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About Strong Starlikeness Conditions

Pal A. Kupan?

*Sapientia - Hungarian University of Transylvania, Tg. Mures, Romania

Abstract. Some results concerning the strong starlikeness of analytic functions are improved. The tech-
niques of convolutions are used.

1. Introduction

Let U = {z € C : |z| < 1} be the open unit disk. Let H(U) denote the class of analytic functions defined
on U. Let A be the subclass of H(U) which consists of functions of the form: f(z) = z + az* + a3z> + .... The
subclass of A consisting of functions for which the domain f(U) is starlike with respect to 0, is denoted by
S*. An analytic characterization of S* is given by:

S*={f€ﬂ:%%>0,zell}.

In [4] the authors proved that

Theorem 1.1.
IffeAand R(f'(2)+2f"(2) >0, ze U then f € S".

This result has been improved in [1] and [3] (p.304-307) in the following manner:

Theorem 1.2.
If feA and ?{(f’(z) + /\Ozf"(z)) >0, zelU, then f €S,

where Ag =0.348 ...

Other kinds of improvements for Theorem 1.1 can be found in [2], [5], [6], [8], [11]. For other results
regarding starlikeness we recommend [7], [9], [10]. In [2] Mocanu proved the following theorems:

Theorem 1.3. ,
Zf (2) | s

If feA and ?’\(f’(z) +zf”(z)) >0, z€ Uthen, @ <3

arg

and
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Theorem 1.4. ,
Zf (Z)| < 4_77

Iff e A and R(f(2) + %zf”(z))

In order to deduce these results the differential subordination has been used. We will improve Theorem
1.3, and Theorem 1.4 using a different approach. The results we need in the followings will be presented in
the next section.

2. Preliminaries

Lemma 2.1. [5]If 0 € (0,27) and 6 > 0, then the following identities hold:
00 x(eﬁx + e(27'[—9)*c o@n=0)x 1 had

d 6 =—
f(; (62 + x2)(62mc — X+1 f (62 + xZ)(EZ‘nx dx = 26 Z

00 Ox (2n—0)x 00 2 N2\ (,(2n-0)x _ 16k
o B LT S
o (0% +x%)%(e?™ —1) 0o (0F +x%)%(er — 1) (k+06)*

Let f(z) = Yoo an2" and g(z) = Y., bu2" be two analytic functions. The convolution of these functions
is defined as follows:

[e]

(f * g)(z) = Z a,bnz".

n=0
Lemma 2.2. Let f € Aand a € (0, 7]. The inequality
zf'(z)
ar <a, zelU
|ars 7y
is equivalent to
z) k
&*ﬂ;eo,zeu,Te[o,oo),
z z
where
1+n-Tet .,
z)—z+Z e L1+l
Proof. Let p(z) = f;g) Since p(0) = 1, the condition |arg Z}((S)| < a, z € U is equivalent to the fact

that the domain p(U) is inside the angle determined by the following half-lines {Teial T € [0,00)} and
{ Te‘i‘)‘) T € [0, 00)}. This means that p(U) does not intersect the sides of the angle or equivalently

p(z) # Te*™®, (V)z € U, (V)T € [0, ).

Since the following equivalences hold

zf'(2) f(Z) 1 , f(2)
@ 7 tioTesf@ ) #0

(o8]

1
o1+ Z an+1z" + m Z 1’161,1+1Zn #0
n=1

p(2) # Te*™ o Tet™ #

o f@ k()
z z

#0,

the proof is done. [
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Lemma 2.3. If m > 0 is a fixed real number and p is an analytic function in U defined by p(z) =

2037

Yoe1 =, then

lirr11 Rep(z) = +o0 (1)
<1
Proof. We have to prove only the particular case
. o 2"
lzl_r)r}Re(Z ;) = +oo. )
lzl<1 n=1
This equality holds because we have
lim Re Z Z—) = lim r’cosnd = limIn ! = +oo0.
ool e n e 1+7r2—-2rcos?d
On the other hand we have
Z" °° mlz”l > B
|Z n+m| |Zn(n+m)| n(n+m) nzlnz_ ©)
Finally (2) and (3) imply (1) and the proof is done. O
3. The Main Result
Theorem 3.1. Let § € (0,0), a € (0, %) be two real numbers such that
ai(S) = ai(ll ‘9) > 06> 0/ bi(s) - at(s)ci(s) = bi(ll ‘9)2 - at(ll S)Ci(ll ‘9) < 0/ Je (0/ 27T) (4)
where
o 7 cos 19 + 1 sin nd cot(+a)
+\7, = 1 2 7
2:(7, 9) " Z_: pnn+1)+n+1
1" cos nd cos o + LIS gipy g §
sin(+a)
b+(r\9)—cosa+22 B+ 1) +n 1 , (5)
and
o) =1+ Zi r'* cosnd + r" sinnd cota
pn+1 '
If f € Ais a function that satisfies the following condition
R(f'(2) +pzf"(2) >0, z€ U, (6)
then
z2f'(z
<a, zel 7)
| ( f(2) )|

Proof. Let f be the function defined in U by f(z) = z + )., 4,2z". On the one hand, we have

ff@+Bzf"z) =1+ i(ﬁn(n —1) + n)az" .
n=2
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The Herglotz representation formula implies the existence of a probability measure u on [0, 27], such that
f(z)+pzf"(z) =1+ ZZ f e~ Mdu(t).

These imply a, = e =Ddu(t), n>2,and

pn(n— l)+n

sl o1 271 )
f@)=z+2) ———— f e M Ddu(t).
; pn(n—-1)+n J,
According to Lemma 2.2, condition (7) is equivalent to

z

. #£0,ze U T €[0,c0), (8)

where

1+n— Tet
kr(z) =z + 2 .

Condition (8) in its explicit form is

z" 145 — Tetie 27
1+2 : it g 00) % 0
;ﬁn(n+1)+n+l 1 — Tetia I) € u(t) # 0,

ze U Te|0,),

and this can be rewritten as follows:

271 o n +ioy
Z 1+n-Te .
1+2 e )yt
fo (+ ;ﬁn(n+1)+n+1 1- Tesia * )p()iO,

ze U T € [0, ). )

We introduce the notations

B o 1+ 51 — Texi® itn
A(z,T,f)—9‘(1+22ﬁn(n+1)+n+1 e )
n=1
and
B = z" 1+n—Tet® —itn
B(Z,T,t)—8<1+226n(n+1)+n+1 1 — Tetia )
n=1
We will prove that

27
f [A(z, T, t)sin(xa) + B(z, T, t) cos a]dy(t) #0,ze U T €[0,). (10)
0

If (10) holds, then [" A(z, T, Hdu(t) # 0, z € U, T € [0, ), or
f;n B(z, T, t)du(t) # 0, z € U, T € [0, o), and this implies (9). In order to prove (10) we will show that

27 27
f Az, T, Hydu(t) sin(+a) + f B(z, T, t)du(t)cosa >0, ze U, T € [0, c0).
0 0
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This inequality is equivalent to

27
f [A(e, T, t)sin(xa) + B(re®®, T, t) cos a|du(t) > 0, 0 € [0,271],
0
and T € [0,00), 7€ (0,1).
In order to prove (11) it is enough to show that

o(re?, T, t) = A(re®®, T, t) sin(+a) + B(re?, T, t) cos a > 0,
6 €[0,2n], r€(0,1), T € [0, ).

We denote 9 = 6 — t and we get

1pin0 1+ n— Tetia .
i0 —int
,T,t)=1+2R : =1
Alre™, T,1) eZﬁ(n+1)+n+1 1 Tesia ©
N 2 Z(1+T2—2Tcosa+n—nTcosa)r”cosnS
1+T2-2Tcosa — pnn+1)+n+1

Zﬁn( I sinnd nTsin(ia)]

n+1)+n+1

and

e mG 1+n-— Teiia 2

B(re®, T,t) = 21 =
(re )= mzﬁn(n+1)+n+1 1 — Tetia 1+ T2 -2Tcosa

Z 1+ T?+n— (n+2)cos a)r' sinnd — Tnr" cos nd sin(Fa)

— pnn+1)+n+1

We define the functions a,, b, c. by the equality

1-2Tcosa + T?
sina

= a.(r,9)T% = 2b.(r, 9)T + c.(r, 9).

[A(reig, T, t) sin(xa) + B(re'?, T, t) cos a]

Comparing (13), (14), and (15) we get (5).
We will prove that
as(r, 9)T? = 2b.(r, )T + c(r,9) >0, VT € R,
9€[0,2n], andr€[0,1) & re® =z e UL

2039

(11)

(12)

(13)

(14)

(15)

(16)

Equality (1) from Lemma 2.3 implies lim, 1 c. (7, ¥) = +oo. Now taking into account that a.(r,9) > 6 > 0
z|<1

and a.(7,9), b.(r,d) are bounded functions, we infer that

linll[ai(r, NT? = 2b. (1, 9)T + c.(r,9)] = +c0

|z|<1

and the convergence is uniform with respect to T. Thus it follows that for a given positive number k > 0

there is an other positive number e(k) > 0 such that

zeUand|z—1| <elk) = ac(r,9)T* = 2b.(r,9)T +c.(r,9) > k > 0.
Consequently the inequality (16) holds on the set

UNnizeC:lz-1<e®)} =D

(17)



P. A. Kupin / Filomat 32:6 (2018), 20352042 2040

Further we have to prove that the inequality (16) holds on U \ D. The mapping
w(T, 9, 7) = a.(r, )T* = 2b.(r, )T + c.(r, )

is harmonic on the set D* = U \ D. If we check inequality (16) on dD", then the minimum principle for
harmonic functions implies that (16) holds on D*. According to (17) the inequality (16) hods on the arc of
the circle |z — 1| < e(k), which is inside of UL

Thus we have to check (16) on the arc of JU which is autside of the disc|z—1]| < e(k). Sincea.(9) > 0, 9 € [0, 2]
it follows that the inequality (16) holds if

be(8)% — ax(9)ce(9) = b(1,9)* —ax(1,8)c=(1,9) <0, S €[y, 2n—7v], (18)

where y > 0 is the argument of the point situated in the first quadrant and being the intersection of the unit
circle with the circle |z — 1| = e(k). O

Corollary 3.2. If f € A is a function such that
R(f'@)+2f(2) >0, ze U,

then

zf'(z) 37
|arg( @) )| < 0 el
Proof. According to Theorem 3.1 we have to verify the inequality (4) in case of 8 = 1 and a = 3Z. Let

qi,pi = (0,2n) — R defined by ¢i(9) = X, z‘q’i’l‘)‘? and pi(9) = Yooy ?;1111%9*' where i € {1,2}. (According to

Theorem 3.1 we have to prove inequality (18) only for 9 € [y, 27 — y].) Lemma 2.1 implies that 1 + g; and
% + g are strictly decreasing on (0, 7] and strictly increasing on [, 27), and p1, p1 + p2 and p;1 + cos(2a)p, are
strictly decreasing on (0, 2m).

We consider the case 9 € (0, 7t] in the first step.

In this case he integral representations given in Lemma 2.1 imply that the functions a(9) = 1 + 2¢,(9) +
2p2(9) cotar, b() = cosa + 2g2(9) cos o + Sirlm(pl(S) + p2(9) cos(2a)) and c(9) = 1 + 2¢1(9) + 2p1(V) cotax are
positive and the functions g1, g2, p1, p» are strictly decreasing. Thus, if we verify the inequalities

kmt

b,% < apcy, fork e {1,2,...,10%), where 9 = 102/

(19)
ax = 1+202(95) + (p1+p2)(Sx) cot a—p1(Sx-1) cot v, by = cos a+245(Sk-1) cos a+ 7= (p1(-1) +p2(Sk-1) cos(2a))
and ¢, = 1 + 291 (S) + 2p1(Sk) cot o, then the monotonicity of g;, p1, p1 + p2, and p1 + p» cos(2a) implies

(b(9))? < b* < axer < a()c(d), 9 € [9-1, %], ke (1,2,...,10%),

and finally we obtain (b(8))? — a(8)c(8) < 0 for every 9 € (0, 7].

The second case is § € [m,27).

Lemma 2.1 implies that the functions 1 + g1, 3 + ¢, are strictly increasing and positive, and p1, p1 +
p2cos(2a), p1 + p» are strictly decreasing and negative on this interval. Let M, N : [11,21) — R be defined
by M(9) = cosa + 24,(8) cos a, and N(9) = sillux [p1(9) + p2(9) cos 2a]. Lemma 2.1 implies that M is a strictly

increasing and positive function and N is strictly decreasing and negative. We have to prove

a(®)c(9) — BP() = (1+ 2q2(9))(1 + 2q1(8) + 2(1 + 2q2())(p1(9) + pa(9)) cota
=2(1+2q1(9))p1 (V) cota + 2(1 + 292(9))p1(I) cota
+4(p1(8) + pa(9) Jp1(8) cof? a — 4p3(9) cot® a = 2M(S)N(®) — M2(8) = NX(8) > 0, § € [, 2n0).
In order to prove this inequality we have to verify that

/\k >0, (20)
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where
A= (14291 (8k-1))(A + 292(9k-1)) + 2(1 + 2‘71(90)(?1 + Pz)(sk) cota
=2(1 + 291 (Sk-1))p1(Sx-1) cot a + 2(1 + 292(S¢))p1(Sx) cota
+4(p1 (96-1) + P2(S-1) )1 (9-1) cof” v — 4p(9y) cot’ a
—2M(S5-1)N(Sk-1) — M*(95) — N*(8)

and
_
- 1087

Then the monotonicity of g;, p1, p1 + p2, M, N implies

S ke{10°+1,10° +2,...,2-10%).

0 < Ae < a(®)c(9) — b%(9), 9 €[0k-1,6], ke {10°+1,10° +2,...,2-10%)

and the inequality b*(9) — a(9)c(8) < 0 follows for every 9 € [rt, 27). The case a = —31—’5 can be discussed in
the same way. [

Corollary 3.3. If f € A is a function such that
4 1 4
R(f'(@)+ 52f (2))>0, zel,

then :
|arg(m)| 3 zel

f) /I 87

Proof. According to Theorem 3.1 we have to verify the inequality (4) in case of B = 1 and a = 3&. The proof
is analogous to the proof of the previous corollary. We use the notation introduced before and we denote
by g3, ps the following functions g3(9) = Yoy <222 pa(9) = Y2, S022 We prove the corollary in two steps.
The first case is 9 € (0, 7t].

A short calculation leads to a(¥) = 1 + 4(q1(8) - q3(8)) + 4(p1(9) - pg(S)) cota, b(0) = cosa + 4(7:1(9) —
q3(9)) cosa + 2 p3(9) + M(101(8) —p3(9)) and c(9) = 1 + 443(I) + 4p3(9) cota.

sina sina

Let the functions P,Q,R : (0,2) — R be defined by P(8) = 1+ 4(q:(8) - 43(9)), Q) = Zps(®) +

sina

2eos2a (4, (9) — p3(9)) and R(8) = 1 + 443(8). Lemma 2.1 implies that p;, p3 and Q are strictly decreasing on

sina
(0, 2m), positive on (0, ] and negative on [, 27). P and R are decreasing on (0, ], increasing on [7, 21) and
positive on (0, 2r). We have

a(9)c(9) — b*(9) = P(S)R(S) + 4R(9)p1(8) cota — 4R(9)p3(9) cot a + 4P(9)p3(8) cot
+16p1(9)p3(9) cot® a — 16p5(9) cot® a — P*(8) cos® a — Q*(9) — 2P(8)Q(P) cos av.

If we verify that
pr >0, kefl,2,...,10% (21)
where pi are defined by

ik = P(S)R(Sk) + 4R(S)p1 (k) cot @ — 4R(Sk-1)p3(Sk-1) cot a + 4P(Sx)p3(Sk) cot a
+16p1(91)p3(9x) cot® a — 16p3(Sk-1) cot® @ — P2(84_1) cos” a — Q* (1) — 2P(9-1)Q(Sk-1) cos a,

and 9 = %, ke(1,2,...,10%, then the monotonicity of P, Q, R, p1, p3 implies

a(9)c(9) = b*(9) > we > 0, 9 € [1, X, k€ {1,2,...,10%}.
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Thus, it follows that a(9)c(9) — b*(9) > 0, 9 € (0, 7).
The second case is § € [m,2n).
This time we have to verify

>0, ke{10°+1,10° +2,...,2-10% (22)

where
vk = P(Sk-1)R(S-1) + 4R(Sk)p1(Sk) cot a — 4R(Sk-1)p3(Sk-1) cot a + 4P(Sx)p3(Sk) cot
+16p1 (Sk-1)p3(Vk-1) cot? a — 16p§(\9k) cot? a — P?(8y) cos® @ — Q*(9%) — 2P(94-1)Q(S_1) cos ar,

and 9 = 103, ke{10>+1,10% +2,...,2-103). Just like before we have

a(®)c(9) = *(9) > v > 0, 9 € [85_1, %], ke {10°> +1,10° +2,...,2-10%},

an this implies a(8)c(9) — b*(9) > 0, 9 € [r, 2n). Consequently, the inequality a(9)c(8) — b*(9) > 0 holds for

every 9 € (0,2n). The case a = —3% can be discussed in the same way. [

Remark 3.4. Conditions (19), (20), (21) and (22) can be verified easily using a computer progmm which ap-

plies numerical methods and uses the equalities q1(9) = —cos 9 In(2 sin ‘9) + =2 smS -1, mO) =
sin 9 In(2 sin ‘29), g3(9) = —cos 23 In(2 sin ‘9) + “2‘9 sin29 —cos 9 —-1/2, p3(9) 2 00529 +sin 29 ln(2 sin ¥ ) +
sin 9, and the estimations |q2(9) — Yj_; (C]fjf)‘ZI < n+1’ Ip2(8) — Yy S,ﬁf)sz n+1’ S € (0,2n).

4. Final Comments

Corollary 3.2 and Corollary 3.3 are improvements of Theorem 1.3 and Theorem 1.4 respectively. The
author of [2] applied some special subordination results in the proof of Theorem 1.3 and Theorem 1.4, which
are not applicable for other values of . Our method presented above is a general one, which is applicable
for every § € (0,1).
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