈ Int(Dl(F,Fσ,W−1)) (resp. x ∈ Int(F−1

σ ((W+)(F(x))))) for some δ ≥ γ because x ∈
V
−1USl(F, (Fσ)) (resp. x ∈ VWCSu(F, (Fσ))). So, each of the statements (5) and (6) implies that

x ∈ U = Int(F−1
δ ((W+)(F(x))))∩ Int(Dl(F,Fδ,W−1)). Consequently, for every p ∈ U we have Fδ(p) ∈ (W+)(F(x)),

which means Fδ(p) ⊂ W(F(x)), and ((F(p),Fδ(p)) ∈ (W−1)−, which means F(p) ⊂ W(Fδ(p)). Therefore, for
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every a ∈ F(p) we have (b, a) ∈ W and (c, b) ∈ W for some b ∈ Fδ(p) and c ∈ F(x). So, (c, a) ∈ V which gives
that F(p) ⊂ V(F(x)). So, F(p) ∈ (V+)(F(x))) for any p ∈ U which shows that x ∈ VCu(F) and finishes the proof.

We now show that the assumption concerning the continuity of multifunctions in the net, in the form
x ∈ lim inf Cl(Fσ) (resp. x ∈ lim inf Cu(Fσ)),
x ∈ lim infVCl(Fσ) (resp. x ∈ lim infVCu(Fσ)) or
x ∈ lim sup Cl(Fσ) (resp. x ∈ lim sup Cu(Fσ)),
x ∈ lim supVCl(Fσ) (resp. x ∈ lim supVCu(Fσ)) implies the identity or inclusions of different types of

convergence listed in diagrams 1.12 and 1.14.

Theorem 2.2. For every multifunctions F, Fσ : (X, π)→ (Y,V), σ ∈ Σ, the following hold:

(a) Cl(F, (Fσ)) ∩ lim inf Cl(Fσ) ⊂WCCl(F, (Fσ)) and
Cu(F, (Fσ)) ∩ lim inf Cu(Fσ) ⊂WCCu(F, (Fσ));

(b) SlF, (Fσ) ∩ lim inf Cl(Fσ) ⊂WCSl(F, (Fσ))
Cl(F, (Fσ)) ∩ lim sup Cl(Fσ)] ⊂WCSl(F, (Fσ),
Su(F, (Fσ)) ∩ lim inf Cu(Fσ) ⊂WCSu(F, (Fσ)) and
Cu(F, (Fσ)) ∩ lim sup Cu(Fσ)] ⊂WCSu(F, (Fσ));

(c) VCl(F, (Fσ)) ∩ lim infVCl((Fσ) ⊂ VWCCl(F, (Fσ)) and
VCu(F, (Fσ)) ∩ lim infVCu(Fσ) ⊂ VWCCu(F, (Fσ));

(d) VSl(F, (Fσ)) ∩ lim infVCl(Fσ) ⊂ VWCSl(F, (Fσ)),
VCl(F, (Fσ)) ∩ lim supVCl(Fσ) ⊂ VWCSl(F, (Fσ)),
VSu(F, (Fσ)) ∩ lim infVCu(Fσ) ⊂ VWCSu(F, (Fσ)) and
VCu(F, (Fσ) ∩ lim supVCu(Fσ)] ⊂ VWCSu(F, (Fσ));

Proof. (a): Let x ∈ Cl(F, (Fσ)) ∩ lim inf Cl(Fσ) (resp. x ∈ Cu(F, (Fσ)) ∩ lim inf Cu(Fσ)) and let G be an open
subset of Y such that F(x) ∩ G , ∅ (resp. F(x) ⊂ G). Then there exists γ ∈ Σ such that x ∈ F−σ (G))) and
x ∈ Cl(Fσ) (resp. x ∈ F+

σ (G))) and x ∈ Cu(Fσ) for all σ ≥ γ. So, x ∈ Int(F−σ (G))) (resp. x ∈ Int(F+
σ (G))) for all

σ ≥ γ and consequently, x ∈WCCl(F, (Fσ)) (resp. x ∈WCCu(F, (Fσ))).
(b): Let x ∈ Sl(F, (Fσ)) ∩ lim inf Cl(Fσ) (resp. x ∈ Su(F, (Fσ)) ∩ lim inf Cu(Fσ)), let G be an open subset of

Y such that F(x) ∩ G , ∅ (resp. F(x) ⊂ G) and let γ ∈ Σ be established. Since x ∈ lim inf Cl(Fσ) (resp.
x ∈ lim inf Cu(Fσ)), there exists ξ ∈ Σ such that x ∈ Cl(Fσ) (resp. x ∈ Cu(Fσ)) for all σ ≥ ξ. Let us take δ ∈ Σ
such that δ ≥ γ and δ ≥ ξ. Then, because of the assumption that x ∈ Sl(F, (Fσ)) (resp. x ∈ Su(F, (Fσ))), there
exists σ ≥ δ such that x ∈ F−σ (G) and x ∈ Cl(Fσ) (resp. x ∈ F+

σ (G) and x ∈ Cu(Fσ)). Consequently, x ∈ Int(F−σ (G))
(resp. x ∈ Int(F+

σ (G))) which shows that x ∈WCSl(F, (Fσ)) (resp.x ∈WCSu {F, (Fσ)}).
Now suppose that x ∈ Cl(F, (Fσ)) ∩ lim sup Cl(Fσ)

(resp. x ∈ Cu(F, (Fσ)) ∩ lim sup Cu(Fσ)) and, let G ⊂ Y and γ ∈ Σ be as above. So, there exists ξ ∈ Σ such
that x ∈ F−σ (G) (resp. x ∈ F+

σ (G)) for all σ ≥ ξ. If we take δ ∈ Σ such that δ ≥ γ and δ ≥ ξ, then there exists
σ ≥ δ such that x ∈ Cl(Fσ) (resp. x ∈ Cu(Fσ)). This implies that x ∈ Int(F−σ (G)) (resp. x ∈ Int(F+

σ (G))). So,
x ∈WCSl(F, (Fσ))
(resp. x ∈WCSu(F, (Fσ)))).

(c): Let x ∈ VCl(F, (Fσ) ∩ lim infVCl(Fσ) (resp. x ∈ VCu(F, (Fσ)) ∩ lim infVCu(Fσ)), let V ∈ V be
established and let W ∈ V be such that W ◦W ⊂ V. Then there exists γ ∈ Σ such that x ∈ Dl(F,Fσ,W)
and x ∈ VCl(Fσ) (resp. x ∈ Du(F,Fσ,W) and x ∈ VCu(Fσ)) for all σ ≥ γ. Therefore, F(x) ⊂ W−1(Fσ(x)) and
x ∈ Int(F−1

σ (W−(Fσ(x)))) (resp. Fσ(x) ⊂ W(F(x)) and x ∈ Int(F−1
σ (W+(Fσ(x)))) for each σ ≥ γ. Let us take a

certain σ ≥ γ, and let p ∈ Int(F−1
σ (W−(Fσ(x)))) (resp. p ∈ Int(F−1

σ (W+(Fσ(x))))). Then Fσ(p) ∈ W−(Fσ(x))) (resp.
Fσ(p) ∈ W+(Fσ(x))) and consequently, Fσ(x) ⊂ W−1(Fσ(p)) (resp. Fσ(p) ⊂ W(Fσ(x))). So, for all a ∈ F(x) (resp.
a ∈ Fσ(p)) there exist b ∈ Fσ(x) and c ∈ Fσ(p) (resp. b ∈ Fσ(x) and c ∈ F(x)) such that (a, b) ∈ W, and (b, c) ∈ W
(resp. (b, a) ∈ W, and (c, b) ∈ W). This gives (a, c) ∈ V (resp. (c, a) ∈ V) and consequently, a ∈ V−1(Fσ(p))
(resp. a ∈ V(F(x))). It shows that F(x) ⊂ V−1Fσ(p) (resp. Fσ(p) ⊂ V(F(x))), so that Fσ(p) ∈ V−(F(x)) (resp.
Fσ(p) ∈ V+(F(x)). So, x ∈ Int(F−1

σ (V−(F(x)))) (resp. x ∈ Int(F−1
σ (V+(F(x))))) and the proof of (c) is complete.
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(d): Let x ∈ VSl(F, (Fσ)) ∩ lim infVCl(Fσ) (resp. x ∈ VSu(F, (Fσ) ∩ lim infVCu(Fσ)), let V ∈ V and γ ∈ Σ
be established, and let W ∈ V be such that W ◦W ⊂ V. Then there exists ξ ∈ Σ such that x ∈ VCl(Fσ)
(resp. x ∈ VCu(Fσ)) for all σ ≥ ξ. Let us take δ ∈ Σ such that δ ≥ γ and δ ≥ ξ. Then, because
x ∈ VSl(F, (Fσ))) (resp. x ∈ VSu(F, (Fσ)) we may find σ ≥ δ such that x ∈ Dl(F,Fσ,W) (resp. x ∈ Du(F,Fσ,W))
and x ∈ Int(F−1

σ (W−(Fσ(x)))) (resp. x ∈ Int(F−1
σ (W+(Fσ(x))))). This implies that F(x) ⊂ W−1(Fσ(x)) (resp.

Fσ(x) ⊂ W(F(x))). Let p ∈ Int(F−1
σ (W−(Fσ(x)))) (resp. p ∈ Int(F−1

σ (W+(Fσ(x)))), then (Fσ(x),Fσ(p)) ∈ W− (resp.
(Fσ(x),Fσ(p)) ∈ W+). Therefore, Fσ(x) ⊂ W−1(Fσ(p)) (resp. Fσ(p) ⊂ W(Fσ(x))) and, since F(x) ⊂ W−1(Fσ(x))
(resp. Fσ(x) ⊂ W(F(x))), for every a ∈ F(x) (resp. a ∈ Fσ(p)) there exist b ∈ Fσ(x) (resp. b ∈ Fσ(x)) and
c ∈ Fσ(p) (resp. c ∈ F(x)) such that (a, b) ∈ W and (b, c) ∈ W (resp. (b, a) ∈ W, and (c, b) ∈ W). So,
a ∈ V−1(c) (resp. a ∈ V(c)) and consequently, F(x) ⊂ V−1Fσ(p)) (resp. Fσ(p) ⊂ V(F(x))) which means that
Fσ(p) ∈ V−F(x)) (resp. Fσ(p) ∈ V+((F(x))) and proves that x ∈ Int(F−1

σ (V−(F(x)))) (resp. x ∈ Int(F−1
σ (V+(F(x)))).

So, x ∈ V −WCSCl {F, (Fσ)} (resp. x ∈ V −WCSCu {F, (Fσ)}).
Now suppose that x ∈ VCl(F, (Fσ)) ∩ lim supVCl(Fσ) (resp. x ∈ VCu {F, (Fσ)} ∩ lim supVCu(Fσ) and,

let V,W ∈ V and γ ∈ Σ be as above. Since x ∈ VCl(F, (Fσ) (resp. x ∈ VCu(F, (Fσ))), there exists ξ ∈ Σ
such that x ∈ Dl(F,Fσ,W) (resp. x ∈ Du(F,Fσ,W)) for all σ ≥ ξ. Let δ ∈ Σ be such that δ ≥ γ and δ ≥ ξ.
Because x ∈ lim supVCl(Fσ) (resp. x ∈ lim supVCu(Fσ)), there exists σ ≥ δ such that x ∈ VCl(Fσ) (resp.
x ∈ VCu(Fσ)). So, x ∈ Dl(F,Fσ,W) ∩ Int(F−1

σ (W−(Fσ(x)))) (resp. x ∈ Du(F,Fσ,W) ∩ Int(F−1
σ (W+(Fσ(x))))) and,

the rest of the proof is quite analogous to the above.

Corollary 2.3. For every multifunctions F, Fσ : (X, π)→ (Y,V), σ ∈ Σ we have:

(a) On the set lim inf Cl(Fσ) the following hold:

(i) Cl(F, (Fσ)) ∩V−1USu(F, (Fσ)) ⊂ Cl(F) and

(ii) Sl(F, (Fσ)) ∩V−1UCu(F, (Fσ)) ⊂ Cl(F).

(b) On the set lim infVCl(Fσ) the following hold:

(i)VCl(F, (Fσ)) ∩V−1USu(F, (Fσ)) ⊂ VCl(F) and

(ii)VSl(F, (Fσ)) ∩V−1UCu(F, (Fσ)) ⊂ VCl(F).

(c) On the set lim supVCl(Fσ) the following hold:

VCl(F, (Fσ)) ∩V−1UCu(F, (Fσ)) ⊂ VCl(F).

(d) On the set lim infVCu(Fσ) the following hold:

(i)VCu(F, (Fσ)) ∩V−1USl(F, (Fσ)) ⊂ VCu(F) and

(ii)VSu(F, (Fσ)) ∩V−1UCl(F, (Fσ)) ⊂ VCu(F).

(e) On the set lim supVCu(Fσ) the following hold:

VCu(F, (Fσ)) ∩V−1UCl(F, (Fσ)) ⊂ VCu(F);

In the case of a uniform structureV and the single valued functions
f , fσ : (X, π)→ (Y,V), σ ∈ Σ, treated as multifunctions F,Fσ given by F(x) =

{
f (x)

}
,

Fσ(x) =
{
fσ(x)

}
we have

(i) Sl(F, (Fσ)) = Su(F, (Fσ)) = VSl(F, (Fσ)) = VSu(F, (Fσ)) and it consists of the points of the far weaker
property than the pointwise convergence (see Remark 1.8);

(ii) V−1UCu(F, (Fσ)) = V−1UCl(F, (Fσ)) = VUCu(F, (Fσ)) = VUCl(F, (Fσ)) and it consists of the points of
theV-locally uniformly convergence [12];

(iii)V−1USu(F, (Fσ)) =V−1USl(F, (Fσ)) =VUSu(F, (Fσ)) =VUSl(F, (Fσ)) and it consists of the points of the
far weaker property than the points of theV-locally uniformly convergence.

We will use the same name (Definition for single valued functions, i.e. x ∈ Sl(F, (Fσ)) means the pointwise
subconvergence, x ∈ USl(F, (Fσ)) means the quasi-uniformlyV-subconvergence. The relationships between
them are as follows:
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quasi-uniformlyV-subconvergence - pointwise subconvergence
66

V-locally uniformly convergence - pointwise convergence

Corollary 2.4. Let ( fσ) be a net of functions from a topological space (X, π) to a uniform space (Y,V) and let
fσ : (X, π)→ (Y,V). If x ∈ lim inf C( fσ), ( fσ) is pointwise convergent and quasi-uniformlyV-subconvergent
at x to f, then f is continuous at x.

Finally we show how the continuity of the limit function affects types of convergence.

Theorem 2.5. For every multifunctions F,Fσ : (X, π)→ (Y,V), σ ∈ Σ, the following hold:

(a) VWCCl(F, (Fσ)) ∩V−1Cu(F) ⊂ VUCl(F, (Fσ)) and
VWCCu(F, (Fσ)) ∩V−1Cl(F) ⊂ VUCu(F, (Fσ));

(b) VWCSl(F, (Fσ)) ∩V−1Cu(F) ⊂ VUSl(F, (Fσ)) and
VWCSu(F, (Fσ)) ∩V−1Cl(F) ⊂ VUSu(F, (Fσ)).

Proof. (a): Let x ∈ VWCCl(F, (Fσ)) ∩ V−1Cu(F, (Fσ)) (resp. x ∈ VWCCu(F, (Fσ)) ∩ V−1Cl(F, (Fσ))) and let
us take V,W ∈ V such that W ◦W ⊂ V. Then there exists γ ∈ Σ such that x ∈ U = Int(F−1

σ (W−(F(x)))) ∩
Int(F−1((W−)−1(F(x))) (resp. x ∈ U∗ = Int(F−1

σ (W+(F(x)))) ∩
Int(F−1((W+)−1(F(x))))) for each σ ≥ γ. So, for every p ∈ U (resp. p ∈ U∗) we have Fσ(p) ∈ W−(F(x)) and
F(p) ∈ (W−)−1(F(x)) (resp. Fσ(p) ∈ W+(F(x)) and F(p) ∈ (W+)−1(F(x))). This means that F(x) ⊂ W−1(Fσ(p))
and F(p) ⊂ W−1(F(x)) (resp. Fσ(p) ⊂ W(F(x)) and F(x) ⊂ W(F(p))). Therefore, for every a ∈ F(p) (resp.
a ∈ Fσ(p)) there exist b ∈ F(x) and c ∈ Fσ(p) (resp. b ∈ F(x) and c ∈ F(p)) such that (a, b), (b, c) ∈ W (resp.
(b, a), (c, b) ∈W) and consequently, F(p) ⊂ V−1(Fσ(p)) (resp. Fσ(p) ⊂ V(F(p))). This proves that U ⊂ Dl(F,Fσ,V)
(resp. U∗ ⊂ Du(F,Fσ,V)) and finishes the proof of (a).

The proof of (b) is quite analogous to the one above.

Corollary 2.6. For every multifunctions F, Fσ : (X, π)→ (Y,V), σ ∈ Σ we have:

(a) On the set lim infVCl(Fσ) the following hold:

(i)VCl(F, (Fσ)) ∩V−1Cu(F) ⊂ VUCl(F, (Fσ)) and

(ii)VSl(F, (Fσ)) ∩V−1Cu(F) ⊂ VUSl(F, (Fσ)) .

(b) On the set lim supVCl(Fσ) the following hold:

VCl(F, (Fσ)) ∩V−1Cu(F) ⊂ VUSl(F, (Fσ))

(c) On the set lim infVCu(Fσ) the following hold:

(i)VCu(F, (Fσ)) ∩V−1Cl(F) ⊂ VUCu(F, (Fσ)) and

(ii)VSu(F, (Fσ)) ∩V−1Cl(F) ⊂ VUSu(F, (Fσ)).

(d) On the set lim supVCu(Fσ) the following hold:

VCu(F, (Fσ)) ∩V−1Cl(F, (Fσ)) ⊂ VUSu(F, (Fσ)).
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The following consequence of Corollary 2.4 and the above corollary improves the classical result cited
in [8, Corollary 6.4].

Corollary 2.7. Let
{
fσ : σ ∈ Σ

}
be a net of functions such that x0 ∈ lim inf C( fσ) which is pointwise convergent

at x0 to a function f. Then f is continuous at x0 if and only if the net
{
fσ : σ ∈ Σ

}
is V-locally uniformly

convergent to f at x0.
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