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Abstract. For every 0 < q < 1 and 0 ≤ α < 1, we introduce a class of analytic functions f on the open unit
discDwith the standard normalization f (0) = 0 = f ′(0) − 1 and satisfying∣∣∣∣∣∣ 1

1 − α

(
z(Dq f )(z)

h(z)
− α

)
−

1
1 − q

∣∣∣∣∣∣ ≤ 1
1 − q

, (z ∈ D),

where h ∈ S∗q. This class is denoted by Kq(α), so called the class of q-close-to-convex- functions of order
α. In this paper, we study some geometric properties of this class. In addition, we consider the famous
Bieberbach conjecture problem on coefficients for the class Kq(α). We also find some sufficient conditions
for the function to be in Kq(α) for some particular choices of the functions h. Finally, we provide some
applications on q-analogue of Gaussian hypergeometric function.

1. Introduction and Preliminaries

LetH(D) be the class of analytic functions inD andA be the class of analytic functions normalized by
the conditions that f (0) = 0 and f ′(0) = 1, that is f ∈ A can be written as of the form

f (z) = z +

∞∑
n=2

anzn. (1)

We denote by S the subclass ofA consisting of functions, which are univalent onD.
In the field of geometric functions theory, the class, as well as subclasses, of univalent functions has

been widly studied by several researchers. There are many distinguished geometric properties that played
an important role in the theory of univalent functions, such as starlikeness, convexity, close-to-convexity.
A function f ∈ A is said to be starlike with respect to w0 if f maps D onto starlike domain with respect
to w0, In the special case that w0 = 0, we say that f is a starlike function. Also, a function f ∈ A is said
to be convex function if f maps D onto a convex domain. The classes of all starlike and convex functions
are respectively denoted by S∗ and C. More generally, for 0 ≤ α ≤ 1, let S∗(α) and C(α) be the subclasses
of S consisting of respectively starlike functions of order α, and convex functions of order α. Analytically,
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these classes are defined by the following characterizations. A function f ∈ A is said to be starlike of order
α (0 ≤ α < 1) inD if f satisfies

Re
{

z f ′(z)
f (z)

}
> α (z ∈ D). (2)

We denote this class by S∗(α). On the other hand, a function f ∈ A is said to be convex of order α inD if f
satisfies

Re
{

1 +
z f ′′(z)
f ′(z)

}
> α, (z ∈ D).

We denote this class by C(α). In particular, we set S∗(0) ≡ S∗ for a class of starlike functions and C(0) ≡ C
for a class of convex functions.

We say that an analytic function f ∈ K (α), say close-to-convex function of order α, if there exists a
function h ∈ S∗ such that

Re
{

z f ′(z)
h(z)

}
> α (z ∈ D). (3)

In particular, when h(z) = z, the classK (α) is exactly the class of bounded turning function of order α.
There are many ways to study subclasses of analytic functions, especially subclasses of univalent

functions. In [1], Deng studied some sharp properties on univalent functions with negative coefficients.
In [2], M.N. Pascu and N.R. Pascu studied the best starlike univalent approximations of analytic functions
problem, and they also solved this kind of problem on the subclass of the convex function in [3]. Many
subclasses of starlike and convex functions were intensively introduced and studied by many authors. In
[4], Aouf and Srivastava introduced and investigated some families of starlike functions with negative
coefficient by using Salagean operator. Kanas and Wisniowska [5] introduced the class of k-uniformly
convex functions and obtainded some necessary and sufficient for functions in this class. In [6], Kanas and
Srivastava provided some sufficient conditions for the operators in term of the Hadamard product in order
to map the class of starlike and univalent functions onto the class of k-uniformly convex and k-starlike
functions. Some properties of the classes of k-uniformly close-to-convex functions and k-uniformly quasi-
convex functions defined by the Dziok-Srivastava operator were studied by Srivastava et.al. [7]. For some
interesting properties and related topics on subclass of univalent functions, we refer to [8–15].

Let f and 1 be an analytic function in D, we say that f is subordinate to 1 if there exists a Schwarz
functionω : D→ D such that f (z) = 1(ω(z)) for all z ∈ D, written as f (z) ≺ 1(z). Furthermore, if the function
1(z) is univalent then f (z) ≺ 1(z) if and only if f (0) = 1(0) and f (D) ⊂ 1(D).

For the convenience, we provide some basic definitions and concept details of q-calculus which are used
in this paper. For any fixed complex number µ, a set A ⊂ C is called a µ–geometric set if for z ∈ A, µz ∈ A.
Let f be a function defined on a q–geometric set. The Jackson’s q-derivative and q-integral of a function on
a subset of C are, respectively, given by (see Gasper and Rahman [16], pp.19–22)

Dq f (z) =
f (z) − f (zq)

z(1 − q)
, (z , 0, q , 0), (4)

and ∫ z

0
f (t)dqt = z(1 − q)

∞∑
k=0

qk f (zqk). (5)

In case f (z) = zn, the q-derivative and q-integral of f (z), where n is a positive integer, is given by

Dqzn =
zn
− (zq)n

(1 − q)z
= [n]qzn−1
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and ∫ z

0
tndqt = z(1 − q)

∞∑
k=0

qk(zqk)n =
zn+1

[n + 1]q
.

As q→ 1− and n ∈N, we have [n]q =
1 − qn

1 − q
= 1+q+ · · ·+qn−1

→ n. In the theory of q-calculus, the q–shifted

factorial is defined for α, q ∈ C, n ∈N0 ≡N ∪ {0} as a product of n factors by

(
α; q

)
n =

{
1

(1 − α)(1 − αq) · · · (1 − αqn−1)
,
,

n = 0;
n ∈N, (6)

and in terms of the basic analogue of the gamma function

(qα; q)n =
Γq(α + n)(1 − q)n

Γq(α)
, (n > 0),

where the q–gamma function [16, 17] is defined by

Γq(x) =
(q; q)∞(1 − q)1−x

(qx; q)∞
, (0 < q < 1).

We note that, if |q| < 1, the q–shifted factorial (6) remains meaningful for n = ∞ as a convergent infinite
product:

(α; q)∞ =

∞∏
k=0

(1 − αqk).

Here, we recall the following q-analogue definitions given by Gasper and Rahman [16]. The recurrence
relation for q-gamma function is given by

Γq(x + 1) = [x]qΓq(x),

where [x]q = (1 − qx)/(1 − q) and is called q–analogue of x. It is well known that Γq(x) → Γ(x) as q → 1−,
where Γ(x) is the ordinary Euler gamma function.

In view of the relation

lim
q→1−

(qα; q)n

(1 − q)n = (α)n,

we observe that the q–shifted factorial (6) reduces to the familiar Pochhammer symbol (α)n, where (α)n =
α(α + 1)(α + 2) · · · (α + n − 1). Here, we recall the q-analogue of Gaussian hypergeometric function is as the
following form (see [18])

2Φ1(a, b; c; q; z) =

∞∑
n=0

(a; q)n(b; q)n

(c; q)n(q; q)n
zn, (z ∈ D).

Up to date, there are many applications of q-calculus on subclasses of analytic functions, especially
generalization of subclasses of univalent functions (see [19–30]). In the context of geometric function
theory, the usage of q-calculus was firstly applied in a book chapter by Srivastava [19], in which the
basis q-hypergeometric functions was also provided. In [20], Ismail et al. introduced the generalized
starlike function by replacing the usual derivative with q-difference operator Dq and the right-half plane
{w : Rew > α} was substituted by an appropriate domain. By extending this idea, Agrawal and Sahoo
in [21], introduced S∗q(α) the class of q-starlike functions of order α. The definition turned out to be the
following:
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Definition 1.1. A function f ∈ A is said to belong to the class S∗q(α), 0 ≤ α < 1, if∣∣∣∣∣∣ 1
1 − α

(
z(Dq f )(z)

f (z)
− α

)
−

1
1 − q

∣∣∣∣∣∣ < 1
1 − q

, (z ∈ D). (7)

From this definition, this equivalent to the following form

f ∈ S∗q(α) ⇐⇒

∣∣∣∣∣∣z(Dq f )(z)
f (z)

−
1 − αq
1 − q

∣∣∣∣∣∣ < 1 − α
1 − q

.

Moreover, by using the concept of the well-known Alexander duality between starlike and convex functions,
this lead us to consider the class of q-convex function of order α by

f ∈ Cq(α) ⇐⇒ z(Dq f )(z) ∈ S∗q(α).

We note that if q→ 1−, the class Cq(α) reduces to the class of usual convex functions of order α. For several
interesting geometric properties related to both classes, we refer to [22–24].

Later, Raghavendar and Swaminathan [25] defined and investigated the class of q-analog of close-to-
convex functions by using the similar idea as above. The definition turned out to be as following:

Definition 1.2. A function f ∈ A is said to belong to the class PK q, if there exists h ∈ S∗ such that∣∣∣∣∣∣z(Dq f )(z)
h(z)

−
1

1 − q

∣∣∣∣∣∣ < 1
1 − q

, (z ∈ D). (8)

Motivated by the study along this line, we introduce the class of q-close-to-convex functions of order α.
Moreover, we replace the function h ∈ S∗ in Definition 2 by a weaker condition h ∈ S∗q. The definition turns
out to be as following:

Definition 1.3. A function f ∈ A is said to belong to the classKq(α), 0 ≤ α < 1, if there exists h ∈ S∗q such that∣∣∣∣∣∣ 1
1 − α

(
z(Dq f )(z)

h(z)
− α

)
−

1
1 − q

∣∣∣∣∣∣ < 1
1 − q

, (z ∈ D). (9)

Here, we note that the definition equivalent to the following form

f ∈ K ∗q(α) ⇐⇒

∣∣∣∣∣∣z(Dq f )(z)
h(z)

−
1 − αq
1 − q

∣∣∣∣∣∣ < 1 − α
1 − q

,

where h ∈ S∗q. In particular, we set Kq(0) ≡ Kq. In fact, the class Kq generalize the class PK q in [25] due to
the following relation (see [20])

S
∗ =

⋂
0<q<1

S
∗

q.

As (Dq f )(z)→ f ′(z), as q→ 1−, we observe that the classKq(α) satisfies the following relation⋂
0<q<1

Kq(α) ⊂ K (α) ⊂ K ⊂ S.

The main purpose of this paper is to introduce and investigate some geometric properties on the class
Kq(α). In the main results, we obtain a characterization for the function belonging to Kq(α) by using the
concept of subordinate property. We also study on radius of q-convexity and coefficient bounds for Kq(α).
Moreover, we derive some sufficient conditions for functions to be in Kq(α) for some particular choices of
the function h. Some applications on q-analogue of Gaussian hypergeometric function are also obtained.
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Main results

We begin this section with a characterization for the function in f ∈ Kq(α) via subordination symbol.

Theorem 1.4. Let f ∈ A. Then f ∈ Kq(α) if and only if

zDq f (z)
h(z)

≺
1 + (1 − α(1 + q))

1 − qz
,

where h ∈ S∗q.

Proof. Let f ∈ Kq(α), then there exists a analytic function h ∈ S∗q such that∣∣∣∣∣∣zDq f (z)
h(z)

−
1 − αq
1 − q

∣∣∣∣∣∣ ≤ 1 − α
1 − q

. (10)

This leads us to introduce the function

Ψ(z) =
1 − q
1 − α

z
Dq f (z)

h(z)
−

1 − αq
1 − α

,

which is |Ψ(z)| < 1, for z ∈ D. Let

ω(z) =
Ψ(z) −Ψ(0)

1 −Ψ(0)Ψ(z)
=

zDq f (z)
h(z) − 1

(1 − α) + q zDq f (z)
h(z)

. (11)

We note that ω(0) = 0 and |ω(z)| < 1 for z ∈ D. Moreover, from Eq. (11), we have

zDq(z) f (z)
h(z)

=
1 + (1 − α(1 + q))ω(z)

1 − qω(z)
. (12)

This implies that

zDq(z) f (z)
h(z)

≺
1 + (1 − α(1 + q))z

1 − qz
. (13)

Conversely, we assume that Eq. (13) holds. That is there exists a function ω : D→ D such that

zDq(z) f (z)
h(z)

=
1 + (1 − α(1 + q))ω(z)

1 − qω(z)
.

We observe that

zDq(z) f (z)
h(z)

−
1 − αq
1 − q

=
1 + (1 − α(1 + q))ω(z)

1 − qω(z)
−

1 − αq
1 − q

=
1 − α
1 − q

(
−q + ω(z)
1 − qω(z)

)
.

Since the pseudo-hyperbolic distance between −q and ω(z) is less than 1, then we have∣∣∣∣∣∣zDq(z) f (z)
h(z)

−
1 − αq
1 − q

∣∣∣∣∣∣ =
1 − α
1 − q

∣∣∣∣∣−q + ω(z)
1 − qω(z)

∣∣∣∣∣ ≤ 1 − α
1 − q

.

The proof is completed.



B. Wongsaijai, N. Sukantamala / Filomat 32:6 (2018), 2295–2305 2300

Using the same argument as Theorem 1.4, we obtain the following corollary.

Corollary 1.5. Let f ∈ A. Then f ∈ S∗q(α) if and only if

zDq f (z)
f (z)

≺
1 + (1 − α(1 + q))z

1 − qz
.

Next, we consider the radius of q-convexity for the classKq(α).

Theorem 1.6. If α < 1/(1 + q), then the radius of q-convexity of the classKq(α) is the unique root of the polynomial

p(r) = (1 − α)(1 − q2)(1 − qr)r + ((1 + q)r − (1 − q))(1 − Ar − Br2)

defined on the interval (0, 1), where A = |1 − q − α(1 + q)| and B = |1 − α(1 + q)|.

Proof. Using Theorem 1.4, there exits an analytic function ω : D→ D such that

zDq f (z)
h(z)

=
1 + (1 − α(1 + q))ω(z)

1 − qω(z)
. (14)

By logarithmic q-differentiation of Eq. (14), we have

ln q
q − 1

[
Dq(zDqz f (z))

zDqz f (z)
−

Dqh(z)
h(z)

]
=

ln q
q − 1

[
(1 − α(1 + q)Dqω(z))Dqω(z)

1 + (1 − α(1 + q))ω(z)
+

qDqω(z)
1 − qω(z)

]
. (15)

Hence

Dq(zDqz f (z))
zDqz f (z)

−
Dqh(z)

h(z)
=

(1 − α)(1 + q)Dqω(z)
1 + (1 − q − α(1 + q))ω(z) − q(1 − α(1 + q)))ω2(z)

.

Therefore, for |z| < r, we have∣∣∣∣∣∣zDq(zDqz f (z))
zDqz f (z)

−
1

1 − q

∣∣∣∣∣∣ ≤ (1 − α)(1 + q)|zDqω(z)|
1 − |(1 − q − α(1 + q))||ω(z)| − |q(1 − α(1 + q)))||ω(z)|2

+

∣∣∣∣∣∣zDqh(z)
h(z)

−
1

1 − q

∣∣∣∣∣∣
≤

(1 − α)(1 + q)|zDqω(z)|
1 − Ar − Br2 +

∣∣∣∣∣∣zDqh(z)
h(z)

−
1

1 − q

∣∣∣∣∣∣ , (16)

where A = |1 − q − α(1 + q)| and B = |1 − α(1 + q)|. Applying Corollary 1.5 with α = 0, there exits an analytic
function ϕ : D→ D such that

zDq f (z)
h(z)

=
1 + ϕ(z)
1 − qϕ(z)

.

So, for |z| < r, we have∣∣∣∣∣∣zDqh(z)
h(z)

−
1

1 − q

∣∣∣∣∣∣ =

∣∣∣∣∣ 1 + ϕ(z)
1 − qϕ(z)

−
1

1 − q

∣∣∣∣∣ ≤ q + r
(1 − q)(1 − qr)

. (17)

On the other hand, using the Lemma 6 in [27], we obtain

|Dqω(z)| ≤
1 − |ω(z)|2

1 − |z|2
. (18)

From Eqs. (16)-(18), we get∣∣∣∣∣∣Dq(zDqz f (z))
zDqz f (z)

−
1

1 − q

∣∣∣∣∣∣ ≤ (1 − α)(1 + q)r
1 − Ar − Br2 +

q + r
(1 − q)(1 − qr)

.



B. Wongsaijai, N. Sukantamala / Filomat 32:6 (2018), 2295–2305 2301

To complete the proof, we need to find the smallest r0 ∈ (0, 1) satisfying the equation

(1 − α)(1 + q)r
1 − Ar − Br2 +

q + r
(1 − q)(1 − qr)

=
1

1 − q
,

or

(1 − α)(1 − q2)(1 − qr)r − ((1 + q)r + (1 − q))(1 − Ar − Br2)
(1 − qr)(1 − Ar − Br2)

= 0.

Now let us consider the polynomial

p(r) = (1 − α)(1 − q2)(1 − qr)r + ((1 + q)r − (1 − q))(1 − Ar − Br2).

We observe that p(0) = −(1−q) < 0. By the assumption α < 1
1+q , we then distinguish following cases (α < 1−q

1+q

and 1−q
1+q < α <

1
1+q ).

If α < 1−q
1+q , we have A = 1 − q − α(1 + q) and B = 1 − α(1 + q). Then

p(1) = (1 − α)(1 − q2) + 2q(2α(1 + q) − (1 − q)) = (1 − q)(1 − q − α(1 + q)) + 4qα(1 + q) > 0.

If 1−q
1+q < α <

1
1+q , we have A = α(1 + q) − (1 − q) and B = 1 − α(1 + q). Then

p(1) = (1 − α)(1 − q2) + 2q(1 − q) > 0.

Both cases show us that p(1) > 0 for all α < 1/(1 + q). This guarantees the existence of the smallest positive
root r0 of the equation p(r) = 0 lies between 0 and 1. This completes the proof.

In order to obtain the optimal coefficient estimates for the classKq(α), we need another characterization
for functions inKq(α). The proof follows immediately by the definition of q-difference operator.

Lemma 1.7. Let f ∈ A. Then f ∈ Kq(α) if and only if

|(1 − αq)h + f (qz) − f (z)|
h(z)

≤ 1 − α.

In the next theorem, we obtain the coefficient estimates for the classKq(α).

Theorem 1.8. Let f ∈ Kq(α), then

|an| ≤
1 − q
1 − qn

1 − q2

1 − qn

n−1∏
k=2

(
1 +

1 − q2

q − qk

)
+ (1 − α)(1 + q)

n∑
k=1

k−1∏
j=2

(
1 +

1 − q2

q − q j

) , n ≥ 2.

Proof. Let f ∈ Kq(α). By applying Lemma 1.7, there exists w : D→ D such that

(1 − αq)h(z) + f (qz) − f (z) = (1 − α)w(z)h(z).

Here we note that w(0) = q. Using Taylor series expansion of f , h and w, we have

∞∑
n=1

(
(1 − αq)bn + anqn

− an
)

zn = (1 − α)
∞∑

n=1

qbnzn + (1 − α)
∞∑

n=1

n−1∑
k=1

wn−kbk

 ,
where a1 = b1 = 1 and h(z) =

∑
∞

k=1 bkzk and w(z) = q +
∑
∞

k=1 wkzk. Let consider the coefficient of zn, for n ≥ 2,
we have

an(qn
− 1) = (q − 1)bn + (1 − α)

n−1∑
k=1

wn−kbk.
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Since |wn| ≤ 1 − |w0|
2 = 1 − q2, we get

|an| ≤
1 − q
1 − qn

|bn| + (1 − α)(1 + q)
n−1∑
k=1

|bk|

 . (19)

To complete the proof, we use the Bieberbach conjecture result for S∗q in [26], we obtain the estimate of |bn|

as

|bn| ≤
1 − q2

q − qn

n−1∏
k=2

(
1 +

1 − q2

q − qk

)
, (20)

for n ≥ 2. From Eqs. (19)-(20), we complete the proof.

When the function f is in the classKq(α) with the function h ∈ S∗, we obtain the following result.

Corollary 1.9. If f ∈ Kq(α) with h ∈ S∗ then

|an| ≤
1 − q
q − qn

[
n + (1 − α)(1 + q)

n(n − 1)
2

]
.

Proof. The proof is directly obtained by the Bieberbach-de Branges theorem for starlike functions [31] and
Eq. (20).

When q→ 1−, Theorem 1.8 and Corollary 1.9 yield the Bieberbach conjecture problem for closed-to-convex
functions of order α. Moreover, in corollary 1.9, we note that the series

z +

∞∑
n=2

1 − q
1 − qn

[
n + (1 − α)(1 + q)

n(n − 1)
2

]
zn (21)

converges for |z| < 1 by using the ratio test. In fact, by using the definition of the Heine hypergeometric
function one can easily see that the series given by Eq. (21) converges to the function

(1 − α)(1 + q)
2

z2 d2(z2Φ1(q, q; q; q; z))
dz2 + z

d(z2Φ1(q, q; q; q; z))
dz

.

Next, modification the idea in [25], we concentrate on sufficient conditions when we take the particular
choice of h. These are as indicated below:

1
1 ± z

,
1

1 ± z2 ,
1

(1 ± z)2 ,
1

1 ± z + z2 ,

and identity function. Each of these maps the unit diskD onto starlike domains. So, every choice of h is in
the class S∗ ⊂ S∗q.

Theorem 1.10. Let f ∈ A and B0 = 0, B1 = 1, and Bn = [n]qan := 1−qn

1−q an. Then we have the following:
(1) If

∑
∞

n=2 |Bn| ≤ 1 − α, then f ∈ Kq(α) with h(z) = z.
(2) If

∑
∞

n=1 |Bn+1 ± Bn| ≤ 1 − α, then f ∈ Kq(α) with h(z) = z/(1 ± z).
(3) If

∑
∞

n=1 |Bn+1 ± Bn + Bn+1| ≤ 1 − α, then f ∈ Kq(α) with h(z) = z/(1 ± z + z2).
(4) If

∑
∞

n=1 |Bn+1 ± 2Bn + Bn+1| ≤ 1 − α, then f ∈ Kq(α) with h(z) = z/(1 ± z)2.
(5) If

∑
∞

n=1 |Bn+1 ± Bn+1| ≤ 1 − α, then f ∈ Kq(α) with h(z) = z/(1 ± z2).
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Proof. (1) Suppose that
∑
∞

n=2 |Bn| ≤ 1 − α, we see that

|an| ≤
1 − α

1 + q + q2 + · · · + qn−1 .

By applying the root test, we see that the radius of convergence of f (z) is not less than unity. That is f ∈ A.
We then show that f is inKq(α) with 1(z) = z. That is we need to show that∣∣∣∣∣(Dq f )(z) −

1 − αq
1 − q

∣∣∣∣∣ ≤ 1 − α
1 − q

.

By the definition of q−difference operator and applying the triangle inequality, we see that

1 − α
1 − q

−

∣∣∣∣∣(Dq f )(z) −
1 − αq
1 − q

∣∣∣∣∣ =
1 − α
1 − q

−

∣∣∣∣∣∣∣1 +

∞∑
k=2

Bnzn−1
−

1 − αq
1 − q

∣∣∣∣∣∣∣
≥

1 − α
1 − q

−

∣∣∣∣∣1 − 1 − αq
1 − q

∣∣∣∣∣ −
∣∣∣∣∣∣∣
∞∑

k=2

Bnzn−1

∣∣∣∣∣∣∣
≥ 1 − α −

∣∣∣∣∣∣∣
∞∑

k=2

Bnzn−1

∣∣∣∣∣∣∣ ≥ 0,

by hypothesis. Hence f ∈ Kq(α) with h(z) = z.
(2) Suppose that

∑
∞

n=1 |Bn+1 − Bn| ≤ 1 − α. Consider

|Bn| =

∣∣∣∣∣∣∣1 +

n∑
k=1

(Bk − Bk−1)

∣∣∣∣∣∣∣ ≤ 1 +

∞∑
k=1

|Bk − Bk−1| ≤ 2 − α,

hence, we have

|an| ≤
2 − α

1 + q + q2 + · · · + qn−1 .

By applying the root test, we see that the radius of convergence of f (z) is not less than unity. That is f ∈ A.
We then show that f is inKq(α) with h(z) = 1/(1 − z). That is we need to show that∣∣∣∣∣(1 − z)(Dq f )(z) −

1 − αq
1 − q

∣∣∣∣∣ ≤ 1 − α
1 − q

, z ∈ D. (22)

By the definition of q−difference operator and Bn, we have

(1 − z)(Dq f )(z) = (1 − z)

1 +

∞∑
k=2

1 − qn

1 − q
anzn−1


= 1 +

∞∑
k=1

(Bn+1 − Bn)zn. (23)

From Eqs. (22)-(23), we have to show∣∣∣∣∣∣∣1 +

∞∑
k=1

(Bn+1 − Bn)zn
−

1 − αq
1 − q

∣∣∣∣∣∣∣ ≤ 1 − α
1 − q

, z ∈ D. (24)
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Applying the triangle inequality, we see that

1 − α
1 − q

−

∣∣∣∣∣∣∣1 +

∞∑
k=1

(Bn+1 − Bn)zn
−

1 − αq
1 − q

∣∣∣∣∣∣∣ ≥ 1 − α
1 − q

−

∣∣∣∣∣1 − 1 − αq
1 − q

∣∣∣∣∣ −
∣∣∣∣∣∣∣
∞∑

k=1

(Bn+1 − Bn)zn

∣∣∣∣∣∣∣
= 1 − α −

∣∣∣∣∣∣∣
∞∑

k=1

(Bn+1 − Bn)zn

∣∣∣∣∣∣∣ ≥ 0,

by hypothesis. Hence f ∈ Kq(α) with h(z) = 1/(1 − z).
Next, we suppose that

∑
∞

n=1 |Bn+1 + Bn| ≤ 1 − α. In order to show that f ∈ Kq(α) with h(z) = 1/(1 + z) we
define Cn = (−1)nBn, for n ∈N. By using the same techniques as above with the equality

∞∑
n=1

|Bn+1 + Bn| =

∞∑
n=1

|Cn+1 − Cn|,

we can easily obtain the result. The rest of theorem are immediate from the proof of (2).

Next, we apply the Theorem 1.10 to find the conditions on the basic hypergeometric function z2Φ1(a, b; c; q, z)
to be in the class Kq(α) with particular function h. Here, we provide only the sufficient condition for the
functions to be in Kq(α) with h(z) = z/(1 − z). In order to find the sufficient condition, we modify the
techniques of Theorem 1.1 in [25]. So, we omit the proof. For more applications and details, we refer to
[25].

Corollary 1.11. If a and b satisfy any one of the following conditions
(i) (1 − qa)(1 − qb) > 1 − q and Γq(a+b)

Γq(a)Γq(b) ≤
2−α

q .

(ii) a + b > 2, (1 − qa−1)(1 − qb−1) < −(1 − q), and Γq(a+b)
Γq(a)Γq(b) ≥

α
q .

Then the function z2Φ1(a, b; a + b; q, z) ∈ Kq(α) with z/(1 − z).

Example 1.12. Let q = 0.4 and 0 ≤ α < 1. The function z2Φ1(−1.9,−0.2;−2.1; q; z) satisfies the condition (i). That
is z2Φ1(−1.9,−0.2;−2.1; q; z) ∈ Kq(α) for all 0 ≤ α < 1.

Let a = −1.9 and b = −0.2. Then

(1 − qa−1)(1 − qb−1) = 1.3072... > 0.6 = 1 − q.

Numerical computations give Γq(a) = 0.3186..., Γq(b) = −1.7997..., and Γq(a + b) = 0.3966.... Hence

Γq(a + b)
Γq(a)Γq(b)

= −0.6916... < 0 <
2 − α

q
.

That satisfies the condition (i).

Example 1.13. Let q = 0.4 and α = 0.1. The function z2Φ1(2, 0.2; 2.2; q; z) satisfies the condition (ii). That is
z2Φ1(2, 0.2; 2.2; q; z) ∈ Kq(α).

Let a = 2 and b = 0.2. Then a + b = 2.2 > 2 and

(1 − qa−1)(1 − qb−1) = −0.6488... < −0.6 = −(1 − q).

Numerical computations give Γq(a) = 1, Γq(b) = 3.3958..., and Γq(a + b) = 1.0535.... Hence

Γq(a + b)
Γq(a)Γq(b)

= 0.3102... ≥ 0.25 =
α
q
.

That satisfies the condition (ii).
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