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On an Inversion Formula for the Fourier Transform on Distributions by
Means of Gaussian Functions
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Abstract. Gaussian functions are useful in order to establish inversion formulae for the classical Fourier
transform. In this paper we show that they also are helpful in order to obtain a Fourier inversion formula
for the distributional case.

1. Introduction

In a series of papers published by the authors, different aspects of the Fourier transform on the spaces
of distributions denoted by S′k (duals of the spaces Sk introduced by J. Horváth in [9]) were studied (see [3],
[4], [5] and [6]).

These spaces can be identified with subspaces of the Schwartz space S′ and its members can be consid-
ered as tempered distributions. Moreover, the usual distributional Fourier transform of f ∈ S′k [12, Chap.
VII, §6, p. 248] is the regular distribution generated by the function in Rn given by (F f )(y) =

〈
f , eixy

〉
.

In [4, Theorem 2.1] it was established that if f ∈ S′k, k ∈ Z, k < 0, then for all φ ∈ S the Parseval equality〈
f ,Fφ

〉
=

〈
T< f ,eixy>, φ(y)

〉
holds, where T< f ,eixy> is the member of S′ given by

〈
T< f ,eixy>, φ(y)

〉
=

∫
Rn

〈
f , eixy

〉
φ(y)dy,

and Fφ denotes the classical Fourier transform of φ, namely

(Fφ)(t) =

∫
Rn
φ(y)eitydy, t ∈ Rn.

Moreover, in [4, Theorem 3.1] it was proved the following inversion formula:
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Let f ∈ S′k, k ∈ Z, k < 0, and set
(
F f

)
(y) =

〈
f , eixy

〉
for y ∈ Rn. Then for any φ1, · · · , φn ∈ D(R),

t = (t1, . . . , tn) ∈ Rn and φ(t) = φ1(t1) · · ·φn(tn), one has

〈
f , φ

〉
= lim

Y→+∞

1
(2π)n

∫
Rn

∫
C(0;Y)

(
F f

)
(y)e−itydyφ(t)dt,

where C(0; Y) is the n−cube [−Y,Y],× n
· · · × [−Y,Y] ⊂ Rn, Y > 0.

Later, in [6, Theorem 1], this inversion formula was extended to functions φ ∈ S such that φ(t) =
φ1(t1) · · ·φn(tn), t = (t1, . . . , tn) ∈ Rn, where φ1, · · · , φn ∈ S(R).

The purpose of the present paper is to obtain a distributional Fourier inversion formula which be valid
for any φ ∈ S. For it we follow to Lang in [10, Theorem 4, p. 264] for obtaining an inversion formula for
the classical Fourier transform by means of Gaussian functions.

As a consequence of this distributional inversion formula we get a representation over S of the solution
in S′k of convolution equations and, consequently, of linear partial differential equations with complex
constant coefficients.

A representation of the Fourier transform on distributions was obtained in [1] (amongst others).
Gaussian functions have been useful in the context of integral transforms, as has been revealed in recent

papers (see [7] and [13]). We also recall some interesting recent advances concerning to integral transforms
[15].

Related differential equations have been solved in [16] by using the operational method.
We recall that the spaces Sk, k ∈ Z [9, p. 90], are defined as the vector spaces of all functions φ on Rn

which possess continuous partial derivatives of all orders and which satisfy the condition that if p ∈ Nn

and ε > 0, then there exists A(φ, p, ε) > 0 such that∣∣∣(1 + |x|2)k∂pφ(x)
∣∣∣ ≤ ε, for |x| > A(φ, p, ε).

For every p ∈Nn, Horváth defines on Sk the seminorms

qk,p(φ) = max
x∈Rn

∣∣∣(1 + |x|2)k∂pφ(x)
∣∣∣ .

The spacesSk equipped with the countable family of seminorms qk,p are Fréchet spaces. The well known
space of test functionsD is a dense subspace of Sk (see [9], p. 419). As it is usual, S′k denotes the dual of the
space Sk.

In this paper we make use of the well known fact that

(2πc)(−1/2)
·

∫ +∞

−∞

exp
[
νx − (x2/2c)

]
dx = exp(cν2/2), ν ∈ C, c > 0. (1)

Throughout this paper we shall use the terminology and notation of [9].

2. The inversion formula

Firstly, we will establish the next assertion

Lemma 2.1. Let φ ∈ S, k ∈ Z and k < 0, then

1
π

n
2

∫
Rn
φ(x + 2aw)e−‖w‖

2
dw −→ φ(x),

in S for a→ 0+.
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Proof. First, we claim that for all φ ∈ S and all a > 0 one has

1
π

n
2

∫
Rn
φ(x + 2aw)e−‖w‖

2
dw ∈ S.

In fact, for any p ∈Nn there exists a Mp,φ > 0 such that
∣∣∣∂pφ(x)

∣∣∣ ≤Mp,φ, for all x ∈ Rn. Thus, for 0 = (0, . . . , 0),
it is clear that ∣∣∣∣φ(x + 2aw)e−‖w‖

2
∣∣∣∣ ≤M0,φe−‖w‖

2
.

Also, for r( j) = (r1( j), . . . , rn( j)), where rm( j) = 0 for m , j and r j( j) = 1, j = 1, . . . ,n, it follows that∣∣∣∣∣∣ ∂∂x j
φ(x + 2aw)e−‖w‖

2

∣∣∣∣∣∣ ≤Mr( j),φe−‖w‖
2
, j = 1, . . . ,n, and all x ∈ Rn.

Since M0,φe−‖w‖
2

and Mr( j),φe−‖w‖
2
, j = 1, . . .n, are integrable functions overRn, the use of [2, Theorem 5.9, p.

238] yields to
∂
∂x j

∫
Rn
φ(x + 2aw)e−‖w‖

2
dw =

∫
Rn

∂
∂x j

φ(x + 2aw)e−‖w‖
2
dw.

A similar argument allows us to prove that for all p j ∈N,

∂p j

∂xp j

j

∫
Rn
φ(x + 2aw)e−‖w‖

2
dw

=

∫
Rn

∂p j

∂xp j

j

φ(x + 2aw)e−‖w‖
2
dw,

for all j = 1, . . . ,n. Now, since for p = (p1, . . . , pn) ∈Nn, is ∂p =
∂p1+···+pn

∂xp1

1 · · · ∂xpn
n
, it follows that

∂p
∫
Rn
φ(x + 2aw)e−‖w‖

2
dw =

∫
Rn
∂pφ(x + 2aw)e−‖w‖

2
dw.

On the other hand, being
1
π

n
2

∫
Rn

e−‖w‖
2
dw = 1,

we find that ∣∣∣∣∣(1 + |x|2
)k 1
π

n
2
∂p

∫
Rn
φ(x + 2aw)e−‖w‖

2
dw

∣∣∣∣∣
≤

(
1 + |x|2

)k
Mp,φ

1
π

n
2

∫
Rn

e−‖w‖
2
dw =

(
1 + |x|2

)k
·Mp,φ , (1)

from which, being k < 0, it follows that (1) tends to zero as |x| tends to infinity.
Now, for all p = (p1, . . . , pn) ∈Nn,

max
x∈Rn

∣∣∣∣∣∣(1 + |x|2
)k 1
π

n
2
∂p

{∫
Rn
φ(x + 2aw)e−‖w‖

2
dw − φ(x)

}∣∣∣∣∣∣
= max

x∈Rn

∣∣∣∣∣∣(1 + |x|2
)k 1
π

n
2
∂p

{∫
Rn

[
φ(x + 2aw) − φ(x)

]
e−‖w‖

2
dw

}∣∣∣∣∣∣ , (2)

which, applying again [2, Theorem 5.9, p. 238], we have that the last expression is equal to

1
π

n
2

max
x∈Rn

∣∣∣∣∣∫
Rn

{
∂pφ(x + 2aw) − ∂pφ(x)

}
e−‖w‖

2
dw

∣∣∣∣∣
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≤
1
π

n
2

max
x∈Rn

∫
Rn

∣∣∣∂pφ(x + 2aw) − ∂pφ(x)
∣∣∣ e−‖w‖2 dw,

and by the Mean-Value theorem it is less than or equal to

2a
π

n
2
·


n∑

j=1

Mp( j),φ

 ·
∫
Rn
‖ w ‖ e−‖w‖

2
dw,

where p( j) = (p1, . . . , p j + 1, . . . , pn).
Also, using spherical coordinates in Rn it is easily obtained that∫

Rn
‖ w ‖ e−‖w‖

2
dw = πn−1Γ

(n + 1
2

)
,

from which (2) is less than or equal to

2a
π

n
2
·


n∑

j=1

Mp( j),φ

 · πn−1Γ
(n + 1

2

)
,

and, thus, the Lemma holds. �
We are now ready to prove the main result

Theorem 2.2. Let f ∈ S′k, k ∈ Z, k < 0, and (F f )(y) =
〈

f , eixy
〉
, y ∈ Rn, then, for all φ ∈ S it follows

〈
f , φ

〉
= lim

a→0+

1
(2π)n

∫
Rn

∫
Rn

(F f )(y)e−itye−a2
‖y‖2 dyφ(t)dt. (3)

Proof.
First, from [9, Proposition 2, p. 97], there exist a C > 0 and a nonnegative integer r, both depending on

f , such that

|(F f )(y)| =
∣∣∣∣〈 f , eixy

〉∣∣∣∣ ≤ C max
|p|≤r

max
x∈Rn

∣∣∣∣∣(1 + |x|2
)k
∂p

xeixy
∣∣∣∣∣ = C max

|p|≤r
|yp
|.

Thus, for any φ ∈ S, one has
1

(2π)n

∫
Rn

∫
Rn

(F f )(y)e−itye−a2
‖y‖2 dyφ(t)dt

=
1

(2π)n

∫
Rn

∫
Rn

〈
f , eixy

〉
e−itye−a2

‖y‖2 dyφ(t)dt,

and by Fubini theorem it is equal to

1
(2π)n

∫
Rn

〈
f , eixy

〉
e−a2

‖y‖2
∫
Rn

e−ityφ(t)dt dy. (4)

Note that, since φ ∈ S it follows that

e−a2
‖y‖2

∫
Rn

e−ityφ(t)dt ∈ S.

Thus, as a consequence of [4, Theorem 2.1], we have that (4) is equal to〈
f ,

1
(2π)n

∫
Rn

eixye−a2
‖y‖2

∫
Rn

e−ityφ(t)dt dy
〉
,
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which, making use again of Fubini theorem, is equal to〈
f ,

1
(2π)n

∫
Rn

∫
Rn

eixye−itye−a2
‖y‖2 dyφ(t)dt

〉
. (5)

Now, observe that by (1) we have

1
2π

∫ +∞

−∞

ei(x−t)ye−a2 y2
dy =

1

2
√
πa

√
2π 1

2a2

∫ +∞

−∞

ei(x−t)ye
−

y2

2 1
2a2 dy

=
1

2
√
πa

e−
1

2a2
(x−t)2

2 =
1

2
√
πa

e−
(x−t)2

4a2 ,

and thus we get that

1
(2π)n

∫
Rn

ei(x−t)ye−a2
‖y‖2 dy =

1
2nπn/2an e−

‖x−t‖2

4a2 . (6)

Therefore, (5) is equal to〈
f ,

1
2nπ

n
2 an

∫
Rn
φ(t)e

−‖x−t‖2

4a2 dt
〉
. (7)

Now, performing the change of variables t = x + 2aw, (7) becomes〈
f ,

1
π

n
2

∫
Rn
φ(x + 2aw)e−‖w‖

2
dw

〉
, (8)

from which, since f ∈ S′k by Lemma 2.1, the equality (3) follows. �

As it is well known, the Dirac distribution δu at u ∈ Rn given by
〈
δu, φ

〉
= φ(u), for all φ ∈ Sk, is

a member in S′k. As it is usual we denote δ = δ0. Also, for all m ∈ Nn, ∂mδu at u ∈ Rn given by〈
∂mδu, φ

〉
=

〈
δu, (−1)|m|∂mφ

〉
= (−1)|m|∂mφ(u), for all φ ∈ Sk, is a member in S′k.

Now, one obtains the next result

Corollary 2.3. For all φ ∈ S, u ∈ Rn and all m ∈Nn, one has〈
∂mδu, φ

〉
= lim

a→0+

(−1)|m|

2nπn/2an

∫
Rn

e−
‖u−t‖2

4a2 ∂mφ(t)dt,

and

∂mφ(u) = lim
a→0+

1
2nπn/2an

∫
Rn

e−
‖u−t‖2

4a2 ∂mφ(t)dt.

Proof.
Since < δu, eixy >= eiuy, y ∈ Rn, and according to the above inversion formula, for any φ ∈ S, one has

< ∂mδu, φ >= lim
a→0+

(−1)|m|

(2π)n

∫
Rn

∫
Rn

ei(u−t)ye−a2
‖y‖2 dy ∂mφ(t)dt. (9)

Now, using (6), formula (9) becomes〈
∂mδu, φ

〉
= (−1)|m|∂mφ(u) = lim

a→0+

(−1)|m|

2nπn/2an

∫
Rn

e−
‖u−t‖2

4a2 ∂mφ(t)dt.

�
Also, using Theorem 2.2 above and [6, Theorem 2.1] one has
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Corollary 2.4. Set f ∈ S′k, k ∈ Z, k < 0. Then

lim
Y→+∞

∫
Rn

∫
C(0;Y)

(F f )(y)e−itydyφ(t)dt

= lim
a→0+

∫
Rn

∫
Rn

(F f )(y)e−itye−a2
‖y‖2 dyφ(t)dt,

for all φ ∈ S such that φ(t) = φ1(t1) · · ·φn(tn), t = (t1, . . . , tn) ∈ Rn, where φ1, . . . , φn ∈ S(R).

The next result is a variant of [5, Corollary 2.1] concerning the solution of convolution equations.

Corollary 2.5. Set h, 1 ∈ S′k, k ∈ Z, k < 0. Assume that F h has no zeros in Rn, suppose that F h ∈ C−2k+2n(Rn)
and there exists a polynomial P such that∣∣∣∣∣∣∂m

(
1

(F h)(y)

)∣∣∣∣∣∣ ≤ P(|y|), ∀y ∈ Rn, ∀m ∈Nn, |m| ≤ −2k + 2n.

Then, the convolution equation

h ∗ f = 1, (10)

has a unique solution f ∈ S′k and this solution has the next representation over members in S

< f , φ >= lim
a→0+

1
(2π)n

∫
Rn

∫
Rn

(F 1)(y)
(F h)(y)

e−itye−a2
‖y‖2 dyφ(t)dt, φ ∈ S. (11)

Proof.
In fact, from the hypothesis of this Corollary and using [5, Theorem 2.1] it follows that there exists an

element w ∈ S′k such that Fw =
1
F h

. Therefore, using [4, Proposition 4.1] one has

F [h ∗ w] = F h ·
1
F h

= 1 = F δ.

So, using [4, Corollary 3.1], it follows that h ∗ w = δ.
Now, the member of S′k given by f = w ∗ 1 is a solution of equation (10).
In fact,

h ∗ (w ∗ 1) = (h ∗ w) ∗ 1 = δ ∗ 1 = 1.

Note that if f1, f2 ∈ S′k satisfy h ∗ f1 = 1 and h ∗ f2 = 1 then f1 = f2. Indeed, taking Fourier transform it
follows that

F f1 = F f2 =
F 1

F h
,

and, again by [5, Corollary 3.1], we have f1 = f2.
Also, since F [h ∗ f ] = F 1 and using again [5, Proposition 4.1] one obtain that

F f =
F 1

F h
,

which by Theorem 2.2 above allows us to the representation over S given by (11). �

Remark (invertible elements of S′k).
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Observe that the distribution w = h−1 in S′k, k ∈ Z, k < 0, which satisfies the equation h ∗ w = δ, is the
inverse by convolution of the member h ∈ S′k. So, when the distributional Fourier transform of h has no
zeros in Rn, with F h ∈ C−2k+2n(Rn) and it satisfies the inequality∣∣∣∣∣∣∂m

(
1

(F h)(y)

)∣∣∣∣∣∣ ≤ P(|y|), ∀y ∈ Rn, m ∈Nn, |m| ≤ −2k + 2n,

for some polynomial P, this distribution h−1 has the next representation over S

< h−1, φ >= lim
a→0+

1
(2π)n

∫
Rn

∫
Rn

1
(F h)(y)

e−itye−a2
‖y‖2 dyφ(t)dt, φ ∈ S.

Final observation

As in [8] and [11], we consider linear partial differential equations with constant coefficients of the form

P(∂) u = v , (1)

where as it is usual P is a polynomial inRn (with complex coefficients) and P(∂) denotes the corresponding
polynomial differential operator given by∑

|α|≤m

aα∂α, α ∈Nn, aα ∈ C, m ∈N,

and v is an element of S′k, k ∈ Z, k < 0.
Note that, since

P(∂)u = (P(∂)δ) ∗ u,

equation (1) can be written as a convolution equation.
Having into account that

(F [P(∂)δ])(y) = P(−iy), y ∈ Rn,

and using Corollary 2.5 above, one has that when P has no zeros of type αi, where α ∈ Rn, then there exists
a unique solution u in S′k of (1).

Also, one obtains the next representation over S of the solution u of equation (1):

< u, φ >= lim
a→0+

1
(2π)n

∫
Rn

∫
Rn

(F v)(y)
P(−iy)

e−itye−a2
‖y‖2 dyφ(t)dt,

for all φ ∈ S.
Furthermore, observe that if in (1) we set v = δ, then one obtains a representation over S of the

fundamental solution E of equation (1). In fact, having into account that F δ = 1, then one has

< E, φ >= lim
a→0+

1
(2π)n

∫
Rn

∫
Rn

1
P(−iy)

e−itye−a2
‖y‖2 dyφ(t)dt,

for all φ ∈ S.
Observe that this fundamental solution E is the inverse by convolution of the member h of S′k given by

h = P(∂)δ.
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