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Abstract. We investigate the existence of nontrivial solutions and multiple solutions for the following
class of elliptic equations {

−∆u + V(x)u = K(x) f (u), x ∈ RN,
u ∈ D1,2(RN),

where N ≥ 3, V(x) and K(x) are both unbounded potential functions and f is a function with a super-
quadratic growth. Firstly, we prove the existence of infinitely many solutions with compact embedding and
by means of symmetric mountain pass theorem. Moreover, we prove the existence of nontrivial solutions
without compact embedding in weighted Sobolev spaces and by means of mountain pass theorem. Our
results extend and generalize some existing results.

1. Introduction and preliminaries

This article is concerned with a class of nonlinear Schrödinger equations{
−∆u + V(x)u = K(x) f (u), x ∈ RN,
u ∈ D1,2(RN), (1)

where N ≥ 3, V(x) and K(x) are both unbounded potentials, f is a function with a super-quadratic growth.
Problem (1) stems from Schrödinger equation, which has found a great deal of interest last years because

not only it is important in applications but it provides a good model for developing mathematical methods.
There are two cases in studying the existence of solutions for Schrödinger equation. One is u ∈ H1(RN),
and the other is u ∈ D1,2(RN). For the case of u ∈ H1(RN), the problem{

−∆u + V(x)u = f (x,u), x ∈ RN,
u ∈ H1(RN) (2)
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has been studied by a number of authors (see [9, 10, 28–30]). With the aid of variational methods, the
existence and multiplicity of nontrivial solutions for (2) have been extensively investigated in the literature
over the past several decades. Some related literature proved the existence of multiple solutions via
fountain theorem. See, e.g., [7, 8, 12–16, 19, 24–27, 32–34, 36, 39, 41, 43, 43–46] and the references quoted in
them. Based on this, Tang [31] gave some more weaker conditions and studied the existence of infinitely
many solutions for equation (2) via symmetric mountain pass theorem with sign-changing potential. Using
Tang’s methods, some authors studied the existence of infinitely many solutions for various equations and
systems. See, e.g., [22, 35, 37, 40, 42] and the references quoted in them. These results generalized and
extended some existing results. To our best knowledge, for the case of u ∈ D1,2(RN), the following nonlinear
elliptic equations

−∆u + V(x)u = K(x) f (u), x ∈ RN,
u ∈ D1,2(RN),
u(x) > 0

(3)

were studied. More concretely, there are many papers to consider Problem (3) with the potential V vanishing
at infinity. An important class of Problems associated with (3) is the zero mass case, that is

lim
|x|→∞

V(x) = 0.

In [5], Ambrosetti et al. studied the existence of ground state solutions and established concentration
behavior of ground state solutions by assuming that V,K satisfy the following conditions:

a1

1 + |x|α
≤ V(x) ≤ a2 and 0 < K(x) ≤

a3

1 + |x|β
, ∀ x ∈ RN

and

N + 2
N − 2

−
4β

α(N − 2)
< q, if 0 < β < α, or 1 < q, if β ≥ α.

Since the work of [5], there are many papers on problem (1) with potential V(x) vanishing at infinity, see,
for example, [1, 2, 4, 5, 20]. However, in those papers, f (s) is always supposed to be the form of sq with
q ∈ (1, N+2

N−2 ) and −∆ is replaced by −ε2∆, and the authors were more interested in the semi-classical states
to (1) for ε > 0 small, less interested in the existence of solutions, because under that situation it is trivial to
find a mountain pass type solution in a suitable weighted Sobolev space with the help of the compactness
of Sobolev embedding. But until the paper, Alves et al. [2] appeared it assumes that f has a subcritical
growth and V is a nonnegative potential, which can vanish at infinity, that is, V(x) → 0 as |x| → ∞, and
K(x) = 1. Recently, Alves et al. [1] consider the following a new class of vanishing potentials, which are
much weaker than [2, 5, 20]:

(I) V(x),K(x) > 0 for all x ∈ RN and K(x) ∈ L∞(RN).

(II) If {An} ⊂ RN is a sequence of Borel sets such that |An| ≤ R, for all n and some R > 0, then we have

lim
r→+∞

∫
An∩Bc

R(0)
K(x)dx = 0, uniformly in n ∈N.

(III) One of the following conditions holds:

K(x)
V(x)

∈ L∞(RN) (4)

or there exists an α0 ∈ (2, 2∗) such that

K(x)
|V(x)|(2∗−α0)/(2∗−2)

→ 0 as |x| → ∞. (5)
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According to (I)-(III), the authors [1] used a Hardy-type inequality involving V and K, together with a
version of mountain pass theorem with Cerami condition. For purpose of seeking a ground state solution
by the above compactness conditions about V(x) and K(x), the authors made the following assumptions on
nonlinear term f :

(A1) lim sup
s→0

f (s)
s = 0 if (4) holds

or
lim sups→0+

| f (s)|
sp−1 < +∞ if (5) holds.

(A2) f has a quasicritical growth, that is,

lim sup
s→+∞

| f (s)|
s2∗−1 = 0.

(A3) s−1 f (s) is a non-decreasing function in (0,+∞) and its primitive F is superquadratic at infinity, that is,

lim
s→+∞

|F(s)|
s2 = +∞. (6)

In [1], the author emphasized that related to condition (A3), (6) was first used in the papers of Liu and
Wang [17], and Liu, Wang and Zhang [18] and that it is weaker than the well-known AR-conditions(see
[3]):
(A′3) There exists θ > 2 such that

0 < θF(s) ≤ s f (s) ∀ s > 0.

In [1], the authors gave the following results.

Theorem 1.1. [1] Suppose that (I)-(III),and (A1)-(A3) are satisfied. Then problem (3) has a positive ground state
solution.

Remark 1.2. (1) It is not hard to find that Theorem 1.1 somewhat improve the results of [2, 4, 5].
(2) In [1, 2, 5], we can see that V(x) and K(x) are bounded.

Remark 1.3. In reviewing the literature mentioned above, they put forward the concept of vanishing potential so
that they can overcome the lack of the compactness of Sobolev embedding.

Motivated by all results mentioned above, it is very natural for us to pose the following interesting
questions:

(i) If K(x) ∈ L∞(RN) but V(x) < L∞(RN), (1) admits infinitely many nontrivial solutions when f (x,u)
satisfies some suitable assumptions?

(ii) If K(x) < L∞(RN) and V(x) < L∞(RN), namely, V(x) and K(x) can tend to ∞ as |x| → +∞, (1) admits
one nontrivial solution when f (x,u) satisfies some suitable assumptions? Whether Problem (1) exists a
nontrivial solution without compactness of Sobolev embedding?

As is known, there are few results on such above questions in current literature. Actually, this is one of
the motivations for us to study the existence of infinitely many solutions and nontrivial solutions of (3).

Next, we first answer question (i): we prove the existence of infinitely many solutions for problem (1)
with compact embedding by using Tang’s methods in [31]. In our mind, we must need compact embedding
to prove the boundedness of (C)c-sequence for Problem (1). In order to get compact embedding, we need
to enhance some conditions for potentials K(x) and V(x). But our conditions about the following nonlinear
term f is weaker than (A2)-(A3) which are given by Theorem 1.1. Now, we consider problem (1) with
unbounded potentials, and establish the existence of infinitely many solutions by symmetric mountain
pass theorem in [6, 23]. Before proving our results, we need to make the following assumptions on V,K and
f :

(VK1) V,K ∈ C(RN,R), V(x) ≥ min V(x) ≥ 1, K(x) ≥ min K(x) ≥ 0, K(x) . 0 and K(x) ∈ L∞(RN);
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(VK2)

lim
|x|→∞

K(x)
Vθ(x)

= 0, ∀ 0 < θ < 1;

( f1) f ∈ C(R,R), and there exist constants c2, c3 > 0 and p ∈ (2, 2∗) such that

| f (u)| ≤ c2|u| + c3|u|p−1, ∀ u ∈ R;

( f2) lim
|u|→∞

|F(u)|
|u|2 = ∞ and there exists r0 ≥ 0 such that

F(u) ≥ 0, ∀ u ∈ R, |u| ≥ r0;

( f3) F (x,u) := 1
2 u f (u) − F(u) ≥ 0, and there exist c0 > 0 and κ > max{1,N/2} such that

|F(u)|κ ≤ c0|u|2κF (u), ∀ u ∈ R, |u| ≥ r0;

( f4) there exist µ > 2 and % > 0 such that

µF(u) ≤ u f (u) + %u2, ∀ u ∈ R;

( f5) there exist µ > 2 and r1 > 0 such that

µF(u) ≤ u f (u), ∀ u ∈ R, |u| ≥ r0;

( f6) f (−u) = − f (u), ∀ u ∈ R.
The below functions are typical example of functions that verify (VK1) and (VK2):

Example 1.4. Let

K(x) = 2 and V(x) = (|x| + 1)
1
θ ∀ 0 < θ < 1.

It is easy to check that lim
|x|→∞

K(x)
Vθ(x) = 0, K(x) . 0, K(x) ∈ L∞(RN), V(x) ≥ min V(x) ≥ 1 and K(x) ≥ min K(x) ≥ 0 for

all 0 < θ < 1.
Next, we intend to state the results of infinitely many solutions.

Theorem 1.5. Suppose that (VK1)-(VK2), ( f1), ( f2), ( f3) and ( f6) are satisfied. Then problem (1) has infinitely
many nontrivial solutions.

Theorem 1.6. Suppose that (VK1)-(VK2), ( f1), ( f2), ( f4) and ( f6) are satisfied. Then problem (1) has infinitely
many nontrivial solutions.

It is easy to check that ( f1) and ( f5) imply ( f4). Thus, we have the following corollary.

Corollary 1.7. Suppose that (VK1)-(VK2), ( f1), ( f2), ( f5) and ( f6) are satisfied. Then problem (1) has infinitely many
nontrivial solutions.

Secondly, we answer question (ii): we establish the existence of a nontrivial solution via mountain pass
theorem in [3]. More precisely, we make the following assumptions:

(VK3) V,K ∈ C(RN,R); V(x) ≥ min V(x) ≥ 0, K(x) ≥ min K(x) ≥ 0, K(x) . 0 and V(x) satisfies

lim
|x|→∞

V(x) = +∞.

(VK4) For any θ ∈ (0, 1) and x ∈ RN, there exists a constant M > 0 such that K(x) ≤MVθ(x).
(F1) f ∈ C(R,R), and there exist a constant c1 > 0 and p ∈ (2, 2∗) such that

| f (u)| ≤ c1(1 + |u|p−1), ∀ u ∈ R;
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(F2) f (u) = o(|u|) as |u| → 0;
(F3) There exists µ > 2 such that 0 < µF(u) ≤ f (u)u.
There are many functions that verify (VK3) and (VK4):

Example 1.8. For θ ∈ (0, 1), let

K(x) = ln(1 + |x|) and V(x) = |x|
1
θ .

If |x| = 0, then we infer that for any M > 0, 0 = K(x) = V(x) = 0 ≤ MVθ(x). If |x| , 0, then it is easy to check that
there exists a constant M > 0 such that K(x) ≤MVθ(x) for all 0 < θ < 1. Obviously,

lim
|x|→∞

K(x) = +∞, lim
|x|→∞

V(x) = +∞ and K(x) . 0.

Remark 1.9. It follows from (F3) that lim
|u|→∞

F(u)
|u|2 = +∞ and F(u) > 0. Compared to (I)-(III) and (VK3)-(VK4), we

infer that (VK3)-(VK4) are much weaker.
Next, we are ready to state the result of nontrivial solutions.

Theorem 1.10. Suppose that (VK3)-(VK4) and (F1)-(F3) are satisfied. Then problem (1) has a nontrivial solution.

Remark 1.11. (1) In [1, 2, 4, 5], they all studied the existence of ground state solutions for (1). But, in this paper,
we discuss the existence of infinitely many solutions and nontrivial solutions for (1).

(2) Generally speaking, in [1, 2, 5], K(x) ∈ L∞(RN), which shows that K(x) is essential bounded. But in (VK3)
and (VK4), K(x) can tend to∞ as |x| → ∞.

(3) By (VK1)-(VK2) and (VK3)-(VK4), we know that the results are proved by permitting V(x)→∞ as |x| → ∞.
Hence, our results are different from [1] and replenish the results of [1].

Remark 1.12. On the one hand, in order to prove Theorem 1.5 and 1.6, we give (VK1) and (VK2), which are used
to get compact embedding. On the other hand, in Theorem 1.7, we prove the existence of nontrivial solutions without
compact embedding involving (VK3) and (VK4), which are somewhat weaker than (VK1) and (VK2). Based on these
two facts that we can not prove the existence of infinitely many solutions with (VK3) and (VK4), because it lacks
compact embedding.

Remark 1.13. By ( f1) and ( f2) or (F1) and (F2), then for any ε > 0, there exists Cε > 0 such that

| f (u)| ≤ ε|u| + Cε|u|p−1 and |F(u)| ≤
ε
2
|u|2 +

Cε
p
|u|p.

This paper is organized as follows. In the next section, we present variational framework. In section
3, we prove Theorem 1.5 and 1.6 by (VK1) and (VK2). In section 4, we prove Theorem 1.10 by (VK3) and
(VK4).

2. Variational framework

In this section, we present some weighted Sobolev spaces. To this end, we define the space

E =
{
u ∈ D1,2(RN) :

∫
RN

V(x)u2dx < +∞
}

endowed with the norm

‖u‖2 =

∫
RN

(|∇u|2 + V(x)u2)dx

and the inner product

(u, v) =

∫
RN

(∇u∇v + V(x)uv)dx.
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Define the weighted Lebesgue space by

Lq
K(RN) =

{
u : RN

→ R | u is measurable and
∫
RN

K(x)|u|qdx < +∞
}

endowed with the norm

‖u‖q
Lq

K(RN)
=

∫
RN

K(x)|u|qdx.

E and Lq
K(RN) are particular cases of weighted space and are discussed in [21]. By the above definitions, we

can get E ↪→ D1,2(RN) ↪→ L2∗ (RN) for N ≥ 3.
Now, we define the following energy functional

J(u) =
1
2

∫
RN

(
|∇u|2 + V(x)u2

)
dx −

∫
RN

K(x)F(u)dx (7)

for all u ∈ E, that is,

J(u) =
1
2
‖u‖2 −

∫
RN

K(x)F(u)dx, ∀ u ∈ E.

By the conditions on f , the integral
∫
RN K(x)F(u)dx is well defined.

3. Existence of infinitely many solutions

In this section, we prove the existence of infinitely many solutions for (1). In order to prove our results,
the following two lemmas discuss the continuous and compact embedding E ↪→ Lq

K(RN) for all q ∈ [2, 2∗).

Lemma 3.1 Assume that (VK1)-(VK2) hold. Then E is continuously embedded in Lq
K(RN) for all q ∈ [2, 2∗).

Proof. Since K(x)
Vθ(x) → 0 as |x| → ∞ and 0 < K(x)

V(x) ≤
K(x)

Vθ(x) . Hence, K(x)
V(x) → 0 as |x| → ∞. By the continuous of

V(x) and K(x), there exists M > 0 such that K(x) ≤ MVθ(x) ≤ MV(x) for all x ∈ RN and 0 < θ < 1. If q = 2,
the the proof is trivial. Fix q ∈ (2, 2∗), choose σ =

2∗−q
2∗−2 , then q = 2σ + (1 − σ)2∗ and 0 < σ < 1. Hence we can

get the following inequality

‖u‖qq,K =

∫
RN

K(x)|u|qdx

=

∫
RN

K(x)|u|2σ|u|(1−σ)2∗dx

≤

(∫
RN

K(x)
1
σ u2dx

)σ (∫
RN
|u|2

∗

dx
)1−σ

≤

(
sup
x∈RN

|K(x)|
|V(x)|σ

) (∫
RN

V(x)u2dx
)σ (∫

RN
|u|2

∗

dx
)1−σ

≤ CM
(∫
RN

V(x)u2dx
)σ (∫

RN

(
|∇u|2 + V(x)u2

)
dx

) (1−σ)2∗

2

≤ CM
(∫
RN

(
|∇u|2 + V(x)u2

)
dx

)σ+
(1−σ)2∗

2

= CM
(∫
RN

(
|∇u|2 + V(x)u2

)
dx

) q
2

= CM‖u‖q.
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It follows that E ↪→ Lq
K(RN) is continuous embedding. �

Lemma 3.2 Assume that (VK1)-(VK2) hold. Then E is compactly embedded in Lq
K(RN) for all q ∈ [2, 2∗).

Proof. From Lemma 3.1, we have K(x)
V(x) → 0 as |x| → ∞. Hence for any ε > 0, there exists R > 0 such that

K(x) ≤ εV(x), ∀ |x| > R.

Let {un} ∈ E be be a bounded sequence of E. Going if necessary to a subsequence, we may assume that

un ⇀ 0 in E,

un → 0 in Lq
K,loc(R

N) for 2 ≤ p < 2∗.
(8)

Next, we claim that

un → 0 strongly in L2
K(RN). (9)

Set
BR(0) =

{
x ∈ RN : |x| ≤ R

}
,

then ∫
RN\BR

K(x)u2
n(x)dx < ε

∫
RN

V(x)|un(x)|2dx ≤ ε‖un‖
2 (10)

Hence, for any ε > 0, we have∫
RN

K(x)|un(x)|2dx =

∫
BR

K(x)|un(x)|2dx +

∫
RN\BR

K(x)|un(x)|2dx

< ε(1 + ‖un‖
2),

(11)

from which (10) holds. Since |s|q/|s|2 → 0 as s→ 0 and |s|q/|s|2∗ → 0 as s→∞, then for any ε > 0, there exists
C > 0 such that

K(x)|s|q ≤ εC(K(x)|s|2 + |s|2
∗

) + CK(x)|s|2, for all s ∈ R. (12)

To prove the lemma for general exponent q, we use an interpolation argument. Let un ⇀ 0 in E, we have
just proved that un → 0 in Lq

K(RN). That is∫
RN

K(x)|un(x)|qdx→ 0.

Since the embedding E ↪→ L2∗ (RN) is continuous and {un} is bounded in E, we also have {un} is bounded in
L2∗ (RN). For any q ∈ (2, 2∗), there exists a τ ∈ (0, 1) such that τ =

2∗−q
2∗−2 i.e. q = 2τ + 2∗(1 − τ). From Hölder’s

inequality, (12), (VK2) and E ↪→ L2∗ (RN),∫
RN

K(x)|un(x)|qdx ≤ εC
∫
RN

(K(x)|un|
2 + |un|

2∗ )dx + C
∫
RN

K(x)|un|
2dx→ 0

implying that

un → 0 in Lq
K(RN).

This completes the proof. �
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By the conditions on f in Theorem 1.5 and Theorem 1.6, the functional J ∈ C1(E,R) and its Gateaux
derivate is given by

〈J′(u), v〉 =

∫
RN

(∇u∇v + V(x)uv) dx −
∫
RN

K(x) f (u)vdx, ∀ u, v ∈ E,

that is,

〈J′(u), v〉 = (u, v) −
∫
RN

K(x) f (u)vdx, ∀ u, v ∈ E.

A sequence {un} ⊂ E is said to be a (C)c-sequence if J(u)→ c and ‖J′(u)‖(1 + ‖un‖)→ 0. J is said to satisfy
the (C)c-condition if any (C)c-sequence has a convergent subsequence. To prove our results, we state the
following symmetric mountain pass theorem.

Lemma 3.3 [6, 23] Let X be an infinite dimensional Banach space, X = Y ⊕ Z, where Y is finite dimensional. If
J ∈ C1(X,R) satisfies (C)c-condition for all c > 0, and
(J1) J(0) = 0, J(−u) = J(u) for all u ∈ X;
(J2) there exist constants ρ, α > 0 such that J|∂Bρ∩Z ≥ α;
(J3) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such that J(u) ≤ 0 on X̃\BR;
then J possesses an unbounded sequence of critical values.

Lemma 3.4 Suppose that (VK1), (VK2), ( f1), ( f2) and ( f3) are satisfied. Then any {un} ⊂ E satisfying

J(un)→ c > 0, 〈J′(un),un〉 → 0 (13)

is bounded in E.
Proof. To prove the boundedness of {un}, arguing by contradiction, assume that ‖un‖ → ∞. Let vn = un

‖un‖
.

Then ‖vn‖ = 1 and ‖vn‖Ls
K
≤ γs‖vn‖ = γs for 2 ≤ s < 2∗. For n large enough, we have

c + 1 ≥ J(un) −
1
2
〈J′(un),un〉 =

∫
RN

K(x)F (un)dx. (14)

It follows from (7) and (13) that

1
2
≤ lim sup

n→∞

∫
RN

K(x)
|F(un)|
‖un‖

2 dx. (15)

For 0 < a < b, let

Ωn(a, b) =
{
x ∈ RN : a ≤ |un| < b

}
.

Passing to a subsequence, we may assume that vn ⇀ v in E, then by Lemma 3.2, vn → v in Ls
K(RN), 2 ≤ s < 2∗,

and vn → v a.e. on RN.
If v = 0, then vn → 0 in Ls

K(RN) for all s ∈ [2, 2∗), and vn → 0 a.e. in RN. By ( f1) and Remark 1.13, we
know that∫

Ωn(0,r0)
K(x)
|F(un)|
|un|

2 |vn|
2dx ≤

(
c2

2
+

c3

p
rp−2

0

) ∫
Ωn(0,r0)

K(x)|vn|
2dx

≤

(
c2

2
+

c3

p
rp−2

0

) ∫
RN

K(x)|vn|
2dx→ 0.

(16)
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Let κ′ = κ/(κ − 1). Since κ > max{1,N/2}, we obtain 2κ′ ∈ (2, 2∗). Hence, from ( f3) and (14), we have

∫
Ωn(r0,∞)

K(x)
|F(x,un)|
|un|

2 |vn|
2dx ≤

[∫
Ωn(r0,∞)

K(x)
(
|F(un)|
|un|

2

)κ
dx

] 1
κ
[∫

Ωn(r0,∞)
K(x)|vn|

2κ′dx
] 1
κ′

≤ c
1
κ

0

[∫
Ωn(r0,∞)

K(x)F (un)dx
] 1
κ
(∫

Ωn(r0,∞)
K(x)|vn|

2κ′dx
) 1
κ′

≤ [c0(c + 1)]
1
κ

(∫
Ωn(r0,∞)

K(x)|vn|
2κ′dx

) 1
κ′

→ 0.

(17)

From (16) and (17), we have

∫
RN

|F(un)|
‖un‖

2 dx =

∫
Ωn(0,r0)

K(x)
|F(un)|
|un|

2 |vn|
2dx +

∫
Ωn(r0,∞)

K(x)
|F(un)|
|un|

2 |vn|
2dx→ 0,

which contradicts (15).

Now, we consider the case v , 0. Set A :=
{
x ∈ RN : v(x) , 0

}
. Thus meas(A) > 0. For a.e. x ∈ A, we have

lim
n→∞
|un(x)| = ∞. Hence A ⊂ Ωn(r0,∞) for large n ∈N, which implies that χΩn(r0,∞) = 1 for large n, where χΩn

denotes the characteristic function on Ω. Since vn → v a.e. in RN, we have χΩn (x) = 1 a.e. in A. It follows
from (7), ( f3) and Fatou’s Lemma that

0 = lim
n→∞

c + o(1)
‖un‖

2 = lim
n→∞

J(un)
‖un‖

2

= lim
n→∞

[
1
2
−

∫
Ωn(0,r0)

K(x)
F(un)

u2
n

v2
ndx −

∫
Ωn(r0,∞)

K(x)
F(un)

u2
n

v2
ndx

]
≤ lim sup

n→∞

[
1
2

+

(
c2

2
+

c3

p
rp−2

0

) ∫
RN

K(x)v2
ndx −

∫
Ωn(r0,∞)

K(x)
F(un)

u2
n

v2
ndx

]
≤ lim sup

n→∞

[
1
2

+

(
c2

2
+

c3

p
rp−2

0

)
γ2

2 −

∫
Ωn(r0,∞)

K(x)
F(un)

u2
n

v2
ndx

]
≤

1
2

+

(
c2

2
+

c3

p
rp−2

0

)
γ2

2 − lim inf
n→∞

∫
Ωn(r0,∞)

K(x)
F(un)

u2
n

v2
ndx

=
1
2

+

(
c2

2
+

c3

p
rp−2

0

)
γ2

2 − lim inf
n→∞

∫
RN

K(x)
|F(un)|

u2
n
χΩn(r0,∞)(x)v2

ndx

≤
1
2

+

(
c2

2
+

c3

p
rp−2

0

)
γ2

2 −

∫
RN

lim inf
n→∞

K(x)
F(un)

u2
n

[χΩn(r0,∞)(x)]v2
ndx

= −∞,

(18)

which is a contradiction. Thus {un} is bounded in E. This completes the proof. �

Lemma 3.5 Suppose that (VK1), (VK2), ( f1), ( f2) and ( f3) are satisfied. Then any {un} ⊂ E satisfying (13) has a
convergent subsequence in E.

Proof. By Lemma 3.4, it can conclude that {un} is bounded in E. Going if necessary to a subsequence, we
can assume that un ⇀ u in E. From Lemma 3.2, we have un → u in Ls

K(RN) for all 2 ≤ s < 2∗. Hence, together
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with Remark 1.13, we get∣∣∣∣∣∫
RN

K(x)( f (un) − f (u))(un − u)dx
∣∣∣∣∣ ≤ ∫

RN
K(x)(| f (un)| + | f (u)|)|un − u|dx

≤

∫
RN

K(x)(ε|u| + Cε|u|p−1 + ε|un| + Cε|un|
p−1)|un − u|dx

≤ εC + Cε

(∫
RN

K(x)|un|
p
) p−1

p
(∫
RN

K(x)|un − u|p
) 1

p

→ 0, as n→∞.

(19)

Observe that

‖un − u‖2 = 〈J′(un) − J′(u),un − u〉 +
∫
RN

K(x)( f (un) − f (u))(un − u)dx. (20)

It is clear that

〈J′(un) − J′(u),un − u〉 → 0, as n→∞. (21)

From (19), (20) and (21), we have ‖un − u‖ → 0, n→∞. �

Lemma 3.6 Suppose that (VK1), (VK2), ( f1), ( f2) and ( f4) are satisfied. Then any {un} ⊂ E satisfying (13) has a
convergent subsequence in E.
Proof. Firstly, we prove that {un} is bounded in E. To prove the boundedness of {un}, arguing by contradic-
tion, assume that ‖un‖ → ∞. Let vn = un/‖un‖. Then ‖vn‖ = 1 and ‖vn‖Ls

K
≤ γs‖vn‖ = γs for 2 ≤ s < 2∗. Form

(7), (13), ( f4) and Gateaux derivate on J, we have

c + 1 ≥ J(un) +
1
µ
〈J′(un) − J′(u),un − u〉

=
µ − 2

2µ
‖un‖

2 +

∫
RN

K(x)
[

1
µ

f (un)un − F(un)
]

dx

≥
µ − 2

2µ
‖un‖

2
−
%

µ
‖un‖

2
L2

K(RN), for enough large n ∈N,

(22)

which implies

1 ≤
2%
µ − 2

lim sup
n→∞

‖vn‖
2
L2

K(RN). (23)

Passing to a subsequence, we may assume that vn ⇀ v in E, then by Lemma 3.2, vn → v in Ls
K(RN), 2 ≤ s < 2∗,

and vn → v a.e. on RN. Hence, it follows from (23) that v , 0. By a similar fashion as (18), we can conclude
a contradiction. Thus, {un} is bounded in E. The rest proof is the same as that in Lemma 3.5. �

Lemma 3.7 Suppose that (VK1), (VK2), ( f1) and ( f2) are satisfied. Then for any Ẽ ⊂ E, there holds

J(u)→ −∞, ‖u‖ → ∞, u ∈ Ẽ. (24)

Proof. Arguing indirectly, assume that for some sequence {un} ⊂ Ẽ with ‖un‖ → ∞, there is M > 0 such that
J(un) ≥ −M for all n ∈N. Set vn = un

‖un‖
, then ‖vn‖ = 1. Passing to a subsequence, we may assume that vn ⇀ v

in E. Since Ẽ is finite dimensional, then vn → v ∈ Ẽ in E, vn → v a.e. on RN , and so ‖v‖ = 1. Hence, we can
conclude a contradiction by a similar fashion as (18). �
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Corollary 3.8 Suppose that (VK1), (VK2), ( f1) and ( f2) are satisfied. Then for any Ẽ ⊂ E, there exists R = R(Ẽ) > 0,
such that

J(un) ≤ 0, ‖u‖ ≥ R, ∀ u ∈ Ẽ.

Let {e j} is a total orthonormal basis of E and define X j = Re j,

Yk =

k⊕
j=1

X j, Zk =

∞⊕
j=k+1

X j, ∀ k ∈ Z. (25)

Lemma 3.9 Suppose that (VK1) and (VK2) are satisfied. Then for 2 ≤ s < 2∗, we have

βk(s) := sup
u∈Zk,‖u‖=1

‖u‖Ls
K(R) → 0, k→∞.

Proof. It is clear that 0 < βk+1 ≤ βk, so that βk → β ≥ 0(k→∞). For every k ∈N, there exists uk ∈ Zk such that
|uk|L2

K(R) >
βk

2 and ‖uk‖ = 1. For any v ∈ E, writing v = Σ∞j=1c je j, we have, by the Cauchy-Schwartz inequality,

|(uk, v)| = |(uk,Σ
∞

j=1c je j)| = |(uk,Σ
∞

j=kc je j)| ≤ ‖uk‖‖Σ
∞

j=kc je j‖ = (Σ∞j=kc2
j )

1
2 → 0

as k → ∞, which implies that uk ⇀ 0 in E. By Lemma 3.2, the compact embedding of E ↪→ Ls
K(RN)

(2 ≤ s < 2∗) implies that uk → 0 in Ls
K(RN). Hence, letting k→∞, we get β = 0, which completes the proof.�

By Lemma 3.9, we can choose an integer m ≥ 1 such that

‖u‖2L2
K(RN) ≤

1
2c2
‖u‖2, ‖u‖p

Lp
K(RN)

≤
p

4c3
‖u‖p, ∀ u ∈ Zm. (26)

Lemma 3.10 Suppose that (VK1), (VK2) and ( f1) are satisfied. Then there exists constant ρ, α > 0 such that

J|∂BR∩Zm ≥ α.

Proof. From Remark 1.13 and (26), for u ∈ Zm, choosing ρ := ‖u‖ = 1
2 , we get

J(u) =
1
2
‖u‖2 −

∫
RN

K(x)F(u)dx

≥
1
2
‖u‖2 −

c1

2
‖u‖2L2

K(RN) −
c2

p
‖u‖p

Lp
K(RN)

≥
1
4

(
‖u‖2 − ‖u‖p

)
=

2p−2
− 1

2p+2 := α > 0.

This completes the proof. �

Proof of Theorem 1.5. Let X = E, Y = Ym and Z = Zm. By Lemma 3.4, 3.5, 3.10 and Corollary 3.8, all
conditions of Lemma 3.3 are satisfied. Thus, problem (1.1) possesses infinitely many nontrivial solutions.�

Proof of Theorem 1.6. Let X = E, Y = Ym and Z = Zm. By Lemmas 3.6 and Corollary 3.8, all conditions of
Lemma 3.3 are satisfied. Thus, problem (1.1) possesses infinitely many nontrivial solutions. �
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4. Existence of nontrivial solutions

In this section, we prove the existence of a nontrivial solution for the problem (1). Next, the following
lemma discuss the continuous embedding E ↪→ Lq

K(RN) for all q ∈ [2, 2∗). Moreover, under (VK3) and (VK4),
we can not prove that E ↪→ Lq

K(RN) is compact embedding for all q ∈ [2, 2∗).

Lemma 4.1 Assume that (VK3)-(VK4) hold. Then E is continuously embedded in Lq
K(RN) for all q ∈ [2, 2∗).

Proof. By condition (VK4), we have K(x) ≤ MVθ(x). Hence, if q = 2, the the proof is trivial. Fix q ∈ (2, 2∗),
choose σ =

2∗−q
2∗−2 , then q = 2σ + (1 − σ)2∗ and 0 < σ < 1, which implies that K(x) ≤MVσ(x). Hence we can get

the following inequality

‖u‖qq,K =

∫
RN

K(x)|u|qdx

=

∫
RN

K(x)|u|2σ|u|(1−σ)2∗dx

≤

(∫
RN

(K(x))
1
σ u2dx

)σ (∫
RN
|u|2

∗

dx
)1−σ

≤M
(∫
RN

V(x)u2dx
)σ (∫

RN
|u|2

∗

dx
)1−σ

≤ CM
(∫
RN

V(x)u2dx
)σ (∫

RN

(
|∇u|2 + V(x)u2

)
dx

) (1−σ)2∗

2

≤ CM
(∫
RN

(
|∇u|2 + V(x)u2

)
dx

)σ+
(1−σ)2∗

2

= CM
(∫
RN

(
|∇u|2 + V(x)u2

)
dx

) q
2

= CM‖u‖q.

It follows that E ↪→ Lq
K(RN) is continuous embedding. �

Lemma 4.2 Suppose that (VK3), (F1) and (F2) holds. Then J ∈ C1(E,R) and J′ : E→ E∗

〈J′(u), v〉 = (u, v) −
∫
RN

K(x) f (u)vdx

is weakly sequentially continuous for u, v ∈ E.
Proof. For convenience, let

`(u) =

∫
RN

K(x)F(u)dx.

For any u, v ∈ E and 0 < |t| < 1, by mean value theorem and Remark 1.13, there is a τ ∈ (0, 1) such that

|F(u + tv) − F(u)|
|t|

≤ | f (u + τtv)v|

≤ ε|u + τtv||v| + Cε|u + τtv|p−1
|v|

≤ ε|u||v| + ε|v|2 + Cε|u + τtv|p−1
|v|

≤ ε|u||v| + ε|v|2 + 2p−1Cε(|u|p−1
|v| + |v|p).

By Hölder’s inequality, we get

ε|u||v| + ε|v|2 + 2p−1Cε(|u|p−1
|v| + |v|p) ∈ L1(RN).
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Hence, by the Lebesgue’s Dominated Theorem, we have

〈`′(u), v〉 =

∫
RN

K(x) f (u)vdx, ∀u, v ∈ E.

Next, we prove that `′ : E → E∗ is weakly sequentially continuous. Suppose that un ⇀ u in E. By
Lemma 4.1 implies that un → u in Lq

K,loc for any q ∈ [2, 2∗) and un → u for a.e. x ∈ RN. Thus, by (F1) and (F2),
it follows that for any ϕ ∈ C∞0 ,

〈`′(un), ϕ〉 =

∫
RN

K(x) f (un)ϕdx→
∫
RN

K(x) f (u)ϕdx = 〈`′(u), ϕ〉 (27)

Since C∞0 is dense in E, for any w ∈ E we takeϕn ∈ C∞0 such that ‖ϕn−ω‖ → 0. Note that |〈`′(un)−`′(u), ϕn〉| → 0
as n→∞ by (27). Indeed, by (F1) and (F2), we have

|〈`′(un) − `′(u), ω〉|

≤

∣∣∣〈`′(un), ω〉 − 〈`′(un), ϕn〉 + 〈`
′(un), ϕn〉 − 〈`

′(u), ϕn〉 + 〈`
′(u), ϕn〉 − 〈`

′(u), ω〉
∣∣∣

≤

∣∣∣〈`′(un) − `′(u), ϕn〉
∣∣∣ +

∣∣∣〈`′(un) − `′(u), ω − ϕn〉
∣∣∣

≤

∣∣∣〈`′(un) − `′(u), ϕn〉
∣∣∣ + c1

∫
RN

K(x)(|un|
p−1 + |u|p−1)|ω − ϕn|

≤

∣∣∣〈`′(un) − `′(u), ϕn〉
∣∣∣ + c2‖ω − ϕn‖ → 0.

Therefore, we have shown that ` is weakly sequentially continuous. It follows that J ∈ C1(E,R) and
J′ : E→ E∗ is weakly sequentially continuous. �

In order to prove our results in the rest of paper, we need to use mountain pass theorem, which is
introduced by Ambrosetti-Rabinoeitz [3]. Next, we prove that all conditions of mountain pass theorem [3]
are satisfied.

Lemma 4.4 Assume that (VK3), (VK4) and (F1)-(F3) are satisfied. Then all conditions of the above mountain pass
theorem are satisfied.
Proof. It is easy to see that J(0) = 0. By (VK3), set K(x) ≡ 0 in a domain Ω and K(x) , 0 in RN

\Ω. On the one
hand, for fixed u0 ∈ E, we have

J(tu0) ≤
t2

2
‖u0‖

2
−

∫
RN

K(x)F(tu0)dx

=
t2

2
‖u0‖

2
−

∫
Ω

K(x)F(tu0)dx −
∫
RN\Ω

K(x)F(tu0)dx

=
t2

2
‖u0‖

2
−

∫
RN\Ω

K(x)F(tu0)dx,

which implies that

J(tu0)
t2 ≤

1
2
‖u0‖

2
−

∫
RN\Ω

K(x)
F(tu0)
|tu0|

2 u2
0dx, (28)

In (28), letting |t| → ∞, by Fatou’s Lemma, then

lim sup
|t|→∞

J(tu0)
t2 ≤

1
2
‖u0‖

2
− lim inf
|t|→∞

∫
RN\Ω

K(x)
F(tu0)
|tu0|

2 u2
0dx

≤
1
2
‖u0‖

2
−

∫
RN\Ω

K(x) lim inf
|t|→∞

F(tu0)
|tu0|

2 u2
0dx

= −∞.
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On the other hand, by (28), we have

J(u) =
1
2
‖u‖2 −

∫
RN

K(x)F(u)dx

≥
1
2
‖u‖2 −

ε
2
‖u‖2L2

K
−

Cε
p
‖u‖p

Lp
K

≥
1
2
‖u‖2 −

ε
2
γ2

2‖u‖
2
−

Cε
p
γp

p‖u‖
p

(29)

Set ε = 1
2γ2

2
and ρ =

[
p/(6γp

pC 1
2γ2

2

)
] 1

p−2

in (29), then we have

J(u) ≥
1
4
‖u‖2 −

C 1
2γ2

2

p
γp

p‖u‖
p =

1
12
ρ2 > 0 for any ‖u‖ = ρ.

This completes the proof. �
From Lemma 4.4 and mountain pass theorem, we can get the following lemma.

Lemma 4.5 Suppose that (VK3), (VK4) and (F1)-(F3) are satisfied. Then there exists a sequence {un} ⊂ E such that

J(un)→ c and J′(un)→ 0. (30)

Lemma 4.6 Suppose that (VK3), (VK4) and (F1)-(F3) are satisfied. Then any {un} ⊂ E satisfying (30) is bounded in
E.
Proof. By (F3) and (30), we can get

c + 1 ≥ J(un) −
1
µ
〈J′(un),un〉

=

(
1
2
−

1
µ

)
‖un‖

2 +
1
µ

∫
RN

K(x)[ f (un)(un) − µF(un)]dx

≥

(
1
2
−

1
µ

)
‖un‖

2,

which implies that {un} is bounded in E. This completes the proof. �

Proof of Theorem 1.10. By Lemma 4.6, passing to a subsequence if necessary, there exists u ∈ E such that
un ⇀ u in E. From the weakly sequentially continuous of J′, we can get J′(un) → J′(u) as n → ∞. Since
J′(un)→ 0, by the uniqueness of limits, then we have that u is weakly solution of J.

Next, we show that u , 0. By contradiction, we can assume that u = 0. In order to achieve a contradiction,
we remark that, at least for n� 1, by (30) and Hölder’s inequality,

c
2
≤ J(un) −

1
2
〈J′(un),un〉

=

∫
RN

K(x)
[1
2

f (un)un − F(un)
]

dx

=
1
2

∫
RN

K(x) f (un)undx

≤

∫
RN

(
ε
2

K(x)|un|
2 +

Cε
2

K(x)|un|
p
)

dx

≤
ε
2
‖u‖2L2

K
+

Cε
2

(∫
RN

K(x)|u|2(p−1)dx
) 1

2
(∫
RN

K(x)|un|
2dx

) 1
2

.

(31)
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Since p ∈ (2, 2∗), then we have 2(p − 1) ∈ (2, 2∗). Therefore, there exists γ2(p−1) > 0 such that∫
RN

K(x)|un|
2(p−1)dx = ‖un‖

2(p−1)
L2

K
≤ γ2(p−1)

2(p−1)‖un‖
2(p−1) (32)

Combined (31) and (32), we have

c
2
≤
ε
2
‖un‖

2
L2

K
+ γ2(p−1)

2(p−1)‖un‖
2(p−1)

‖un‖
2
L2

K
.

Choose

ε ≤
c

2
(
supm ‖un‖L2

K

)2 ,

which implies that there exists a constant C1 > 0 such that

‖un‖L2
K
≥ exp(C1 log

c
4

) := σ > 0.

Since E ↪→ Lq
K(RN) and un ⇀ 0 in E, then un → 0 in Lq

K,loc(R
N), where q ∈ [2, 2∗). Therefore for any R > 0,

there are some n0 = m0(R) such that for any n ≥ n0,

‖un‖L2(BR(0)) ≤
σ
2
.

By

‖un‖L2(RN\BR(0)) ≥ ‖un‖L2
K

+ ‖un‖L2(BR(0)) ≥ σ −
σ
2

=
σ
2

and (VK2), then

σ
2
≤ ‖un‖L2(RN\BR(0))

≤

(∫
|x|≥R

K(x)|un|
2dx

) 1
2

≤M
1
2

(∫
|x|≥R

Vθ(x)|un|
2dx

) 1
2

≤M
1
2

(∫
|x|≥R

1
V1−θ(x)

V(x)|un|
2dx

) 1
2

≤
M

1
2 (supn ‖un‖)

inf|x|≥R V
1−θ

2 (x)
.

Since V(x)→ +∞ as |x| → ∞ and 0 < θ < 1, we can achieve a contradiction, when R � 1. Therefore u , 0.
u is a nontrivial solution of J. This completes the proof. �
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