

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

About Strong Starlikeness Conditions

Pál A. Kupán^a

^a Sapientia - Hungarian University of Transylvania, Tg. Mures, Romania

Abstract. Some results concerning the strong starlikeness of analytic functions are improved. The techniques of convolutions are used.

1. Introduction

Let $U = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk. Let $\mathcal{H}(U)$ denote the class of analytic functions defined on U. Let \mathcal{A} be the subclass of $\mathcal{H}(U)$ which consists of functions of the form: $f(z) = z + a_2 z^2 + a_3 z^3 + ...$ The subclass of \mathcal{A} consisting of functions for which the domain f(U) is starlike with respect to 0, is denoted by S^* . An analytic characterization of S^* is given by:

$$S^* = \left\{ f \in \mathcal{A} : \mathfrak{R} \frac{zf'(z)}{f(z)} > 0, \ z \in U \right\}.$$

In [4] the authors proved that

Theorem 1.1.

If
$$f \in \mathcal{A}$$
, and $\Re(f'(z) + zf''(z)) > 0$, $z \in U$, then $f \in S^*$.

This result has been improved in [1] and [3] (p.304-307) in the following manner:

Theorem 1.2.

If
$$f \in \mathcal{A}$$
, and $\Re(f'(z) + \lambda_0 z f''(z)) > 0$, $z \in U$, then $f \in S^*$,

where $\lambda_0 = 0.348...$

Other kinds of improvements for Theorem 1.1 can be found in [2], [5], [6], [8], [11]. For other results regarding starlikeness we recommend [7], [9], [10]. In [2] Mocanu proved the following theorems:

Theorem 1.3.

If
$$f \in \mathcal{A}$$
, and $\Re(f'(z) + zf''(z)) > 0$, $z \in U$ then, $\left|\arg \frac{zf'(z)}{f(z)}\right| < \frac{\pi}{3}$,

and

2010 Mathematics Subject Classification. Primary 30c45 Keywords. Starlikeness; Strong starlikeness; Convolution

Received: 08 January 2016; Revised: 28 January 2017; Accepted: 18 May 2018

Communicated by Miodrag Mateljević

Email address: kupanp@ms.sapientia.ro (Pál A. Kupán)

Theorem 1.4.

If
$$f \in \mathcal{A}$$
, and $\Re\left(f'(z) + \frac{1}{2}zf''(z)\right) > 0$, $z \in U$ then, $\left|\arg\frac{zf'(z)}{f(z)}\right| < \frac{4\pi}{9}$

In order to deduce these results the differential subordination has been used. We will improve Theorem 1.3, and Theorem 1.4 using a different approach. The results we need in the followings will be presented in the next section.

2. Preliminaries

Lemma 2.1. [5] If $\theta \in (0, 2\pi)$ and $\delta > 0$, then the following identities hold:

$$\int_0^\infty \frac{x(e^{\theta x} + e^{(2\pi - \theta)x})}{(\delta^2 + x^2)(e^{2\pi x} - 1)} dx + i\delta \int_0^\infty \frac{e^{(2\pi - \theta)x} - e^{\theta x}}{(\delta^2 + x^2)(e^{2\pi x} - 1)} dx = \frac{1}{2\delta} + \sum_{k=1}^\infty \frac{e^{i\theta k}}{k + \delta'}$$

$$2\delta \int_0^\infty \frac{x(e^{\theta x} + e^{(2\pi - \theta)x})}{(\delta^2 + x^2)^2(e^{2\pi x} - 1)} dx + i \int_0^\infty \frac{(\delta^2 - x^2)(e^{(2\pi - \theta)x} - e^{\theta x})}{(\delta^2 + x^2)^2(e^{2\pi x} - 1)} dx = \frac{1}{2\delta^2} + \sum_{k=1}^\infty \frac{e^{i\theta k}}{(k + \delta)^2}.$$

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ be two analytic functions. The convolution of these functions is defined as follows:

$$(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n.$$

Lemma 2.2. Let $f \in \mathcal{A}$ and $\alpha \in (0, \frac{\pi}{2}]$. The inequality

$$\left|\arg\frac{zf'(z)}{f(z)}\right| < \alpha, \ z \in U$$

is equivalent to

$$\frac{f(z)}{z} * \frac{k_T(z)}{z} \neq 0, z \in U, T \in [0, \infty),$$

where

$$k_T(z) = z + \sum_{n=1}^{\infty} \frac{1 + n - Te^{\pm i\alpha}}{1 - Te^{\pm i\alpha}} z^{n+1}.$$

Proof. Let $p(z) = \frac{zf'(z)}{f(z)}$. Since p(0) = 1, the condition $\left|\arg\frac{zf'(z)}{f(z)}\right| < \alpha$, $z \in U$ is equivalent to the fact that the domain p(U) is inside the angle determined by the following half-lines $\{Te^{i\alpha} \mid T \in [0, \infty)\}$ and $\{Te^{-i\alpha} \mid T \in [0, \infty)\}$. This means that p(U) does not intersect the sides of the angle or equivalently

$$p(z)\neq Te^{\pm i\alpha},\ (\forall)z\in U,\ (\forall)T\in [0,\infty).$$

Since the following equivalences hold

$$\begin{split} p(z) \neq T e^{\pm i\alpha} &\Leftrightarrow T e^{\pm i\alpha} \neq \frac{z f'(z)}{f(z)} \Leftrightarrow \frac{f(z)}{z} + \frac{1}{1 - T e^{\pm i\alpha}} \Big(f'(z) - \frac{f(z)}{z} \Big) \neq 0 \\ &\Leftrightarrow 1 + \sum_{n=1}^{\infty} a_{n+1} z^n + \frac{1}{1 - T e^{\pm i\alpha}} \sum_{n=1}^{\infty} n a_{n+1} z^n \neq 0 \\ &\Leftrightarrow \frac{f(z)}{z} * \frac{k_T(z)}{z} \neq 0, \end{split}$$

the proof is done. \Box

Lemma 2.3. If m > 0 is a fixed real number and p is an analytic function in U defined by $p(z) = \sum_{n=1}^{\infty} \frac{z^n}{n+m}$, then

$$\lim_{\substack{z \to 1 \\ |z| < 1}} \operatorname{Re} p(z) = +\infty. \tag{1}$$

Proof. We have to prove only the particular case

$$\lim_{\substack{z \to 1 \\ z|z| < 1}} \operatorname{Re}\left(\sum_{n=1}^{\infty} \frac{z^n}{n}\right) = +\infty.$$
 (2)

This equality holds because we have

$$\lim_{\substack{z \to 1 \\ |z| < 1}} \operatorname{Re}\left(\sum_{n=1}^{\infty} \frac{z^n}{n}\right) = \lim_{\substack{\theta \to 0 \\ \theta \to 0}} \sum_{n=1}^{\infty} \frac{r^n \cos n\theta}{n} = \lim_{\substack{r \to 1 \\ \theta \to 0}} \ln \frac{1}{\sqrt{1 + r^2 - 2r \cos \vartheta}} = +\infty.$$

On the other hand we have

$$\left| \sum_{n=1}^{\infty} \frac{z^n}{n} - \sum_{n=1}^{\infty} \frac{z^n}{n+m} \right| = \left| \sum_{n=1}^{\infty} \frac{z^n}{n(n+m)} \right| \le \sum_{n=1}^{\infty} \frac{m|z^n|}{n(n+m)} \le \sum_{n=1}^{\infty} \frac{m}{n^2} = m \frac{\pi^2}{6}.$$
 (3)

Finally (2) and (3) imply (1) and the proof is done. \Box

3. The Main Result

Theorem 3.1. Let $\beta \in (0, \infty)$, $\alpha \in (0, \frac{\pi}{2})$ be two real numbers such that

$$a_{\pm}(\vartheta) = a_{\pm}(1,\vartheta) > \delta > 0, \ b_{\pm}^{2}(\vartheta) - a_{\pm}(\vartheta)c_{\pm}(\vartheta) = b_{\pm}(1,\vartheta)^{2} - a_{\pm}(1,\vartheta)c_{\pm}(1,\vartheta) < 0, \ \vartheta \in (0,2\pi)$$
 (4)

where

$$a_{\pm}(r,\vartheta) = 1 + 2\sum_{n=1}^{\infty} \frac{r^n \cos n\vartheta + r^n \sin n\vartheta \cot(\pm \alpha)}{\beta n(n+1) + n + 1},$$

$$b_{\pm}(r,\vartheta) = \cos \alpha + 2\sum_{n=1}^{\infty} \frac{r^n \cos n\vartheta \cos \alpha + \frac{n+1+\cos 2\alpha}{2\sin(\pm \alpha)}r^n \sin n\vartheta}{\beta n(n+1) + n + 1},$$

$$and$$
(5)

$$c_{\pm}(r,\vartheta) = 1 + 2\sum_{n=1}^{\infty} \frac{r^n \cos n\vartheta + r^n \sin n\vartheta \cot \alpha}{\beta n + 1}.$$

If $f \in \mathcal{A}$ *is a function that satisfies the following condition*

$$\Re(f'(z) + \beta z f''(z)) > 0, \quad z \in U, \tag{6}$$

then

$$\left|\arg\left(\frac{zf'(z)}{f(z)}\right)\right| < \alpha, \ z \in U. \tag{7}$$

Proof. Let f be the function defined in U by $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. On the one hand, we have

$$f'(z) + \beta z f''(z) = 1 + \sum_{n=2}^{\infty} (\beta n(n-1) + n) a_n z^{n-1}.$$

The Herglotz representation formula implies the existence of a probability measure μ on $[0, 2\pi]$, such that

$$f'(z) + \beta z f''(z) = 1 + 2 \sum_{n=1}^{\infty} z^n \int_0^{2\pi} e^{-itn} d\mu(t).$$

These imply $a_n = \frac{2}{\beta n(n-1)+n} \int_0^{2\pi} e^{-it(n-1)} d\mu(t), \ \ n \ge 2$, and

$$f(z) = z + 2\sum_{n=2}^{\infty} \frac{z^n}{\beta n(n-1) + n} \int_0^{2\pi} e^{-it(n-1)} d\mu(t).$$

According to Lemma 2.2, condition (7) is equivalent to

$$\frac{f(z)}{z} * \frac{k_T(z)}{z} \neq 0, \ z \in U, T \in [0, \infty), \tag{8}$$

where

$$k_T(z) = z + \sum_{n=1}^{\infty} \frac{1 + n - Te^{\pm i\alpha}}{1 - Te^{\pm i\alpha}} z^{n+1}.$$

Condition (8) in its explicit form is

$$1 + 2\sum_{n=1}^{\infty} \frac{z^n}{\beta n(n+1) + n + 1} \frac{1 + n - Te^{\pm i\alpha}}{1 - Te^{\pm i\alpha}} \int_0^{2\pi} e^{-itn} d\mu(t) \neq 0,$$

$$z \in U, T \in [0, \infty),$$

and this can be rewritten as follows:

$$\int_{0}^{2\pi} \left(1 + 2 \sum_{n=1}^{\infty} \frac{z^{n}}{\beta n(n+1) + n + 1} \frac{1 + n - Te^{\pm i\alpha}}{1 - Te^{\pm i\alpha}} e^{-itn} \right) d\mu(t) \neq 0,$$

$$z \in U, T \in [0, \infty). \tag{9}$$

We introduce the notations

$$A(z,T,t) = \Re \Big(1 + 2 \sum_{n=1}^{\infty} \frac{z^n}{\beta n(n+1) + n + 1} \frac{1 + n - T e^{\pm i\alpha}}{1 - T e^{\pm i\alpha}} e^{-itn} \Big),$$

and

$$B(z,T,t) = \Im\Big(1 + 2\sum_{n=1}^{\infty} \frac{z^n}{\beta n(n+1) + n + 1} \frac{1 + n - Te^{\pm i\alpha}}{1 - Te^{\pm i\alpha}} e^{-itn}\Big).$$

We will prove that

$$\int_0^{2\pi} \left[A(z, T, t) \sin(\pm \alpha) + B(z, T, t) \cos \alpha \right] d\mu(t) \neq 0, \ z \in U, \ T \in [0, \infty).$$
 (10)

If (10) holds, then $\int_0^{2\pi} A(z,T,t)d\mu(t) \neq 0$, $z \in U$, $T \in [0,\infty)$, or $\int_0^{2\pi} B(z,T,t)d\mu(t) \neq 0$, $z \in U$, $T \in [0,\infty)$, and this implies (9). In order to prove (10) we will show that

$$\int_0^{2\pi} A(z, T, t) d\mu(t) \sin(\pm \alpha) + \int_0^{2\pi} B(z, T, t) d\mu(t) \cos \alpha > 0, \ z \in U, \ T \in [0, \infty).$$

This inequality is equivalent to

$$\int_0^{2\pi} \left[A(re^{i\theta}, T, t) \sin(\pm \alpha) + B(re^{i\theta}, T, t) \cos \alpha \right] d\mu(t) > 0, \ \theta \in [0, 2\pi], \tag{11}$$

and $T \in [0, \infty), r \in (0, 1)$.

In order to prove (11) it is enough to show that

$$v(re^{i\theta}, T, t) = A(re^{i\theta}, T, t)\sin(\pm \alpha) + B(re^{i\theta}, T, t)\cos \alpha > 0,$$

$$\theta \in [0, 2\pi], \ r \in (0, 1), \ T \in [0, \infty).$$
(12)

We denote $\vartheta = \theta - t$ and we get

$$A(re^{i\theta}, T, t) = 1 + 2 \operatorname{Re} \sum_{n=1}^{\infty} \frac{r^n e^{in\theta}}{\beta n(n+1) + n + 1} \frac{1 + n - Te^{\pm i\alpha}}{1 - Te^{\pm i\alpha}} e^{-int} = 1$$

$$+ \frac{2}{1 + T^2 - 2T \cos \alpha} \Big[\sum_{n=1}^{\infty} \frac{(1 + T^2 - 2T \cos \alpha + n - nT \cos \alpha) r^n \cos n\vartheta}{\beta n(n+1) + n + 1}$$

$$+ \sum_{n=1}^{\infty} \frac{r^n \sin n\vartheta}{\beta n(n+1) + n + 1} nT \sin(\mp \alpha) \Big]$$
(13)

and

$$B(re^{i\theta}, T, t) = 2 \operatorname{Im} \sum_{n=1}^{\infty} \frac{r^n e^{in\theta}}{\beta n(n+1) + n + 1} \frac{1 + n - Te^{\pm i\alpha}}{1 - Te^{\pm i\alpha}} = \frac{2}{1 + T^2 - 2T\cos\alpha}$$

$$\sum_{n=1}^{\infty} \frac{(1 + T^2 + n - (n+2)\cos\alpha)r^n \sin n\vartheta - Tnr^n \cos n\vartheta \sin(\mp\alpha)}{\beta n(n+1) + n + 1}$$
(14)

We define the functions $a_{\pm}, b_{\pm}, c_{\pm}$ by the equality

$$\left[A(re^{i\theta}, T, t)\sin(\pm \alpha) + B(re^{i\theta}, T, t)\cos\alpha\right] \frac{1 - 2T\cos\alpha + T^2}{\sin\alpha}
= a_{\pm}(r, \vartheta)T^2 - 2b_{\pm}(r, \vartheta)T + c_{\pm}(r, \vartheta). \tag{15}$$

Comparing (13), (14), and (15) we get (5).

We will prove that

$$a_{\pm}(r,\vartheta)T^{2} - 2b_{\pm}(r,\vartheta)T + c_{\pm}(r,\vartheta) > 0, \ (\forall)T \in \mathbb{R},$$

$$\vartheta \in [0,2\pi], \text{ and } r \in [0,1) \Leftrightarrow re^{i\vartheta} = z \in U.$$
 (16)

Equality (1) from Lemma 2.3 implies $\lim_{\substack{z\to 1\\|z|<1}} c_\pm(r,\vartheta) = +\infty$. Now taking into account that $a_\pm(r,\vartheta) > \delta > 0$ and $a_\pm(r,\vartheta)$, $b_\pm(r,\vartheta)$ are bounded functions, we infer that

$$\lim_{\substack{z\to 1\\z|<1}} [a_\pm(r,\vartheta)T^2 - 2b_\pm(r,\vartheta)T + c_\pm(r,\vartheta)] = +\infty,$$

and the convergence is uniform with respect to T. Thus it follows that for a given positive number k > 0 there is an other positive number $\epsilon(k) > 0$ such that

$$z \in U \text{ and } |z - 1| \le \varepsilon(k) \Rightarrow a_+(r, \vartheta)T^2 - 2b_+(r, \vartheta)T + c_+(r, \vartheta) > k > 0. \tag{17}$$

Consequently the inequality (16) holds on the set

$$U \cap \{z \in \mathbb{C} : |z-1| \le \epsilon(k)\} = D.$$

Further we have to prove that the inequality (16) holds on $U \setminus D$. The mapping

$$w(T,\vartheta,r) = a_+(r,\vartheta)T^2 - 2b_+(r,\vartheta)T + c_+(r,\vartheta)$$

is harmonic on the set $D^* = U \setminus D$. If we check inequality (16) on ∂D^* , then the minimum principle for harmonic functions implies that (16) holds on D^* . According to (17) the inequality (16) hods on the arc of the circle $|z - 1| \le \epsilon(k)$, which is inside of U.

Thus we have to check (16) on the arc of ∂U which is autside of the disc $|z-1| \le \varepsilon(k)$. Since $a_{\pm}(\vartheta) > 0$, $\vartheta \in [0, 2\pi]$ it follows that the inequality (16) holds if

$$b_{\pm}(\vartheta)^{2} - a_{\pm}(\vartheta)c_{\pm}(\vartheta) = b_{\pm}(1,\vartheta)^{2} - a_{\pm}(1,\vartheta)c_{\pm}(1,\vartheta) < 0, \quad \vartheta \in [\gamma, 2\pi - \gamma], \tag{18}$$

where $\gamma > 0$ is the argument of the point situated in the first quadrant and being the intersection of the unit circle with the circle $|z - 1| = \epsilon(k)$. \square

Corollary 3.2. *If* $f \in \mathcal{A}$ *is a function such that*

$$\Re(f'(z) + zf''(z)) > 0, \ z \in U,$$

then

$$\left|\arg\left(\frac{zf'(z)}{f(z)}\right)\right| < \frac{3\pi}{10}, \ z \in U.$$

Proof. According to Theorem 3.1 we have to verify the inequality (4) in case of $\beta=1$ and $\alpha=\frac{3\pi}{10}$. Let $q_i,p_i:(0,2\pi)\to\mathbb{R}$ defined by $q_i(\vartheta)=\sum_{n=1}^\infty\frac{\cos n\vartheta}{(n+1)^i}$ and $p_i(\vartheta)=\sum_{n=1}^\infty\frac{\sin n\vartheta}{(n+1)^i}$, where $i\in\{1,2\}$. (According to Theorem 3.1 we have to prove inequality (18) only for $\vartheta\in[\gamma,2\pi-\gamma]$.) Lemma 2.1 implies that $\frac{1}{2}+q_1$ and $\frac{1}{2}+q_2$ are strictly decreasing on $(0,\pi]$ and strictly increasing on $[\pi,2\pi)$, and p_1,p_1+p_2 and $p_1+\cos(2\alpha)p_2$ are strictly decreasing on $(0,2\pi)$.

We consider the case $\vartheta \in (0, \pi]$ in the first step.

In this case he integral representations given in Lemma 2.1 imply that the functions $a(\vartheta) = 1 + 2q_2(\vartheta) + 2p_2(\vartheta) \cot \alpha$, $b(\vartheta) = \cos \alpha + 2q_2(\vartheta) \cos \alpha + \frac{1}{\sin \alpha}(p_1(\vartheta) + p_2(\vartheta) \cos(2\alpha))$ and $c(\vartheta) = 1 + 2q_1(\vartheta) + 2p_1(\vartheta) \cot \alpha$ are positive and the functions q_1 , q_2 , p_1 , p_2 are strictly decreasing. Thus, if we verify the inequalities

$$b_k^2 < a_k c_k$$
, for $k \in \{1, 2, \dots, 10^2\}$, where $\vartheta_k = \frac{k\pi}{10^2}$, (19)

 $a_k = 1 + 2q_2(\vartheta_k) + (p_1 + p_2)(\vartheta_k) \cot \alpha - p_1(\vartheta_{k-1}) \cot \alpha, \ b_k = \cos \alpha + 2q_2(\vartheta_{k-1}) \cos \alpha + \frac{1}{\sin \alpha}(p_1(\vartheta_{k-1}) + p_2(\vartheta_{k-1}) \cos(2\alpha))$ and $c_k = 1 + 2q_1(\vartheta_k) + 2p_1(\vartheta_k) \cot \alpha$, then the monotonicity of $q_i, p_1, p_1 + p_2$, and $p_1 + p_2 \cos(2\alpha)$ implies

$$(b(\vartheta))^2 \le b_k^2 < a_k c_k \le a(\vartheta)c(\vartheta), \ \vartheta \in [\vartheta_{k-1}, \vartheta_k], \ k \in \{1, 2, \dots, 10^2\},$$

and finally we obtain $(b(\vartheta))^2 - a(\vartheta)c(\vartheta) < 0$ for every $\vartheta \in (0, \pi]$.

The second case is $\vartheta \in [\pi, 2\pi)$.

Lemma 2.1 implies that the functions $\frac{1}{2} + q_1$, $\frac{1}{2} + q_2$ are strictly increasing and positive, and p_1 , $p_1 + p_2 \cos(2\alpha)$, $p_1 + p_2$ are strictly decreasing and negative on this interval. Let $M, N : [\pi, 2\pi) \to \mathbb{R}$ be defined by $M(\vartheta) = \cos \alpha + 2q_2(\vartheta) \cos \alpha$, and $N(\vartheta) = \frac{1}{\sin \alpha} [p_1(\vartheta) + p_2(\vartheta) \cos 2\alpha]$. Lemma 2.1 implies that M is a strictly increasing and positive function and N is strictly decreasing and negative. We have to prove

$$a(\vartheta)c(\vartheta) - b^{2}(\vartheta) = (1 + 2q_{2}(\vartheta))(1 + 2q_{1}(\vartheta)) + 2(1 + 2q_{1}(\vartheta))(p_{1}(\vartheta) + p_{2}(\vartheta))\cot\alpha$$
$$-2(1 + 2q_{1}(\vartheta))p_{1}(\vartheta)\cot\alpha + 2(1 + 2q_{2}(\vartheta))p_{1}(\vartheta)\cot\alpha$$

$$+4(p_1(\vartheta)+p_2(\vartheta))p_1(\vartheta)\cot^2\alpha-4p_1^2(\vartheta)\cot^2\alpha-2M(\vartheta)N(\vartheta)-M^2(\vartheta)-N^2(\vartheta)>0,\ \vartheta\in[\pi,2\pi).$$

In order to prove this inequality we have to verify that

$$\lambda_k > 0,$$
 (20)

where

$$\begin{split} \lambda_k &= (1 + 2q_1(\vartheta_{k-1}))(1 + 2q_2(\vartheta_{k-1})) + 2(1 + 2q_1(\vartheta_k)) \Big(p_1 + p_2 \Big) (\vartheta_k) \cot \alpha \\ &- 2(1 + 2q_1(\vartheta_{k-1})) p_1(\vartheta_{k-1}) \cot \alpha + 2(1 + 2q_2(\vartheta_k)) p_1(\vartheta_k) \cot \alpha \\ &+ 4 \Big(p_1(\vartheta_{k-1}) + p_2(\vartheta_{k-1}) \Big) p_1(\vartheta_{k-1}) \cot^2 \alpha - 4p_1^2(\vartheta_k) \cot^2 \alpha \\ &- 2M(\vartheta_{k-1}) N(\vartheta_{k-1}) - M^2(\vartheta_k) - N^2(\vartheta_k) \end{split}$$

and

$$\vartheta_k = \frac{k\pi}{10^3}, \ k \in \{10^3 + 1, 10^3 + 2, \dots, 2 \cdot 10^3\}.$$

Then the monotonicity of q_i , p_1 , $p_1 + p_2$, M, N implies

$$0 < \lambda_k \le a(\vartheta)c(\vartheta) - b^2(\vartheta), \ \vartheta \in [\theta_{k-1}, \theta_k], \ k \in \{10^3 + 1, 10^3 + 2, \dots, 2 \cdot 10^3\}$$

and the inequality $b^2(\vartheta) - a(\vartheta)c(\vartheta) < 0$ follows for every $\vartheta \in [\pi, 2\pi)$. The case $\alpha = -\frac{3\pi}{10}$ can be discussed in the same way. \square

Corollary 3.3. *If* $f \in \mathcal{A}$ *is a function such that*

$$\Re\left(f'(z) + \frac{1}{2}zf''(z)\right) > 0, \ z \in U,$$

then

$$\left| \arg \left(\frac{zf'(z)}{f(z)} \right) \right| < \frac{3\pi}{8}, \ z \in U.$$

Proof. According to Theorem 3.1 we have to verify the inequality (4) in case of $\beta=\frac{1}{2}$ and $\alpha=\frac{3\pi}{8}$. The proof is analogous to the proof of the previous corollary. We use the notation introduced before and we denote by q_3 , p_3 the following functions $q_3(\vartheta)=\sum_{n=1}^{\infty}\frac{\cos n\vartheta}{n+2}$, $p_3(\vartheta)=\sum_{n=1}^{\infty}\frac{\sin n\vartheta}{n+2}$. We prove the corollary in two steps. The first case is $\vartheta\in(0,\pi]$.

A short calculation leads to $a(\vartheta) = 1 + 4(q_1(\vartheta) - q_3(\vartheta)) + 4(p_1(\vartheta) - p_3(\vartheta)) \cot \alpha$, $b(\theta) = \cos \alpha + 4(q_1(\vartheta) - q_3(\vartheta)) \cos \alpha + \frac{2}{\sin \alpha} p_3(\vartheta) + \frac{2\cos 2\alpha}{\sin \alpha} (p_1(\vartheta) - p_3(\vartheta))$ and $c(\vartheta) = 1 + 4q_3(\vartheta) + 4p_3(\vartheta) \cot \alpha$.

Let the functions $P,Q,R:(0,2\pi)\to\mathbb{R}$ be defined by $P(\vartheta)=1+4\left(q_1(\vartheta)-q_3(\vartheta)\right)$, $Q(\vartheta)=\frac{2}{\sin\alpha}p_3(\vartheta)+\frac{2\cos2\alpha}{\sin\alpha}(p_1(\vartheta)-p_3(\vartheta))$ and $R(\vartheta)=1+4q_3(\vartheta)$. Lemma 2.1 implies that p_1 , p_3 and Q are strictly decreasing on $(0,2\pi)$, positive on $(0,\pi]$ and negative on $[\pi,2\pi)$. P and R are decreasing on $(0,\pi]$, increasing on $[\pi,2\pi)$ and positive on $(0,2\pi)$. We have

$$a(\vartheta)c(\vartheta) - b^{2}(\vartheta) = P(\vartheta)R(\vartheta) + 4R(\vartheta)p_{1}(\vartheta)\cot\alpha - 4R(\vartheta)p_{3}(\vartheta)\cot\alpha + 4P(\vartheta)p_{3}(\vartheta)\cot\alpha + 4P(\vartheta)p_{3}(\vartheta)\cot\alpha + 16p_{1}(\vartheta)p_{3}(\vartheta)\cot^{2}\alpha - 16p_{2}^{2}(\vartheta)\cot^{2}\alpha - P^{2}(\vartheta)\cos^{2}\alpha - Q^{2}(\vartheta) - 2P(\vartheta)Q(\vartheta)\cos\alpha.$$

If we verify that

$$\mu_k > 0, \ k \in \{1, 2, \dots, 10^2\}$$
 (21)

where μ_k are defined by

$$\mu_k = P(\vartheta_k)R(\vartheta_k) + 4R(\vartheta_k)p_1(\vartheta_k)\cot\alpha - 4R(\vartheta_{k-1})p_3(\vartheta_{k-1})\cot\alpha + 4P(\vartheta_k)p_3(\vartheta_k)\cot\alpha + 16p_1(\vartheta_k)p_3(\vartheta_k)\cot^2\alpha - 16p_3^2(\vartheta_{k-1})\cot^2\alpha - P^2(\vartheta_{k-1})\cos^2\alpha - Q^2(\vartheta_{k-1}) - 2P(\vartheta_{k-1})Q(\vartheta_{k-1})\cos\alpha,$$

and $\vartheta_k = \frac{k\pi}{10^2}$, $k \in \{1, 2, ..., 10^2\}$, then the monotonicity of P, Q, R, p_1, p_3 implies

$$a(\vartheta)c(\vartheta) - b^2(\vartheta) \ge \mu_k > 0, \ \vartheta \in [\vartheta_{k-1}, \vartheta_k], \ k \in \{1, 2, \dots, 10^2\}.$$

Thus, it follows that $a(\vartheta)c(\vartheta) - b^2(\vartheta) > 0$, $\vartheta \in (0, \pi]$.

The second case is $\vartheta \in [\pi, 2\pi)$.

This time we have to verify

$$\nu_k > 0, \ k \in \{10^3 + 1, 10^3 + 2, \dots, 2 \cdot 10^3\}$$
 (22)

where

$$\nu_k = P(\vartheta_{k-1})R(\vartheta_{k-1}) + 4R(\vartheta_k)p_1(\vartheta_k)\cot\alpha - 4R(\vartheta_{k-1})p_3(\vartheta_{k-1})\cot\alpha + 4P(\vartheta_k)p_3(\vartheta_k)\cot\alpha + 16p_1(\vartheta_{k-1})p_3(\vartheta_{k-1})\cot^2\alpha - 16p_3^2(\vartheta_k)\cot^2\alpha - P^2(\vartheta_k)\cos^2\alpha - Q^2(\vartheta_k) - 2P(\vartheta_{k-1})Q(\vartheta_{k-1})\cos\alpha,$$

and $\vartheta_k = \frac{k\pi}{10^3}$, $k \in \{10^3 + 1, 10^3 + 2, \dots, 2 \cdot 10^3\}$. Just like before we have

$$a(\vartheta)c(\vartheta) - b^2(\vartheta) \ge \nu_k > 0, \ \vartheta \in [\vartheta_{k-1}, \vartheta_k], \ k \in \{10^3 + 1, 10^3 + 2, \dots, 2 \cdot 10^3\},$$

an this implies $a(\vartheta)c(\vartheta)-b^2(\vartheta)>0$, $\vartheta\in[\pi,2\pi)$. Consequently, the inequality $a(\vartheta)c(\vartheta)-b^2(\vartheta)>0$ holds for every $\vartheta\in(0,2\pi)$. The case $\alpha=-\frac{3\pi}{8}$ can be discussed in the same way. \square

Remark 3.4. Conditions (19), (20), (21) and (22) can be verified easily using a computer program, which applies numerical methods and uses the equalities $q_1(\vartheta) = -\cos\vartheta\ln(2\sin\frac{\vartheta}{2}) + \frac{\pi-\vartheta}{2}\sin\vartheta - 1$, $p_1(\vartheta) = \frac{\pi-\vartheta}{2}\cos\vartheta + \sin\vartheta\ln(2\sin\frac{\vartheta}{2})$, $q_3(\vartheta) = -\cos2\vartheta\ln(2\sin\frac{\vartheta}{2}) + \frac{\pi-\vartheta}{2}\sin2\vartheta - \cos\vartheta - 1/2$, $p_3(\vartheta) = \frac{\pi-\vartheta}{2}\cos2\vartheta + \sin2\vartheta\ln(2\sin\frac{\vartheta}{2}) + \sin\vartheta$, and the estimations $|q_2(\vartheta) - \sum_{k=1}^n \frac{\cos k\vartheta}{(k+1)^2}| < \frac{1}{n+1}$, $|p_2(\vartheta) - \sum_{k=1}^n \frac{\sin k\vartheta}{(k+1)^2}| < \frac{1}{n+1}$, $\vartheta \in (0, 2\pi)$.

4. Final Comments

Corollary 3.2 and Corollary 3.3 are improvements of Theorem 1.3 and Theorem 1.4 respectively. The author of [2] applied some special subordination results in the proof of Theorem 1.3 and Theorem 1.4, which are not applicable for other values of β . Our method presented above is a general one, which is applicable for every $\beta \in (0,1)$.

References

- [1] P.T. Mocanu, Starlikeness of certain integral operators, Mathematica (Cluj) 36 (59)/2 (1994) 179-184.
- [2] P.T. Mocanu, New extensions of a theorem of R. Singh and S. Singh, Mathematica (Cluj) 37 (60)/1-2 (1995) 171-182.
- [3] S.S. Miller, P.T. Mocanu, Differential Subordinations Theory and Applications, Marcel Dekker, New York, Basel, 2000.
- [4] R. Singh, S. Singh, Starlikeness and convexity of certain integrals, Ann. Univ. Maria Curie-Slodowska, Sect A. 16 (1981) 145-148.
- [5] R. Szász, The sharp version of a criterion for starlikeness related to the operator of Alexander, Ann. Polon. Math. 94/1 (2008) 1-14.
- [6] R. Szász, A sharp criterion for the univalence of the Libera operator, Creat. Math. Inform. 17/1 (2008) 65-71.
- [7] R. Szász, Starlike image of a class of analytic functions, Gen. Math. 16/2 (2008) 59-67
- [8] R. Szász. A sharp criterion for starlikeness, Mathematica (Cluj) Tome 48 (71)/1 (2006) 89-98.
- [9] R. Szász, Rezultate din teoria geometrică a funcțiilor, Editura Didactică și Pedagogică, București, 2010. (romanian only)
- [10] R. Szász, About the starlikeness of Bessel functions, Integral Transforms Spec. Funct. 25/9 (2014) 750-755.
- [11] R. Szász, A. László-Róbert, About a condition for starlikeness, J. Math. Anal. Appl. 335/2 (2007) 1328-1334.