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Abstract. In the present article, we introduce a general sequence of summation-integral type operators. We
establish some direct results which include Voronovskaja type asymptotic formula, point-wise convergence
for derivatives, error estimations in terms of modulus of continuity and weighted approximation for
these operators. Furthermore, the convergence of these operators and their first order derivatives to
certain functions and their corresponding derivatives respectively is illustrated by graphics using Matlab
algorithms for some particular values of the parameters c and p.

1. Introduction

In the last five decades, several new operators of integral type have been introduced and their approx-
imation properties were discussed by several researchers. Milovanovic et al. [12] (see also [13], [14]) in
their book covered some topics on the behaviour of some polynomials in real and complex domains. In the
last decade, g calculus was also applied extensively in the theory of approximation of functions by linear
positive operators. Aral, Gupta and Agarwal compiled the results on convergence of various g-operators
in their book [4].

Very recently, Gupta and Agarwal [9] and recently Gupta and Tachev [11] also presented convergence
estimates of many operators in real and complex domains (see also some of the papers [1], [2], [6], [7], [8]).
In continuation of the above work, Paltanea [16] (see also [18]) considered a Durrmeyer type modification
of the genuine Szdsz-Mirakjan operators based on two parameters. Motivated by his modification, we now
propose for f : [0,00) — IR, a general hybrid family of summation-integral type operators based on the
parameters p > 0 and c € {0, 1} in the following way:

BUFi%) = Y pust,0) fo 6° (1Ot + ool ) O), 1)
k=1

where
ap

= ﬂ (k) P — —apt kp-1
Pa,k(x/ C) | (Pa,c(x)/ Ga,k(t) l"(kp)e (apt) .

k
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For the space defined as:

C,[0,00) = {f € C[0,00) : |[f(t)| < Ce"*, for some y >0, tel0,c0)},

it is observed that the operators BY(f; x, c) are well defined for ap > y. Further, we note that the operators
(1) preserve the linear functions.
Special cases:

1. If pao(x) = e7%%, then poi(x, 0) = e“"x%, we get the operators due to Paltanea [16]. Also, for this case

if p = 1, we get the Phillips operators [17].

k

% - +x =2 with the rising factorial given by
| X a

(n)i=nm+1)---(n+i-1),(n)y = 1. For p = 1, we get the operators studied in [3].

2. If ppi(x) = (1 +x)™ and a = n, then pyp(x, 1) =

3. If c=0,a =nand p — oo, then in view of ([18], Theorem 2.2), we get the Szdsz-Mirakjan operators.

4. Similarly, ifc = 1,a = n, f € TI, the closure of the space of algebraic polynomials in space C[0, 0)) and
p — oo, we obtain at once Baskakov operators.

The aim of the present paper is to discuss some direct results for the generalized operators (1). We
obtain asymptotic formula, point-wise convergence for derivatives, error estimations in terms of modulus
of continuity and weighted approximation. The convergence of these operators and their first order
derivatives is also illustrated by using Matlab algorithms.

2. Basic Results

In the sequel, we need the following lemmas.

Lemma 2.1. For c =0, 1 if the m—th order central moment i, ,(x) is defined as

00

Han(0) 1= B((E = 0)"52,0) = Y puxl®) fo 67 ()t — x)"dt + pao(x, O)(~x)",

k=1
then, pao(x) =1, to1(x) = 0 and there holds the following recurrence relation:

Alami1(x) = x(1+cx)uy ,(x) +mx

1
—+ (1 +cx)
P

m
[Ja,m—l(x) + ;‘ua,m(x)-

Consequently,
(1) pam(x) is a polynomial in x of degree atmost m depending on the parameters ¢ and o;

(ii) for every x € (0, 00), tgm(x) = O(zx‘[(’””)/ 2]), where [s] denotes the integer part of s.

Proof. We shall prove the result for different values of c separately. First for c € {0,1}, using the identity
x(1 +ex)p!  (x,¢) = (k — ax)pa(x, c), we may write

M) = Y k-0 [ 0200 -2
k=1 o

—mx(1 + cx) Z Paj(x,¢) foo 6° (t)(t —x)"'dt
k=1 o
+H(=ax)pao(x, O)(=x)" = mx(1 + cx)pa,o(x, )(=x)""!

Z Pai(x,0) fw[(k —at)+a(t - x)]@fi (O — x)"dt
k=1 0 ’

=mx(1 + €x)am-1(¥) + aPao(x, O)(=2)"".
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Next, using the identity

207, (0) = plk ~ at)0! (0,

we have

X(1 + cx) g (%)

Zpaux 0 [ 060,07

—mx(l + X tam—1(X) + Qg me1(x)

= _% ; Pax(x,C) fo ) t0 (B)(t - x)""dt
_mx(l + Cx),ua,m—l (x) + Ala,m+1 (x)
= —%[(ua,moc) = P, N)") + 2 (a1 () = Paol -0

—mx(1 + Cx)lia,m—l (x) + Alla,m+1 (x)

m
_;[ya,m(x) + xya,,,,,l(x)] —mx(1 + cx)am-1(X) + Agme1(x),

which is the required recurrence relation. The consequences (i) and (i) easily follow from the recurrence
relation on using mathematical induction onm. O

Remark 2.2. From Lemma 2.1, for each x € (0, 00) and c € {0, 1} we have

x{1+ p(1 + cx)}

Pa2(x) = T; ®
2 2
Hast) = w [39(1 +2cx) +p {(1 +2cx)% + 2cx(1 + cx)} + 2] 3l -:5;;2"‘ cx)}
+$ [Bpx(1 + cx){3 + p(1 + 2cx)} + 6x]. 3)

Corollary 2.3. Let y and 6 be any two positive real numbers and [a, b] C (0, c0) be any bounded interval. Then, for
any m > O there exists a constant M’ depending on m only such that

00

Y paso) [0 et

pcy t=x]>5

<Ma™

where ||.|| is the sup-norm over [a, b].

3. Convergence Estimates

Our first main result is the Voronovskaja type theorem for the operators defined in (1).

Theorem 3.1. Let f € C,[0, o) for some y > 0. If f" exists at a point x € [0, o0) then, we have

Jim a(B5(3,0) = £0) = S,
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Proof. From the Taylor’s theorem, we may write

£ = £+ (=0 (0 + 3"~ + 962~ 0P, € [0, @

where the function ¢(t,x) - Oas t — x.
Applying BY(.;x, c) and taking the limit as @ — co on both sides of (4), we have

f// (X)
2

lim a(BY(f;x,0)— f() = lim aBA((t - x);x,0)f (v) + 5 lim aBA((t - 1% x,0)

+ lim aBL(Y(t, x)(t — x)%; x, ©).

In view of Remark 2.2, we get

lim aBf((t — x);x,¢) =0 5)
and
1 1
lim aBY((t — x)%; x,¢) = w (6)
a— 00

Now, we prove that aBL({(t, x)(t — x)%;x,¢) — 0, as a — co. From the Cauchy-Schwarz inequality, we have

B 1)t~ 0%%,0) < LA );%,6) y Bt~ 1%, 0) )

Since Y(t,x) — 0 as t — x, for a given € > 0 there exists 6 > 0 such that [{(¢, x)| < € whenever |t — x| < 6. For
|t — x| > 6, there exists M; such that [(t, x)| < Mie!".

Let xs(t) denote the characteristic function of (x — 6, x + 0). Then

B§(¢2(tl .X); X, C) < BZ(¢2(t, x)Xé(t)r X, C) + BZ(¢2(tr .X')(l - X(S(t))r X, C)
< EBh(Lx,0) + M2BLE (1 — xs(b); x, €)

< € +Mya™, inview of Corollary 2.3.
Hence, we have

lim B (y(t, x); x,c) = 0. 8)
Further from Remark 2.2,
1 2
lim a?BY((t — x)*; x, ¢) = 3x? (E +(1+ cx)) , 9)
which is a finite quantity for each fixed x € [0, o) thus from (7)-(9), we get
im aBg(lp(t, D - %1, c) 0. (10)
Combining (5), (6) and (10), we obtain the desired result. [J

Example 3.2. For a = 20,50, 100, the convergence of the operators B4(f; x, ¢) to the function f(x) = x® —6x7 +5x* —
4x% + 2x* + 3 (blue) is illustrated for c = 0, p = 1 (green) and ¢ = 1, p = 1 (red) in figures 1 — 3, respectively.
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Example 3.3. For a = 20,50, 100, the convergence of the operators BL(f; x, ¢) to the function f(x) = x*e"2™ (blue)
is illustrated for c = 0,p = 1 (green) and c = 1, p = 1 (red) in figures 4 — 6, respectively.
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d
In the following theorem, we show that the derivative (%BZ( fiw, c)) is also an approximation
process for f’(x). o

Theorem 3.4. Let f € C,[0, o) for some y > 0. If f" exists at a point x € (0, 00), then we have

a—00

d
lim [—B(f;w, ) = f'(x).
im (=B (50,0 =W
Proof. By our hypothesis, we have

fO) = f) + (= 2)f' () + (£, 0)(t - x), t€[0,00),

where the function ¢(¢,x) - Oas t — x.
From the above equation, we can write

( L a0 f(x)( B(Liw,0))

£/ 00 =B - 50,0

w=X w=X w=X

(B0~ 5,0)

- f’(x)+(%B£(¢(t,x)(t—x);w,c)) -

Taking limit as & — oo, the result follows immediately, if we show that

tim (LB ¢ - 070,0) =0

wW=X

By using the identity x(1 + cx)( pax(w, c))) = (k — ax) pax(x,c), wehave

'(@Bg(’#(t Xt = x); 0, C))w x -

(i %(pa,k(w, o) fo ) 07 (DYt x)(t = x)dt + %(Pa,o(w/ c))wo, x)(—x))

wW=X

(11)

IN

lel(c1 +acfc|)Pak( C)f %, W(tx”t_xldH‘(%%cw)m

= L+
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Since Y(t,x) — 0 as t — x, for a given € > 0 there exists 0 > 0 such that [{(¢, x)| < € whenever |t — x| < 6. For
|t — x| > 6, we have [¢(t, x)(t — x)| < Mye”, for some M; > 0. Thus, from equation (11) we may write

0o

L < I;‘ (%)pmk(x, c)(e jli:—x|<6 Qz,k(t)lt — x|dt

My flt i 07 (0"t
= ]1 + ]2. (12)

Using Schwarz inequality for integration and then for summation, we can write

no< eZ(M)pa,k(x,c) 07 (B - xdt
k=1

x(1 + cx) lt—x]<6

Y 0 12
m Z Ik = ax)ipa(x, C)(fo 6 (b)(t - x)zdt)

Y 0 172
e Z‘ (= st C)(fo 60t - xt)

o 1/2, 0o 1/2
x(l + cx) (Zpak (e )k = ax)z)

k=1 (;p"'k(x’ C)fo Qg,k(f)(f - x)zdt)

1/2
— X*pao(x, C)J] (Ha2(x) = X*pao(x, c))'/?

& 2

k
- v [“2 [Z pasts 0 =)

k=0

1
{a O( 17 )}O(W)' in view of Lemma 2.1
= €e.0(1).

Since € > 0 is arbitrary, /1 — 0 as @ — oco. Next

L < %(Z(k ax)’pax(x, c))m( fo ) 9§,k(t)dt)
X(Zpa,k(x/ C) |t—x|>0
el ol o)) (Lrano |

1/2

) 1/2
P ¢
6 (0" dt

1/2
0 k(t)ezﬂdt)
[t=x[=6

{a O( 172 )}Mia—m = O(Cfl?)' for any m > 0.

By taking m > 1/2,], — 0 as @ — oo. Combining the estimates of J; and J,, we get [y — 0 as @ — oo.
Finally, we show that I, — 0 as @ — oo. Since [{(0, x)x| < M, and for c = 0,1, we get qb;é,c(x) — Qasa — oo,
it follows that I, — 0 as @ — oco. By combining the estimates of I; and I, we get the required result. [

Example 3.5. For o = 50,100, 140, the convergence of the operators (%Bﬁ( fio, c)) to the function % flx) =

%(x8 — 6x7 +5x* — 4x® + 2x? + 3) (blue) is illustrated for c = 0, p = 1 (green) and c = 1, p = 1 (red) in figures 7 -9,

respectively.
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Example 3.6. For a = 50,100, 140, the convergence of the operators (%Bg( f;w,€))w=x to the function % flx) =

%(x‘*e(‘z”")) (blue) is illustrated for c = 0,p = 1 (green) and c = 1, p = 1 (red) in figures 10 — 12, respectively.

Figure 10

Figure 11
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Figure 12

d
Next, we prove Voronovskaja type asymptotic formula for (%Bg( fiw, c))

wW=X

Theorem 3.7. Let f € C, [0, o0) admitting the derivative of 3rd order at a fixed point x € (0, 00), we have

lim a((diBﬁ(f; w,c) — f’(x)) ) = f”(x)(cx + 1(% + 1)) + m(cx2 + (% + 1)x).

oo "\ 2 2

Proof. From the Taylor’s theorem, we may write

£b) = Z“ FO@) + (e, 0 -3t € [0,00), 13)

where ltlm Y(t,x) =

From equation (13), we obtain

(orsoie0) = rolgeteeo-n)
S "(X)(_(B”(# w, ¢) = 2xB (1 @, ©) +x2))
i 3|( )(—(B (8% @, ¢) = BxBL(E; @, 0) + 3Byt , ) - ))

+(£(BZ(¢(& x)(t = 2% w, C))

wW=X

Using Lemma 2.1, we get

(rtreo) = peoe2a{E ) (0 er) -2 s B0 X):
(cx 14 %) ; 0%(% + % + 1)} ; (%(Bg(lp(t,x)(t — e, C))w:x

Taking limit as & — oo on both sides of the above equation, we have

ggoa(( B(f; w, c)) —f'(x)) - f”(x)(cx . %(% + 1)) ; @(cxz . (% ; 1)x)

a—00

+ lim a(—(BP(¢ 0t - 2%, c))

wW=Xx
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Proceeding in the same manner as in Theorem 3.4, we can easily show that

lim a(%(Bg(l/)(t, Dt - 2w, c)) =0,

wW=X
since lim a®(B.(t — x)°; x, ¢) is finite for each x € [0, o) in view of the consequences (i) and (i7) of Lemma 2.1.
a—00

Thus, the proof is completed. [J

For f € Cg[0, o) (the space of all bounded and uniformly continuous functions on [0, 0)), the Peetre’s
K-functional is defined as

Ka(f,6) = inf{ll f =g | +6 Il 9" Il; g € C3[0, o)}, (14)

where 6 > 0 and Cé[O, o) = {g € Cg[0,0) : g/, 9" € Cp[0,0)}. By Devore and Lorentz ([5] ,p.177, Theorem
2.4), there exists an absolute constant C > 0 such that

Ka(f, 6) < Can(f, Vo), (15)

where the second order modulus of continuity is defined as

wy(f, Vo) = sup sup | f(x+2h) —2f(x +h) + f(x) | .
0<h< V5 x€[0,00)

Theorem 3.8. Let f € Cp[0, 00) and x > 0. Then, there exists a constant C > 0 such that

|Bg(f;x’c)_f(x)|SCa)2[f, %;Hx)} |

Proof. Let g € C3[0, o). From the Taylor’s theorem, we may write

t
90 = g + (£ - 1) () + f (t - )9 (),

which implies that

Bo(g;x,0) — g(x)| =

Bﬁ( ft(t - 0)g" (v)dv; x, c)

Since

< (t=x)llg"Il,

t
f (t - 0)g" (0)do

by Remark 2.2, we have

x{1+p(1+ cx)}|| .

BY(;x,¢) — g(x)| < 7"ll.

From (1) it follows that
Bo(f;x,0l < Ifll

Hence
BL(f5 x, O)(f, %) = f(%)l BL(f = 9:%,0) = (f = )@)| + |BL(g; %, ©) = 9(x)]

1+p(1
2llf —gll + Mllg”ll. (16)

IA

IA

Taking infimum on the right hand side over all g € C3[0, %) and using (15), we obtain the desired result.
Hence, the proof is completed. O
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Let us now consider the Lipschitz-type space [15]:
. |t —xI"
Lipiy (1) = { € Csl0, ) : 1£(8) - 0 < M — 5, € 0,00)),
(t+x)2
where M is a positive constant and r € (0, 1].

Theorem 3.9. Let f € Lip),(r). Then, for all x > 0, we have

1+p(1+ cx))§

BLf%,0) ~ feol < M(—

Proof. Initially for r = 1, we may write

IBL(f5x,¢) = f(x)l

IA

D Pt [ er,on) - e

MZPaka)f k(t dt

Using the fact that\/%? < 7; and the Cauchy-Schwarz inequality, the above inequality implies that

IA

( 1+p(1+cx)),

M + * M _,
IBL(f3%,0) = @)l < —= ) pas(x,) f 07 (It — xldt = —=B(t - x|;x,c) <M
fixe) = fl S D O ”

Vx

which proves the required result for r = 1. Now for r € (0, 1), applying the Holder inequality with p = 1 and

q = 1=, we have

Y pasts0) [ 08,007 Feos

EEN )
< {kf; st [ oz, 000 - reor) |
< {Z:;pak(x o [ ens - st
< M{gpak(x o [ o0 =L
< {kipa,mc) fo 6§,k<t>|t—x|dt}r

1+ p(1+ 3
< M- oy < m(~ L)
X2 ap

Thus, the proof is completed. [J

Let H,2[0, c0) be space of all functions f defined on [0, co) with the property |f(x)| < Mf(1+ x%), where M b
is a constant depending only on f. By C,2[0, o), we denote the subspace of all continuous functions from
H,2[0,00). If f € C,2[0, 00) and lim |f(x)[(1 + x?)7! exists, we write f€C,]0,00). The norm on f € C%,[0, o) is

X—00 X X
given by
|f ()l

)1+x2

Il f lle:=
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On the closed interval [0, a]. for any a > 0, we define the usual modulus of continuity of f as

w,a(f,0) = sup sup |f(t) — f(x)l.

|t—x|<6 x,t€[0,a]
Theorem 3.10. Lef f € C,2[0, 00) and wy41(f, 0) be its modulus of continuity on the finite interval

[0,a + 1] C [0, 00). Then for any o > 0, we have

I BEFi%,0) = £09) leom AM(1 + @)aa(@) + 20001 f, Viiaz®@)
a{l + p(1 + ca)}

ap '
Proof. From ([10], p.378), for x € [0,a] and ¢ € [0, o), we have

|t — x|
5

where iy (a) =

F() = F)l < 4M (1 + a®)(t - ) + (1 + )w,m( £,6),6> 0.

Applying Bf(; x, ¢) and then Cauchy-Schwarz inequality to the above inequality, we get

BL(fix,0) = f) < 4Mg(1+a”)BL((t — x)%x,0) + a)m(l + %BZ(It —x;x, C))
< AV + i@ + we(1+ 5 V@)

By choosing 0 = /a2(a), we obtain the desired result. [J

Theorem 3.11. For each f € C;,[0, %), we have
lim || BA() = £ lle=0.

Proof. From the Korovkin theorem, we see that it is sufficient to verify the following three conditions

lim || BY(t5 x,¢) = x) |l,,=0, k=0,1,2. (17)
a—00

Since BZ(L’ x,c) =1, the condition in (17) holds for k = 0.

By Lemma 2.1, we have for a > 0

| BY(t; x, ¢) — x) |l,e= 0, which implies that the condition in (17) holds for k = 1.
Similarly, we can write for a >0

px(1+cx) +x

pa
(1 + 1 +c)l
Y o

which implies that lim || BY(t%;x,¢) — x* |lo= 0, the equation (17) holds for k = 2. This completes the

<p+1 x c x?

| BY(#%; x, ¢) — X2 ||2 sup +— sup
@ ¥ 2 PO o) 1 HX2 T @ igony 1+ 22

IA

proof. [
Let f € C;,[0, c0). The weighted modulus of continuity is defined as :

fe+ ) - fI

O(f,0) =
f w00<hes 1+ (x+ h)?

Lemma 3.12. [10] Let f € C},[0, c0), then:
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(i) Q(f, o) is a monotone increasing function of 5;
(i) Jim Q(f, ) = 0
(iii) for each m € N, Q(f, mod) < mQ(f, 6);
(iv) foreach A € [0, ), Q(f, A0) < (1 + A)Q(f, 0).
Theorem 3.13. Let f € C,[0, o), then there exists a positive constant K such that

B3 (fx,¢) = f)] 1
sup = <kalf )

Proof. Fort > 0,x € [0,0) and 0 > 0, by definition of Q(f, 0) and Lemma 3.12, we get
FO) = f@I < @+ (x+ x = QS It - xl)

< 21+ +(t- x)z)(l + 't;fx')g( £,0).
Since B, is linear and positive, we have
BE(f3%,6) = F@ < 201+ 2)0(F, Of 1+ B - 0,0 + B((1 + (¢ - x)z)% i)} (18)
Using (2), we have
BY((t-x)%x,0) < K 1+ xZ)/ for some positive number Kj. (19)

Applying Cauchy-Schwarz inequality to the second term of equation (18), we have

L (R L N R

+% \/Bg((t —x)4x,0) \/Bg((t —x)%;x, ). (20)

By using Lemma 2.1, there exists a positive constant K, such that

2
(Bg(t - x)%x, c)) <K, a J{;x ). (21)

Combining the estimates of (18)-(21) and taking K = 2(1+K; + VK; +K2 VK1), 6 = \/La, we obtain the required
result. [
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