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On an Inversion Formula for the Fourier Transform on Distributions by
Means of Gaussian Functions
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Abstract. Gaussian functions are useful in order to establish inversion formulae for the classical Fourier
transform. In this paper we show that they also are helpful in order to obtain a Fourier inversion formula
for the distributional case.

1. Introduction

In a series of papers published by the authors, different aspects of the Fourier transform on the spaces
of distributions denoted by S} (duals of the spaces Sy introduced by J. Horvath in [9]) were studied (see [3],
[4], [5] and [6]).

These spaces can be identified with subspaces of the Schwartz space S’ and its members can be consid-
ered as tempered distributions. Moreover, the usual distributional Fourier transform of f € §; [12, Chap.

VII, §6, p. 248] is the regular distribution generated by the function in R" given by (¥ f)(y) = < f, e >
In [4, Theorem 2.1] it was established thatif f € S/, k € Z, k < 0, then for all ¢ € S the Parseval equality

(f,F ) = (T s, 0())

holds, where T is the member of S’ given by
(Tegernrt) = [ ("ot

and ¥ ¢ denotes the classical Fourier transform of ¢, namely
o0 = [ owedy, 1er

Moreover, in [4, Theorem 3.1] it was proved the following inversion formula:
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Let f €S, ke Z k <0, and set (Ff)(y) = <f,ei"y> for y € R". Then for any ¢, -+, P, € D(R),
t=(t,...,ty) € R" and ¢(t) = P1(t1) - - - Pn(ty), one has

(f.0)= tim o [ fc o TNEE oo,

where C(0;Y) is the n—cube [-Y, Y], x-"- X [-Y, Y] c R", Y > 0.

Later, in [6, Theorem 1], this inversion formula was extended to functions ¢ € S such that ¢(f) =
O1(t1) - Pultn), t = (t,...,ts) € R", where ¢y, --- , P, € S(R).

The purpose of the present paper is to obtain a distributional Fourier inversion formula which be valid
for any ¢ € S. For it we follow to Lang in [10, Theorem 4, p. 264] for obtaining an inversion formula for
the classical Fourier transform by means of Gaussian functions.

As a consequence of this distributional inversion formula we get a representation over S of the solution
in S} of convolution equations and, consequently, of linear partial differential equations with complex
constant coefficients.

A representation of the Fourier transform on distributions was obtained in [1] (amongst others).

Gaussian functions have been useful in the context of integral transforms, as has been revealed in recent
papers (see [7] and [13]). We also recall some interesting recent advances concerning to integral transforms
[15].

Related differential equations have been solved in [16] by using the operational method.

We recall that the spaces Si, k € Z [9, p. 90], are defined as the vector spaces of all functions ¢ on R”"
which possess continuous partial derivatives of all orders and which satisfy the condition that if p € IN"
and ¢ > 0, then there exists A(¢, p, €) > 0 such that

|1+ Py o) <e, for > A(@,p,e).
For every p € N", Horvath defines on Sy the seminorms

Gip(9) = max|(1 + x) P ()]

The spaces Sy equipped with the countable family of seminorms gy, are Fréchet spaces. The well known
space of test functions D is a dense subspace of S (see [9], p. 419). Asitis usual, S| denotes the dual of the
space S.

In this paper we make use of the well known fact that

(27mc) 12 fHX) exp [vx - (x2/2c)] dx = exp(cvz/Z), veC, c¢>0. (1)

o0

Throughout this paper we shall use the terminology and notation of [9].

2. The inversion formula
Firstly, we will establish the next assertion

Lemma 2.1. Let ¢ € S,k € Z and k < 0, then

% P(x + 2aw)e_”w”2dw — ¢(x),
R’Z

inS fora — 0*.
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,0),

n
T2

Proof. First, we claim that for all ¢ € S and all 2 > 0 one has
f P(x + 2aw)e ™ dw € S
In fact, for any p € IN" there exists a My, > 0 such that )8” (p(x)l < My, for all x € R". Thus, for 0 = (0
2

'¢(x + 2aw)e I < My ge I,
n, it follows that

it is clear that
a(j)), where 7,,(j) = 0 form # jand rj(j) =1, j=1
j=1,...,n, andall xeR"

= (), -
2
< Mr(j),(pe_” ol”
n, are integrable functions over R”, the use of [2, Theorem 5.9, p

Also, for r(j)

=1,
o(x + 2aw)e ™ de

Since Mg (pe’”w”z and M) e "l
O(x + 2aw Mol g = f
(x 4 )e n ax]

238] yielc’:ls to
d

7%
A similar argument allows us to prove that for all p; € N
> d(x + 2aw)e I gy
8x’;’ R"
I el
= — P + 2aw)e™™ dw,
R" OX ;
) QP
,pn) € N, is F = W/ it follows that

forall j=1,...,n. Now, since forp = (py, ...
f O(x + 2aw)e kil gy = f F(x + 2aw)e I dw

On the other hand, being
l,z f eI gy = 1,
T2 R"

’(1 + |x|2)k%8’7f (x + 2aw)e ! dw'
2 R"

we find that

k 1 2
<(1+ )M —,,fe‘”w”dw: 1+ |x M, o,
(L4 1) Moo | (1+ 1) - My
from which, being k < 0, it follows that (1) tends to zero as |x| tends to infinity.

/Pn) e ]Nn/

Now, forallp = (py,. ..
(1 + |x| —8” {f olx + Zuw)e‘”w” dw — qf)(x)}

max
xeR"

{ f [qb(x+2aw) ¢(x)] el dw}'

xeR"

= max (1 + |x|
which, applying again [2 Theorem 5.9, p. 238], we have that the last expression is equal to
f {8p¢(x + 2aw) — 8p<p(x)} e‘”w”Zdw|
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f |o7”qb(x + 2aw) — 8p¢)(x)| e‘”w”zdw,
IRH

1
< — max
712 Xx€R"

2a

and by the Mean-Value theorem it is less than or equal to
n
2
: Z My b - f I w || e duo,
j=1 R

2
where p(j) = (p1,...,pj+1,...,pn).
Also, using spherical coordinates in R" it is easily obtained that
ol gy — -1 (M
lw| e "™ dw =rn""'T|{——]|,
R" 2
n+ 1)
2 7
]

from which (2) is less than or equal to
2a

T2

n
Y My ”"_1T(
j=1

3)

and, thus, the Lemma holds.
We are now ready to prove the main result
Theorem 2.2. Let f € S, ke Z,k <0, and (F f)(y) = <f, ei"y> , Yy €R", then, for all ¢ € S it follows

(F (e e W dy i()dt.

= lim 1
B a—0+ (27‘()" R" JR"
First, from [9, Proposition 2, p. 97], there exist a C > 0 and a nonnegative integer r, both depending on

(£.9)
Proof
£, such that
I(FHWI = l(f, ei"y>‘ < Crﬁgﬁ( max (1 + lez)k3§€ixy = Cflllf}lgi(ly”l-
Thus, for any ¢ €S, one has
o | [ ety g
= ﬁ f ,, f ,1 < 1, eixy>e—itye—a2nyuzdy o,
(4)

and by Fubini theorem it is equal to

1 . 02 .
Wﬁzn <f,e’xy> e~ Wl [Rn e Mo(t)dt dy.

Note that, since ¢ € S it follows that
ot [ cognes
]RH

Thus, as a consequence of [4, Theorem 2.1], we have that (4) is equal to
1 ixy —a?|yl —ity
eVe eYopt)dtdy),
n ]Rn

<f'w
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ich, making use again of Fubini theorem, is equal to

<f/ﬁ fn fn eixye—itye—azllyIzdy¢(t)dt>_

Now, observe that by (1) we have
1 +00

—+00 _4
_ i(x=t)y, 257
e e “urd
21 Y

=l
2Vna 2m5s Y

1 1 @n? 1 _@n?
22 2 = e 4

:2\/501 2+/ra ’

and thus we get that

1 ; 201112 1 et
=1y IR g, _ :
G J Oy = e

Therefore, (5) is equal to

ei(x—t)ye—azyz dy —

1 It
<f, - P(t)e 42 dt>.
2hagh JRre

Now, performing the change of variables t = x + 2aw, (7) becomes

<f, % olx + Zaw)e”w”zdw> ,
T(2 R”

from which, since f € §; by Lemma 2.1, the equality (3) follows.

As it is well known, the Dirac distribution 6, at # € IR" given by <6u,qb> =

2331

®)

(8)

O

o(u), for all ¢ € S, is

a member in S,’(. As it is usual we denote 6 = §p. Also, for all m € IN", "6, at u € R" given by
(964, ) = (84, (~1)"3"p) = (~1)" " p(u), for all ¢ € S, is a member in ;.

Now, one obtains the next result

Corollary 2.3. Forall ¢ € S, u € R" and all m € N", one has

and

(6., ¢) = lim G f -l " (bdt,

a0+ 2nn/2gn

1 )2
") ‘}mef @It

Proof.
Since < 8y, €™ >= ¢, y € R", and according to the above inversion formula, for any ¢ € S, one has

[m]
<360 >= Tim L f f -01g-IP gy Gy 1),

a0+ (270)"
Now, using (6), formula (9) becomes

Hu fH

(9"6u,6) = (~1)"9"p(u) = lim e f]R w2 ")t

50+ 2”71”/2 n

Also, using Theorem 2.2 above and [6, Theorem 2.1] one has

©)
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Corollary 2.4. Set f €S, ke Z, k <0. Then

Y—+oco

: —ity
im [ [ pwe oo

= lim (F )y)e e dy ¢ (p)dt,
R"* JR"

a—0*
forall ¢ € S such that p(t) = P1(t1) - Pu(tn), t = (t1,...,t,) € R", where ¢y, ..., ¢, € S(R)

The next result is a variant of [5, Corollary 2.1] concerning the solution of convolution equations.

Corollary 2.5. Set h,g € S|, k € Z, k < 0. Assume that Fh has no zeros in R", suppose that Fh € C™HF21(IR™M)
and there exists a polynomial P such that

1
“\Foa ) =T R " ~2k +2n.
J ((Th)(y))'s (y), Yy eR", YmeN", |m| <2k +2n

Then, the convolution equation

h=f=y, (10)

has a unique solution f € S; and this solution has the next representation over members in S

(7:!7 (v) ity o= lylP
<f,p>= ,Ho+ Gy f f (Th)(y) Ver™ W dy p(t)dt, ¢ e S. (11)

Proof.
In fact, from the hypothesis of this Corollary and using [5, Theorem 2.1] it follows that there exists an

element w € S} such that Fw = Fi Therefore, using [4, Proposition 4.1] one has

Flh+w]l=Fh- ﬂ—1—?5

So, using [4, Corollary 3.1], it follows that /1 = w = 6.
Now, the member of S; given by f = w * g is a solution of equation (10).
In fact,

hx(w=g) = w)+g=56+g=yg.

Note that if fi, f, € S} satisfy h+ fy = gand h+ f, = g then fi = f,. Indeed, taking Fourier transform it
follows that
7 9

Fh=%f=

and, again by [5, Corollary 3.1], we have f; = f,.
Also, since ¥ [h * f] = F g and using again [5, Proposition 4.1] one obtain that

il
Fr= Fh'
which by Theorem 2.2 above allows us to the representation over S given by (11). O

Remark (invertible elements of S,’().
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Observe that the distribution w = h~! in S}’{, k € Z, k < 0, which satisfies the equation /1 + w = 9, is the
inverse by convolution of the member / € §;. So, when the distributional Fourier transform of / has no
zeros in R", with Fh € C~2*2(R") and it satisfies the inequality

1
" ———— || < P(ly), Yy e R", meIN", |m| < -2k +2n,
( T y))| (I, vy Il

for some polynomial P, this distribution /™! has the next representation over S

a4 1 L ity -~y
<h™>,p>= alg(])a+ @ f f (?h)(y)e e dyp(tydt, ¢eS.

FINAL OBSERVATION

Asin [8] and [11], we consider linear partial differential equations with constant coefficients of the form
P@)u=o, 1

where as it is usual P is a polynomial in R” (with complex coefficients) and P(d) denotes the corresponding
polynomial differential operator given by

Zaaa"‘, aeN", a,eC, melN,

ler|<m

and v is an element of Sl’c, keZ,k<0.
Note that, since

P@)u = (P()5)  u,

equation (1) can be written as a convolution equation.
Having into account that

(FIP(A)d))(y) = P(-iy), y € R",

and using Corollary 2.5 above, one has that when P has no zeros of type ai, where a € R”, then there exists
a unique solution u in S} of (1).
Also, one obtains the next representation over S of the solution u of equation (1):

. 1 FW) iy iy
= lim —— ——e e P gy dy(t)dt
<w¢>=lm oy b Jo P ¢ € y byt
forallp € S.
Furthermore, observe that if in (1) we set v = 0, then one obtains a representation over S of the
fundamental solution E of equation (1). In fact, having into account that #6 = 1, then one has

i _ 1 iy
<E¢>=lim o f]R fR Py’ ¢ Ay,

forall¢ € S.

Observe that this fundamental solution E is the inverse by convolution of the member & of S; given by
h = P(d)o.
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