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Abstract. Statistical (C, 1) summability and a Korovkin type approximation theorem has been proved by
Mohiuddine et al. [20] (see [S. A. Mohiuddine, A. Alotaibi and M. Mursaleen, Statistical summability (C, 1)
and a Korovkin type approximation theorem, J. Inequal. Appl. 2012 (2012), Article ID 172, 1-8). In this
paper, we apply statistical deferred Cesàro summability method to prove a Korovkin type approximation
theorem for the set of functions 1, e−x and e−2x defined on a Banach space C[0,∞) and demonstrate that our
theorem is a non-trivial extension of some well-known Korovkin type approximation theorems. We also
establish a result for the rate of statistical deferred Cesàro summability method. Some interesting examples
are also discussed here in support of our definitions and results.

1. Introduction

In the study of sequence spaces, classical convergence has got numerous applications where the con-
vergence of a sequence requires that almost all elements are to satisfy the convergence condition. That is,
all the elements of the sequence need to be in an arbitrarily small neighborhood of the limit. However such
restriction is relaxed in statistical convergence, where the validity of convergence condition is achieved only
for a majority of elements. The notion of statistical convergence was introduced by Fast [11] and Steinhaus
[30]. Recently, statistical convergence has been a dynamic research area due to the fact that it is more general
than classical convergence and such theory is discussed in the study of Fourier Analysis, Number Theory
and Approximation Theory. For more details, see [2], [5], [7], [10], [12], [14] and [15].

LetN be the set of natural numbers and let K ⊆N. Also let

Kn = {k : k ≤ n and k ∈ K}

and suppose that |Kn| be the cardinality of Kn. Then the natural density of K is defined by

δ(K) = lim
n→∞

|Kn|

n
= lim

n→∞

1
n
|{k : k ≤ n and k ∈ K}|,
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provided the limit exists.

A given sequence (xn) is said to be statistically convergent to L if, for each ε > 0, the set

Kε = {k : k ∈N and |xk − L| ≥ ε}

has zero natural density (see [11], [30]). That is, for each ε > 0,

δ(Kε) = lim
n→∞

|Kε|
n

= lim
n→∞

1
n
|{k : k ≤ n and |xk − L| ≥ ε}| = 0.

In this case, we write

stat − lim
n→∞

xn = L.

Now we present an example to show that every convergent sequence is statistically convergent but the
converse is not true in general.

Example 1.1. Let us consider the sequence x = (xn) by

xn =


n when n = m2, for all m ∈ N

1
n otherwise.

Then, it is easy to see that the sequence (xn) is divergent in the ordinary sense, while 0 is the statistical limit
of (xn) since δ(K) = 0, where K = {m2, for all m = 1, 2, 3, ...}.

In 2002, Móricz [21], introduced the fundamental idea of statistical (C, 1) summability and recently
Mohiuddine et al. [20] has established statistical (C, 1) summability as follows.

Let us consider a sequence x = (xn), the (C, 1) mean of the sequence is given by

σn =
1

n + 1

n∑
k=0

xk,

and (xn) is said to be statistical (C, 1) summable to L if, for each ε > 0, the set

{k : k ∈N and |σk − L| ≥ ε}

has zero Cesàro density. That is, for each ε > 0,

lim
n→∞

1
n
|{k : k ≤ n and |σk − L| ≥ ε}| = 0.

In this case, we write

stat − lim
n→∞

σn = L or C1(stat) − lim
n→∞

xn = L.

In the year 2008, Özarslan et al. [24] established certain results on statistical approximation for
Kantorovich-type operators involving some special polynomials, and then Braha et al. [8] investigated
a Korovkin’s type approximation theorem for periodic functions via the statistical summability of the
generalized de la Vallée Poussin mean. Very recently, Kadak et al. [16] has established some approxima-
tion theorems by statistical weighted B-summability, and then Srivastava and Et [26] established a result
on lacunary statistical convergence and strongly lacunary summable functions of order α. Furthermore,
Srivastava et al. [28] has proved some interesting results on approximation theorems involving the q-Szàsz-
Mirakjan-Kantorovich type operators via Dunkl’s generalization.
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Motivated essentially by the above-mentioned works, in view of establishing certain new approxi-
mation results, we now recall the deferred Cesàro D(an, bn) summability mean as follows:

Let (an) and (bn) be sequences of non-negative integers such that

(i) an < bn

and

(ii) lim
n→∞

bn = ∞,

then the deferred Cesàro D(an, bn) mean is defined by (Agnew [1], p. 414),

D(an, bn) = D(xn) =
xan+1 + xan+2 + xan+3 + ... + xbn

bn − an
=

bn∑
k=an+1

xk. (1)

It is well known that, D(an, bn) is regular under conditions (i) and (ii) (see Agnew [1]).

Also very recently, Srivastava et al. [25] has introduced deferred weighted mean, Db
a(N, p, q) as,

tn =
1

Rbn
an+1

bn∑
m=an+1

pmqmxm.

It will be interesting to see that, for pm = qm = 1, tn is same as D(xn). Thus, deferred Cesàro mean is very
fundamental in the study of such type of means. Here, we have considered the statistical summablity via
deferred Cesàro mean in order to establish certain approximation theorems.

Let us now introduce the following definitions in support of our proposed work.

Definition 1.2. A sequence (xn) is said to be statistical deferred Cesàro summable to L if, for every ε > 0,
the set

{k : an < k ≤ bn and |D(xn) − L| ≥ ε}

has deferred Cesàro density zero, that is,

lim
n→∞

1
bn − an

|{k : an < k ≤ bn and |D(xn) − L| ≥ ε}| = 0.

In this case, we write

stat − lim
n→∞

D(xn) = L or DC1(stat) − lim
n→∞

xn = L.

Clearly, above definition can be viewed as the generalization of some existing definitions.

Remark 1.3. If an = n − 1 and bn = n, then D(n − 1,n) reduces to the identity transformation and also,
if an = 0 and bn = n, then D(0,n) reduces to (C, 1) transformation of xn, which is often denoted as σn. Finally,
if an = n − 1 and bn = n + t − 1, then

D(n − 1,n + t − 1) = σn,t =
( t + n

t

)
σn+t−1 −

(n
t

)
σn−1, (2)

which is called the delayed arithmetic mean (see [32], p. 80).
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Definition 1.4. A sequence (xn) is said to be statistical delayed arithmetic summable to L if, for every
ε > 0, the set

{k : n − 1 < k ≤ n + t − 1 and |σn,t − L| ≥ ε}

has zero delayed arithmetic density, that is,

lim
n→∞

1
t
|{k : n − 1 < k ≤ n + t − 1 and |σn,t − L| ≥ ε}| = 0.

In this case, we write

stat − lim
n→∞

σn,t = L or DA1(stat) − lim
n→∞

xn = L.

Now, we present below an example to show that a sequence is statistically deferred Cesàro summable,
whenever it is not statistically Cesàro summable.

Example 1.5. Let us consider the sequences (an) = 2n, (bn) = 4n and a sequence x = (xn) as

xn =


n+1

2 (n is odd)

−
n
2 (n is even).

Clearly, we observe that (xn) is neither convergent nor statistical convergent. Also it is not statistical Cesàro
summable, but it is deferred Cesàro summable to 0, that is lim

n→∞
D(2n, 4n) = 0, implies (xn) is statistical

deferred Cesàro summable to 0.

The main object of this paper is to establish some important approximation theorems over the Ba-
nach space based on statistical deferred Cesàro summability which will effectively extend and improve
most (if not all) of the existing results depending on the choice of sequences of the deferred Cesàro mean.
Furthermore, we intend to estimate the rate of statistical deferred Cesàro summability and investigate
Korovkin type approximation results.

2. A Korovkin Type Theorem

Several mathematicians have worked on extending or generalizing the Korovkin type theorems in many
ways and to several settings, including function spaces, abstract Banach lattices, Banach algebras, Banach
spaces and so on. This theory is very useful in Real Analysis, Functional Analysis, Harmonic Analysis,
Measure Theory, Probability Theory, Summability Theory and Partial Differential Equations. Recently,
Mohiuddine [19] has obtained an application of almost convergence for single sequences in Korovkin-type
approximation theorem and proved some related results. For the function of two variables, such type
of approximation theorems are proved in [4] by using almost convergence of double sequences. Quite
recently, in [22] and [23] the Korovkin type theorem is proved for statistical λ-convergence and statistical
lacunary summability, respectively. For some recent work on this topic, we refer to [6], [9], [13], [17] and
[29]. Recently, Mohiuddine et al. [20] have proved the Korovkin theorem on C[0,∞) by using the test
functions 1, e−x and e−2x. In this paper, we generalize the result of Mohiuddine, Alotaibi and Mursaleen
via the notion of statistical deferred Cesàro summability for the same test functions 1, e−x and e−2x. We also
present an example to justify that our result is stronger than that of Mohiuddine, Alotaibi and Mursaleen
(see [20]).
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Let C(X), be the space of all real valued continuous functions defined on [0,∞) under the norm ‖.‖∞.
Also, C[0,∞) is a Banach space. We have, for f ∈ C[0,∞), the norm of f denoted by ‖ f ‖ is given by,

‖ f ‖∞ = sup
x∈[0,∞)

{| f (x)|}

with

ω(δ, f ) = sup
0≤|h|≤δ

‖ f (x + h) − f (x)‖∞, f ∈ C[0,∞).

The quantities ω(δ, f ) is called the modulus of continuity of f .

Let L : C[0,∞) → C[0,∞) be a linear operator. Then, as usual, we say that L is a positive linear
operator provided that,

f ≥ 0 implies L( f ) ≥ 0.

Also, we denote the value of L( f ) at a point x ∈ [0,∞) by L( f (u); x) or, briefly, L( f ; x).

The classical Korovkin theorem states as follows [18]:

Let Ln : C[a, b]→ C[a, b] be a sequence of positive linear operators and let f ∈ C[0,∞). Then

lim
n→∞
‖Ln( f ; x) − f (x)‖∞ = 0⇐⇒ lim

n→∞
‖Ln( fi; x) − fi(x)‖∞ = 0 (i = 0, 1, 2),

where

f0(x) = 1, f1(x) = x and f2(x) = x2.

The statistical Cesàro summability version for the theorem established by Mohiuddine et al. [20], states
as follows.

Let Ln : C[0,∞)→ C[0,∞) be a sequence of positive linear operators and let f ∈ C[0,∞). Then

C1(stat) − lim
n→∞
‖Ln( f ; x) − f (x)‖∞ = 0⇐⇒ C1(stat) − lim

n→∞
‖Ln( fi; x) − fi(x)‖∞ = 0 (i = 0, 1, 2),

where

f0(x) = 1, f1(x) = e−x and f2(x) = e−2x.

Now we prove the following theorem by using the notion of statistical deferred Cesàro summability.

Theorem 2.1. Let Lm : C[0,∞)→ C[0,∞) be a sequence of positive linear operators. Then for all f ∈ C[0,∞)

DC1(stat) − lim
m→∞

‖Lm( f ; x) − f (x)‖∞ = 0, (3)

if and only if

DC1(stat) − lim
m→∞

‖Lm(1; x) − 1‖∞ = 0, (4)

DC1(stat) − lim
m→∞

‖Lm(e−s; x) − e−x
‖∞ = 0 (5)

and

DC1(stat) − lim
m→∞

‖Lm(e−2s; x) − e−2x
‖∞ = 0. (6)
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Proof. Since each of fi(x) = {1, e−x, e−2x
} ∈ C(X) (i = 0, 1, 2) are continuous, the implication:

(3) =⇒ (4) − (6)

is obvious. In order to complete the proof of the theorem we first assume that (4)-(6) hold true. Let f ∈ C[X],
then there exists a constantK > 0 such that | f (x)| ≤ K , ∀ x ∈ X = [0,∞).
Thus,

| f (s) − f (x)| ≤ 2K , s, x ∈ X. (7)

Clearly, for given ε > 0, there exists δ > 0 such that

| f (s) − f (x)| < ε (8)

whenever |e−s
− e−x

| < δ, for all s, x ∈ X.

Let us choose ϕ1 = ϕ1(s, x) = (e−s
− e−x)2. If |e−s

− x−x
| ≥ δ, then we obtain:

| f (s) − f (x)| <
2K
δ2 ϕ1(s, x). (9)

From equation (8) and (9), we get

| f (s) − f (x)| < ε +
2K
δ2 ϕ1(s, x),

⇒ − ε −
2K
δ2 ϕ1(s, x) ≤ f (s) − f (x) ≤ ε +

2K
δ2 ϕ1(s, x). (10)

Now since Lm(1; x) is monotone and linear, so by applying the operator Lm(1; x) to this inequality, we have

Lm(1; x)
(
−ε −

2K
δ2 ϕ1(s, x)

)
≤ Lm(1; x)( f (s) − f (x)) ≤ Lm(1; x)

(
ε +

2K
δ2 ϕ1(s, x)

)
. (11)

Note that x is fixed and so f (x) is a constant number. Therefore,

−εLm(1; x) −
2K
δ2 Lm(ϕ1; x) ≤ Lm( f ; x) − f (x)Lm(1; x) ≤ εLm(1; x) +

2K
δ2 Lm(ϕ1; x). (12)

But

Lm( f ; x) − f (x) = [Lm( f ; x) − f (x)Lm(1; x)] + f (x)[Lm(1; x) − 1]. (13)

Using (12) and (13), we have

Lm( f ; x) − f (x) < εLm(1; x) +
2K
δ2 Lm(ϕ1; x) + f (x)[Lm(1; x) − 1]. (14)

Now, estimate Lm(ϕ1; x) as,

Lm(ϕ1; x) = Lm((e−s
− e−x)2; x) = Lm(e−2s

− 2e−xe−s + e−2x; x)
= Lm(e−2s; x) − 2e−xLm(e−s; x) + e−2sLm(1; x)
= [Lm(e−2s; x) − e−2x] − 2e−x[Lm(e−s; x) − e−x] + e−2x[Lm(1; x) − 1].

Using (14), we obtain

Lm( f ; x) − f (x) < εLm(1; x) +
2K
δ2 {[Lm(e−2s; x) − e−2s] − 2e−x[Lm(e−s; x) − e−x]

+e−2s[Lm(1; x) − 1]} + f (x)[Lm(1; x) − 1].

= ε[Lm(1; x) − 1] + ε +
2K
δ2 {[Lm(e−2s; x) − e−2x] − 2e−x[Lm(e−s; x) − e−x]

+e−2x[Lm(1; x) − 1]} + f (x)[Lm(1; x) − 1].
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Since ε is arbitrary, we can write

|Lm( f ; x) − f (x)| ≤ ε +

(
ε +

2K
δ2 +K

)
|Lm(1; x) − 1|

+
4K
δ2 |Lm(e−s; x) − e−x

| +
2K
δ2 |Lm(e−2s; x) − e−2x

|

≤ B
(
|Lm(1; x) − 1| + |Lm(e−s; x) − e−x

| + |Lm(e−2s; x) − e−2x
|

)
, (15)

where

B = max
(
ε +

2K
δ2 +K ,

4K
δ2 ,

2K
δ2

)
.

Now replacing Lm( f ; x) by 1
bn−an

bn∑
m=an+1

Tm( f ; x) and then by Ψm( f ; x) in (15), we have for a given r > 0, there

exists ε > 0, such that ε < r. Then, by setting

Ψm(x; r) =

m : an < m ≤ bn and

∣∣∣∣∣∣∣ 1
bn − an

bn∑
m=an+1

Tm( f ; x) − f (x)

∣∣∣∣∣∣∣ ≥ r


and for i = 0, 1, 2,

Ψi,m(x; r) =

m : an < m ≤ bn and

∣∣∣∣∣∣∣ 1
bn − an

bn∑
m=an+1

Tm( fi; x) − fi(x)

∣∣∣∣∣∣∣ ≥ r − ε
3B

 ,
we obtain,

Ψm(x; r) ≤
2∑

i=0

Ψi,m(x; r).

Clearly,

‖Ψm(x; r)‖C(X)

bn − an
≤

2∑
i=0

‖Ψi,m(x; r)‖C(X)

bn − an
. (16)

Now, using the above assumption about the implications in (4)-(6) and by Definition 1.2, the right-hand
side of (16) is seen to tend to zero as n→∞. Consequently, we get

lim
n→∞

‖Ψm(x; r)‖C(X)

bn − an
= 0 (r > 0).

Therefore, the implication (3) holds true.

This completes the proof of Theorem 2.1. �

Corollary 2.2. Let Lm : C[0,∞) → C[0,∞) be a sequence of positive linear operators and let f ∈ C[0,∞).
Then

DA1(stat) − lim
m→∞

‖Lm( f ; x) − f (x)‖∞ = 0 (17)

if and only if

DA1(stat) − lim
m→∞

‖Lm(1; x) − 1‖∞ = 0, (18)

DA1(stat) − lim
m→∞

‖Lm(e−s; x) − e−x
‖∞ = 0 (19)
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and

DA1(stat) − lim
m→∞

‖Lm(e−2s; x) − e−2x
‖∞ = 0. (20)

Proof. By taking an = n − 1, ∀ n and, bn = n + k − 1, ∀ n and proceeding in the similar line of Theorem 2.1,
the proof of Corollary 2.2 is established. �

Remark 2.3. By taking an = 0, bn = n, ∀ n in Theorem 2.1, one can obtain the statistical Cesàro summability
version of Korovkin type approximation for the set of functions 1, e−x and e−2x established by Mohiuddine
et al. [20].

Now we present below an illustrative example for the sequence of positive linear operators that does not
satisfy the conditions of the Korovkin approximation theorems due to Mohiuddine et al. [20] and Boyanov
and Veselinov [6] but satisfies the conditions of our Theorem 2.1. Thus, our theorem is stronger than the
results established by both Mohiuddine et al. [20] and Boyanov and Veselinov [6].

Here we consider the operator

x(1 + xD)
(
D =

d
dx

)
which was used by Al-Salam [3] and, more recently, by Viskov and Srivastava [31] (see also the monograph
by Srivastava and Manocha [27] for various general families of operators of this kind). Here, we use this
operator over the Baskakov operators.

Example 2.4. Let Lm : C[0,∞)→ C[0,∞) be defined by

Lm( f ; x) = (1 + xm)x(1 + xD)Vm( f ; x), (21)

where

Vm( f ; x) =

∞∑
k=0

f
(

k
m

) (
m − k + 1

k

)
xk.(1 + x)−n−k

and (xm) is a sequence defined in Example 1.5.

Now,

Lm(1; x) = [1 + xm]x(1 + xD)1 = [1 + xm]x,

Lm(e−s; x) = [1 + xm]x(1 + xD)(1 + x − xe−
1
m )−m

= [1 + xm]x(1 + x − xe−
1
m )−m

(
1 −mx(1 − e−

1
m )(1 + x − xe−

1
m )−1

)
,

Lm(e−2s; x) = [1 + xm]x(1 + xD)(1 + x2
− x2e−

1
m )−m

= [1 + xm]x(1 + x2
− x2e−

1
m )−m

(
1 − 2mx2(1 − e−

1
m )(1 + x2

− x2e−
1
m )−1

)
.

So that, we obtain

DC1(stat) − lim
m→∞

‖Lm(1; x) − 1‖∞ = 0,

DC1(stat) − lim
m→∞

‖Lm(e−s; x) − e−x
‖∞ = 0
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and

DC1(stat) − lim
m→∞

‖Lm(e−2s; x) − e−2x
‖∞ = 0,

that is, the sequence Lm( f ; x) satisfies the conditions (4)-(6). Therefore by Theorem 2.1, we have

DC1(stat) − lim
m→∞

‖Lm( f ; x) − f ‖∞ = 0.

Hence, it is statistically deferred Cesàro summable; however, since (xm) is neither statistically convergent
nor statistically Cesàro summable, so we conclude that earlier works under [20] and [6] is not valid for the
operators defined by (21), while our Theorem 2.1 still works.

3. Rate of statistical deferred Cesàro summability

In this section, we study the rates of statistical deferred Cesàro summability of a sequence of positive
linear operators L( f ; x) defined on C[0,∞) with the help of modulus of continuity.

We now presenting the following definition.

Definition 3.1. Let (un) be a positive non-increasing sequence. A given sequence x = (xm) is statistically
deferred Cesàro summable to a number L with rate o(un), if for every ε > 0,

lim
n→∞

1
un(bn − an)

|{m : an < m ≤ bn and |D(xm) − L| ≥ ε}| = 0.

In this case, we may write

xm − L = DC1(stat) − o(un).

We now prove the following basic lemma.

Lemma 3.2. Let (un) and (vn) be two positive non-increasing sequences. Let x = (xm) and y = (ym) be two
sequences such that

xm − L1 = DC1(stat) − o(un)

and

ym − L2 = DC1(stat) − o(vn)

respectively. Then the following conditions hold true

(i) (xm + ym) − (L1 + L2) = DC1(stat) − o(wn);

(ii) (xm − L1)(ym − L2) = DC1(stat) − o(unvn);

(iii) λ(xm − L1) = DC1(stat) − o(un) (for any scalar λ);

(iv)
√
|xm − L1| = DC1(stat) − o(un),

where

wn = max{un, vn}.
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Proof. In order to prove the condition (i), for ε > 0 and x ∈ [0,∞), we define the following sets:

An(x; ε) =
∣∣∣{m : an < m ≤ bn and |D(xm) + D(ym) − (L1 + L2)| ≥ ε

}∣∣∣ ,
A0,n(x; ε) =

∣∣∣∣∣{m : an < m ≤ bn and |D(xm) − L1| ≥
ε
2

}∣∣∣∣∣ ,
and

A1,n(x; ε) =

∣∣∣∣∣{m : an < m ≤ bn and |D(ym) − L2| ≥
ε
2

}∣∣∣∣∣ .
Clearly, we have

An(x; ε) ⊆ A0,n(x; ε) ∪ A1,n(x; ε).

Moreover, since

wn = max{un, vn},

by condition (3) of Theorem 2.1, we obtain

‖Am(x; ε)‖∞
wn(bn − an)

≤
‖A0,n(x; ε)‖∞
un(bn − an)

+
‖A1,n(x; ε)‖∞
vn(bn − an)

. (22)

Now, by conditions (4)-(6) of Theorem 2.1, we obtain

‖An(x; ε)‖∞
wn(bn − an)

= 0, (23)

which establishes (i). Since the proofs of other conditions (ii)-(iv) are similar, we omit them. �

Further, we recall that the modulus of continuity of a function f ∈ C[0,∞) is defined by

ω( f , δ) = sup
|y−x|≤δ:x,y∈X

| f (y) − f (x)| (δ > 0).

Which implies that

| f (y) − f (x)| ≤ ω( f , δ)
(
|x − y|
δ

+ 1
)
. (24)

Now we state and prove a result in the form of the following theorem.

Theorem 3.3. Let [0,∞) ⊂ R and let Lm : C[0,∞) → C[0,∞) be a sequence of positive linear operators. As-
sume that the following conditions hold true:

(i) ‖Lm(1; x) − 1‖∞ = DC1(stat) − o(un),

(ii) ω( f , λm) = DC1(stat) − o(vn),

where

λm =
√

Lm(ϕ2; x) and ϕ1(y, x) = (e−y
− x−x)2.

Then, for all f ∈ C[0,∞), the following statement holds true:

‖Lm( f ; x) − f ‖∞ = DC1(stat) − o(wn), (wn = max{un, vn}). (25)
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Proof. Let f ∈ C[0,∞) and x ∈ [0,∞). Using (24), we have

|Lm( f ; x) − f (x)| ≤ Lm(| f (y) − f (x)|; x) + | f (x)||Lm(1; x) − 1|

≤ Lm

(
|e−x
− e−y

|

λm
+ 1; x

)
ω( f , λm) + | f (x)||Lm(1; x) − 1|

≤ Lm

(
1 +

1
λ2

m
(e−x
− e−y)2; x

)
ω( f , λm) + | f (x)||Lm(1; x) − 1|

≤

(
Lm(1; x) +

1
λ2

m
Lm(ϕx; x)

)
ω( f , λm) + | f (x)||Lm(1; x) − 1|.

Putting λm =
√

Lm(ϕ2; x), we get

‖Lm( f ; x) − f (x)‖∞ ≤ 2ω( f , λm) + ω( f , λm)‖Lm(1; x) − 1‖∞ + ‖ f (x)‖‖Lm(1; x) − 1‖∞

≤ M{ω( f , λm) + ω( f , λm)‖Lm(1; x) − 1‖∞ + ‖Lm(1; x) − 1‖∞},

where

M = {‖ f ‖∞, 2}.

Thus, ∥∥∥∥∥∥∥ 1
bn − an

bn∑
m=an+1

Lm( f ; x) − f (x)

∥∥∥∥∥∥∥
∞

≤ M

ω( f , λm)
1

bn − an
+ ω( f , λm)

∥∥∥∥∥∥∥ 1
bn − an

bn∑
m=an+1

Lm( f ; x) − f (x)

∥∥∥∥∥∥∥
∞


+M


∥∥∥∥∥∥∥ 1

bn − an

bn∑
m=an+1

Lm( f ; x) − f (x)

∥∥∥∥∥∥∥
∞

 .
Now, by using the conditions (i) and (ii) of Theorem 3.3, in conjunction with Lemma 3.2, we arrive at the
statement (25) of Theorem 3.3.

This completes the proof of Theorem 3.3. �

4. Concluding remarks and observations

In this concluding section of our investigation, we present several further remarks and observations
concerning to various results which we have proved here.

Remark 4.1. Let (xm)m∈N be a sequence given in Example 1.5. Then, since

DC1(stat) − lim
m→∞

xm → 0 on [0,∞),

we have

DC1(stat) − lim
m→∞

‖Lm( fi; x) − fi(x)‖∞ = 0 (i = 0, 1, 2). (26)

Thus, we can write (by Theorem 2.1)

DC1(stat) − lim
m→∞

‖Lm( f ; x) − f (x)‖∞ = 0 (i = 0, 1, 2), (27)

where

f0(x) = 1, f1(x) = e−x and f2(x) = e−2x.
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However, since (xm) is not ordinarily convergent and so also it does not converge uniformly in the ordi-
nary sense. Thus, the classical Korovkin theorem does not work here for the operators defined by (21).
Hence, this application clearly indicates that our Theorem 2.1 is a non-trivial generalization of the classical
Korovkin-type theorem (see [18]).

Remark 4.2. Let (xm)m∈N be a sequence as given in Example 1.5. Then, since

DC1(stat) − lim
m→∞

xm → 0 on [0,∞),

so (26) holds true. Now by applying (26) and Theorem 2.1, condition (27) holds true. However, since
(xm) does not statistical Cesàro summable, so Theorem 2.1 of Mohiuddine et al. (see [20]) does not work
for our operator defined in (21). Thus, our Theorem 2.1 is also a non-trivial extension of Theorem 2.1 of
Mohiuddine et al. [20] (see also [6] and [18]). Based upon the above results, it is concluded here that our pro-
posed method has successfully worked for the operators defined in (21) and therefore it is stronger than the
classical and statistical version of the Korovkin type approximation (see [20], [6] and [18]) established earlier.

Remark 4.3. Let us suppose that we replace the conditions (i) and (ii) in Theorem 3.3, by the follow-
ing condition:

|Lm( fi; x) − fi| = DC1(stat) − o(uni ) (i = 0, 1, 2). (28)

Then, since

Lm(ϕ2; x) = e−2x
|Lm(1; x) − 1| − 2e−x

|Lm(e−x; x) − e−x
| + |Lm(e−2x; x) − e−2x

|,

we can write

Lm(ϕ2; x) ≤M
2∑

i=0

|Lm( fi; x) − fi(x)|∞, (29)

where

M = {‖ f2‖∞ + 2‖ f1‖∞ + 1}.

Now it follows from (28), (29) and Lemma 3.2 that,

λm =
√

Lm(ϕ2) = DC1(stat) − o(dn), (30)

where

o(dn) = max{un0 ,un1 ,un2 }.

This implies,

ω( f , δ) = DC1(stat) − o(dn).

Now using (30) in Theorem 3.3, we immediately see that, for f ∈ C[0,∞),

Lm( f ; x) − f (x) = DC1(stat) − o(dn). (31)

Therefore, if we use the condition (28) in Theorem 3.3 instead of (i) and (ii), then we obtain the rates of
statistical deferred Cesàro summability of the sequence of positive linear operators in Theorem 2.1.
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[1] R. P. Agnew, On deferred Cesàro means, Ann. Math. 33 (1932), 413-421.
[2] A. Alotaibi and M. Mursaleen, Generalized statistical convergence of difference sequences, Adv. Differ. Equ. 2013 (2013), Article

ID 212, 1-5.
[3] W. A. Al-Salam, Operational representations for the Laguerre and other polynomials, Duke Math. J. 31 (1964), 127-142.
[4] G. A. Anastassiou, M. Mursaleen and S. A. Mohiuddine, Some approximation theorems for functions of two variables through

almost convergence of double sequences, J. Comput. Anal. Appl. 13 (2011), 37-40.
[5] C. Belen and S. A. Mohiuddine, Generalized statistical convergence and application, Appl. Math. Comput. 219 (2013), 9821-9826.
[6] B. D. Boyanov and V. M. Veselinov, A note on the approximation of functions in an infinite interval by linear positive operators,

Bull. Math. Soc. Sci. Math. Roum. 14 (1970), 9-13.
[7] N. L. Braha, V. Loku and H. M. Srivastava, λ2-weighted statistical convergence and Korovkin and Voronovskaya type theorems,

Appl. Math. Comput. 266 (2015), 675-686.
[8] N. L. Braha, H. M. Srivastava and S. A. Mohiuddine, A Korovkin’s type approximation theorem for periodic functions via the

statistical summability of the generalized de la Vallée Poussin mean, Appl. Math. Comput. 228 (2014), 162-169.
[31] O. H. H. Edely, S. A. Mohiuddine and A. K. Noman, Korovkin type approximation theorems obtained through generalized

statistical convergence, Appl. Math. Lett. 23 (2010), 1382-1387.
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