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Abstract. In this research a new analytical approach is used to solve nonlinear boundary value prob-
lems (BVPs) of higher order occurring in nonlinear phenomena. It converts a complex nonlinear problem
into zeroth order and first order problem. It consists of initial guess, auxiliary functions (containing un-
known convergence controlling parameters) and a homotopy. The unknown parameters are determined
by minimizing the residual. Many methods which are explained in this paper are used to determine these
parameters. Here Galerkin’s method is used for this purpose. It is applied to solve non-linear BVPs of
fourth and fifth order. The results are compared with the already existing methods e.g., Galerkin’s Method
with Quintic B-splines, Differential Transform Method (DTM), and Optimal Homotopy Asymptotic Method
(OHAM). It gives efficient and accurate first-order approximate solution. The results achieved by this tech-
nique are in excellent concurrence with the exact solution and hence proved that this method is effective
and easy to apply.

1. Introduction

Different problems in engineering and science can be formulated in terms of boundary value problems.
They have a significant contribution in todays’ modern fields of science and technology which take place
from steady state solutions of transient problems. They are used in the mathematical modeling of different
entities such as visco-elastic flows, hydrodynamic stability problems, non-Newtonian fluids, and convection
of heat etc [1]. The physical situations like deformation of elastic beams with simply supported ends in
an equilibrium state, visco elastic and inelastic flows, transverse vibrations of hinged beams, plate bending
on an elastic foundation, and the deflection of a plate are modeled by fourth order BVPs. The BVPs of fifth
order appear in the model of visco-elastic flows. [2]. Many Numerical methods, semi numerical method,
Perturbation and Analytical techniques are used to solve such problems. Researchers have introduced
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many other methods based on Homotopy Perturbation Method (HPM) [3, 4], for example, OHAM [5–
9, 11], and Optimal Homotopy Perturbation Method(OHPM)[12] to get the approximate solution of the
nonlinear BVPs. The relevant work can also be seen in [15–17]. But it is still quite problematic and need
new techniques for finding the approximate solutions. Inspired and aggravated by the continuing research
in this area, we apply a new analytical approach, (OHAM-2)[5] for solving the nonlinear BVPs of order
four and five as given in [9, 11, 13, 14]. It consists of few steps and converges to almost exact solution.
The applied method is simple in learning and easy to apply. Math type and mathematica 7.0 is used for
calculations as well as numerical simulations.

2. Explanation of the applied method

Fundamental Concept of OHAM:
Consider the following boundary value problem

Υ(µ(s)) + f (s) = Φ(µ(s)) + f (s) + Ψ(µ(s)) = 0, β
(
µ(s), dµ(s)

ds

)
= 0. (1)

Where f (s) is a known function, p is an embedding parameter, β is a boundary operator,s is independent
variable, and µ(s) is an undetermined function. Also Υ is a general operator,Φ is linear operator, and Ψ is
nonlinear operator. In this method we define a homotopy: H(ν(s, p, ci)) : Ω × [0, 1]→ Rwhich satisfies

H(ν(s, p, ci)) = (1 − p)(Φ(ν(s, p, ci) + f (s))
= H(s, p, ci)(Φ(ν(s, p, ci) + f (s) + Ψ(ν(s, p, ci)). (2)

Here s ∈ R,Ω is the domain of interest, H(s, p, ci) is an auxiliary function which is non-zero for p , 0
,H(s, 0, ci) = 0, and ν(s, p, ci) is an undetermined function. Clearly, when p = 0 then:

ν(s, 0, ci) = µ0(s, ci). (3)

and when p = 1 then

ν(s, 1, ci) = µ(s, ci). (4)

Therefore, the solution ν(s, p, ci) changes from µ0(s) to µ(s) as p changes from 0 to 1. Now the initial guess
µ0(s) is calculated from Eq.(2) for p = 0 and we have:

Φ(µ0(s)) + f (s) = 0 , β(µ0(s),
dµ0(s)

ds
) = 0. (5)

Now consider the auxiliary function H(s, p, ci) as follows:

H(s, p, ci) = p H1(s, ci) + p2 H2(s, ci) + . . . , (6)

where the auxiliary functions Hi(s, c j), i = 1, 2, . . . depend upon s and also on c j, j = 1, 2, . . . , s.
Expand,ν(s, p, ci) in Taylors series about p as follows:

ν(s, p, ci) = µ0(s) +

∞∑
k=1

µk(s, c1, c2, . . . , ck)pk. (7)

Now put Eq.(40) in Eq.(2) and compare the coefficients of the same powers of p to achieve linear equations
as follows
Zeroth order problem:

Φ(µ0(s)) + f (s) = 0 , β(µ0(s),
dµ0(s)

ds
) = 0. (8)
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First order problem:

Φ(µ1(s)) = c1Ψ0(µ0(s)), β(µ1(s),
dµ1(s)

ds
) = 0. (9)

The required governing equations for µk(s) are given by:

Φ(µk(s)) −Φ(µk−1(s)) = ck Ψ0(µ0(s)) +
∑k−1

i=1 ci[Φ(µk−i(s)) + Ψk−i(µ0(s), µ1(s), ..., µk−1(s))],

k = 2, 3, ..., β(µk,
dµk

ds ) = 0, (10)

where Ψm(µ0(s), µ1(s), µ2(s), . . . , µm(s)) is the coefficient of pm when Ψ(ν(s, p, ci)) expand about the em-
bedding parameter p:

Ψ(ν(s, p, ci) = Ψ(µ0(s)) +

∞∑
m=1

Ψm(s, µ0(s), µ1(s), . . . , µm(s))pm. (11)

. The series Eq.(11) depends on auxiliary parameters c1, c2, . . . , cm. If at p = 1, it is convergent then one has:

ν(s, 1, ci) = µ(s, ci) = µ0(s) +

∞∑
k=1

µk(s, c1, c2, . . . , ck). (12)

. The mth-order approximate solution become as :

µ(s, c1, c2, . . . , cm) = µ̃(s, c1, c2, . . . , cm) = µ0(s) +

m∑
i=1

µi(s, c1, c2, . . . , ci). (13)

Use Eq.(13) in Eq.(1) to achieve the residual as follow:

R(s, c1, c2, . . . , cm) = Υ(µ̃(s, c1, c2, . . . , cm) + f (s)
= Φ(µ̃(s, c1, c2, . . . , cm) + Ψ(µ̃(s, c1, c2, . . . , cm) + f (s). (14)

If R = 0 then the exact solution will beµ̃. When R , 0, especially in nonlinear problems, then we find the
optimal convergence control parameters (Auxiliary parameters)ci, i = 1, 2, . . ..
Now to find the above values we first construct the functional,

ζ(c1, c2, . . . , cm) =

∫ b

a
R2(s, c1, c2, . . . , cm)ds, (15)

and then minimizing it, we have

∂ζ
∂c1

=
∂ζ
∂c2

= . . . =
∂ζ
∂cm

= 0, (16)

∫ b

a
R
∂µ̃

∂c1
ds = 0,

∫ b

a
R
∂µ̃

∂c2
ds = 0, . . . . (17)

The mth-order approximate solution is calculated if a and b are in the domain of the problem and also if
the auxiliary parameters are known. Many methods like Galerkin’s method and method of Least Squares
are used to find the values of auxiliary parameters. Besides these methods, Marinca et al. [5, 7, 12] also
reported some other methods for this purpose e.g. the collocation method and Ritz’s method.
First Version of OHAM:
We put m = 2 in Eq.(13) to achieve the 1st version of OHAM (OHAM-1). In this case 2nd order approximate
solution of 2nd order becomes as:

µ̃(s, 1, ci) = µ0(s) + µ1(s, ci) + µ2(s, ci), (18)
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where the terms µ0, µ1 and µ2 are achieved from the following equations: Eq.(19),Eq.(20) and Eq.(21)
respectively

Φ(µ0(s)) + f (s) = 0, β(µ0,
dµ0

ds
) = 0, (19)

Φ(µ1(s, ci)) = H1(s, ci)Ψ0(µ0(s)), β(µ1,
dµ1

ds
) = 0, (20)

Φ(µ2(s, ci)) −Φ(µ1(s, ci)) = H1(s, ci)[Φ(µ1(s, ci)) + Ψ1(µ0(s), µ1(s, ci))]

+H∗2(s, ci)Ψ0(µ0(s)), β(µ2,
dµ2

ds ) = 0.

Taking into account Eq.(20) in the last we can write

Φ(µ2(s, ci)) −Φ(µ1(s, ci)) = H1(s, ci)Ψ1(µ0(s), µ1(s, ci)) + H2(s, ci)Ψ0(µ0(s)), β(µ2,
dµ2

ds ) = 0, (21)

where H2(s, ci) = H2
1(s, ci) + H∗2(s, ci)

New Version of OHAM (OHAM-2)[6]: We use Fundamental concept of OHAM to develop new form
of OHAM. Consider the same BVP as above:

Υ(µ(s)) + f (s) = Φ(µ(s)) + f (s) + Ψ(µ(s)) = 0, β
(
µ(s),

dµ(s)
ds

)
= 0, (22)

where Υ, f (s),Φ,µ(s),Ψ, and β have the same meaning as above. Let µ0(s) be an initial guess of µ(s) such that

Φ(µ0(s)) + f (s) = 0, β
(
µ0(s),

dµ0(s)
ds

)
= 0. (23)

Let us consider the function ν(s, p, ci) in the particular form as

ν(s, p, ci) = µ0(s) + p µ1(s, ci), (24)

where p represents an embedding parameter such that 0 ≤ p ≤ 1. Now the 1st-order approximate solution
become as:

µ̃(s, ci) = µ(s, ci) = µ0(s) + µ1(s, ci), β
[
µ̃(s, ci),

dµ̃(s, ci)
ds

]
= 0, (25)

where c1, c2, . . . , cs are auxiliary parameters which will be calculated later. Now we define a family of
equations as:

H[Φ(ν(s, p, ci)) + f (s), H(s, ci), Ψ(ν(s; p, ci)]
= Φ(µ0(s)) + f (s) + p[Φ(µ1(s, ci)) −H(s, ci)Ψ(µ0(s))], (26)

which satisfies the properties:

H[Φ(ν(s, 0, ci)) + f (s),H(s, ci), Ψ(ν(s; 0, ci)] = Φ(µ0(s)) + f (s) = 0, (27)

H[Φ(ν(s, 1, ci)) + f (s),H(s, ci),Ψ(ν(s; 1, ci)] = H(s, ci)[Φ(µ̃(s, ci)) + f (s) + Ψ(µ̃(s, ci))] = 0, (28)

where H(s, ci) , 0 is an auxiliary function and the terms in p2 are omitted. From Eq.(24) and Eq.(25) one gets

ν(s, 0, ci) = µ0(s), ν(s, 1, ci) = µ̃(s, ci). (29)

Now compare the coefficients of p0 and p1 in Eq.(26) we get the required equation of µ0(s) specified by
Eq.(23) and the equation of the 1st order approximation µ1(s, ci), i.e.

Φ(µ1(s, ci)) = H(s, ci)Ψ(µ0(s)), β
[
µ1(s, ci),

dµ1(s,ci)
ds

]
= 0, i = 1, 2, . . . , s. (30)
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Generally, the nonlinear operator may be written as:

Ψ(µ0(s)) = Σm
i=1hi(s)1i(s) (31)

where hi(s) and 1i(s) are known functions which are depended upon the functions µ0(s) and nonlinear
operator Ψ. m is also a known as an integer. Since, Eq.(30) is non-homogeneous linear therefore it has two
solutions; one is the solution of corresponding homogeneous equation and the other one is some particular
solutions of the non-homogeneous equation. So, the solution of Eq.(30) is the sum of the above mentioned
two solutions but in exceptional cases, only particular solutions may be selected readily. Now suppose the
unknown function µ1(s, c j) in the form

µ1(s, c j)) = Σm
i=1Hi(s, h j(s), c j)1i(s),

β
[
µ1(s, c j),

dµ1(s,c j)
ds

]
= 0, j = 1, 2, . . . , s. (32)

or

µ1(s, c j)) = Σm
i=1Hi(s, 1 j(s), c j)hi(s),

β
[
µ1(s, c j),

dµ1(s,ci)
ds

]
= 0, j = 1, 2, . . . , s. (33)

Where Hi(s, h j, c j) consist of linear combinations of some functions hi, some terms which are given by
corresponding homogeneous equation and several undetermined parameters c j for j = 1, 2, ..., s. Alsom
is an arbitrary integer number. Now, if h1 is a polynomial function such as h1 = s3, then H1(s, h1, c j) is a
combination of polynomials, H1(s, h1, c j) = c1s + c2s3 + c3s7 + . . .. If h1 is a trigonometric function i.e. if
h1 = Sin(γs), then H1(s, h1, c j) = c1Sin(γs) + c2Cos(γs) + c3Sin(2γs) + . . ., Similarly, when h1 is a logarithmic
function i.e. h1 = `n(s) then H1(s, h1, c j) = c1`n(s) + c2s`n(s) + c3s2`n(2s) + . . .. Where Hi and m can be defined
in many ways. The solution µ1(s, c j) specified by Eq.(32) is not complete solution of Eq.(30), but µ̃(s, ci)
given by Eq.(25) is the solution of Eq.(22). The same considerations can be made for the Eq.(33), where hi
and 1i are interchangeable. Now in the last putting the values of µ0 and µ1(s, ci) in Eq.(25)after finding the
optimal values of auxiliary parameters ci, i = 1, 2, 3, . . . , s to achieve complete solution of Eq.(22).

Application of method

In this section high accuracy of third alternative of OHAM is shown over the existing methods in the
literature. The proposed technique is applied to some non linear BVPs of different orders. As a result, we
see that this method gives best approximation and takes very less time to produce good results.

Model 1.Consider non-linear boundary value problem of order four as solved in [11, 13]:

d4µ

ds4 = Sin(s) + Sin2(s) − (
d2µ

ds2 )2, µ(0) = 0, µ′(0) = 1, µ(1) = Sin(1), µ′(1) = Cos(1), 0 ≤ s ≤ 1. (34)

Where µ(s) = Sin(s) is the exact solution. To apply the third alternative of OHAM, we first find the initial
guess µ0(s) from the following as:
Zeroth order problem:

−Sin(s) − Sin2(s) +
(
µ0

)′′′′ (s) = 0, µ0(0) = 0, µ′0(0) = 1, µ0(1) = Sin(1), µ′0(1) = Cos(1), (35)

which gives,

µ0(s) =
1

48
(3−8s2+4s3+s4+9s2(Cos(1))2

−6s3(Cos(1))2
−3(Cos(s))2+6s2Cos(1)Sin)(1)−6s3Cos(1)Sin(1)+48Sin(s)).

(36)
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Now, since Ψ(µ(s)) = −Sin(s)−Sin2(s)+ (µ′′(s))2 which gives Ψ(µ0(s)) = −Sin(s)−Sin2(s)+ (µ′′0 (s))2. Therefore
according to the Eq.(5.14) and Eq.(5.15) on page 392 and 393 in [6] we choose the auxiliary function as:

H(s, ci) = H1(s, h1, ci) = c1Sin(s) + c2Cos(s) + c3Sin(2s), (37)

and put in Eq.(5.13) we get: First order problem:

µ′′′′1 (s, ci) = (c1Sin(s) + c2Cos(s) + c3Sin(2s))Ψ(µ0(s)), µ1(0) = 0, µ′1(0) = 0, µ1(1) = 0, µ′1(1) = 0. (38)

Now solve the above equations and using Galerkin’s method to get:

c1 = 0.850097, c2 = −0.0276344, c3 = 0.128225, (39)

put the above values of µ0(s), µ1(s, ci), and p = 1 in Eq.(5.6) on page (392)in [6] to achieve the 1st order
approximate solution as:

µ(s) = 1.s + 7.005678758470035 × 10−6s2
− 0.166702s3

− 2.5225495034330193 × 10−7s4 + 0.00857287s5

−0.000401879s6
− 0.0000584755s7 + 0.000107857s8

− 0.0000135431s9
− 0.0000510225s10

+8.701874084073485 × 10−7s11 + 0.0000102883s12 + 4.3424879690708535 × 10−7s13

−1.3215505387360188 × 10−6s14. (40)

Model 2. Consider non-linear boundary value problem of order Five [9]:

d5µ(s)
ds5 = 1/32µ3 e−s, µ(0) = 1, µ′(0) = 1/2, µ′′(0) = 1/4, µ(1) = e1/2, µ′(1) = 1/2e1/2, 0 ≤ s ≤ 1, (41)

with exact solution µ(s) = es/2. Now we use the third alternative of OHAM: Let µ0(s) be the initial guess
then
Zeroth order problem:

µ′′′′′0 (s) = 0, µ0(0) = 1, µ′0(0) = 1/2, µ′′0 (0) = 1/4, µ0(1) = e1/2, µ′0(1) = 1/2e1/2, (42)

which gives

µ0(s) = 1. + 0.5s + 0.125s2 + 0.0205244s3 + 0.00319682s4. (43)

Since, Ψ(µ(s)) = −1/32µ(s)3e−s, therefore Ψ(µ0(s)) = −1/32µ3
0(s)e−s. Now we choose the auxiliary function

as

H(s, ci) = es(c1 + c2s + c3s2 + c4s3 + c5s4), (44)

and solve the equation given below to get µ1(s, ci).
First order problem:

µ′′′′′1 (s, ci) = es
(
c1 + c2s + c3s2 + c4s3 + c5s4

)
Ψ(µ0(s)), µ1(0) = 0, µ′1(0) = 0, µ′′1 (0) = 0, µ1(1) = 0, µ′1(1) = 0.

(45)

c1 = −0.999779, c2 = 0.997536, c3 = −0.490143, c4 = 0.147591, c5 = −0.0231079. (46)

put the above values of µ0(s), µ1(s, ci), and p = 1 in Eq.(5.6) on page (392)in [6] to achieve the 1st order
approximate solution as:

µ(s) = 1. + 0.5s + 0.125s2 + 0.0208333s3 + 0.00260419s4 + 0.000260359s5 + 0.0000217939s6

+1.4706107555298904 × 10−6s7 + 1.2483440484747375 × 10−7s8 + 9.681857366777685 × 10−9s9

−3.7132926569796935 × 10−9s10
− 5.817591715198018 × 10−10s11 + 1.6855346987092359 × 10−10s12

+1.0758247621938015 × 10−10s13 + 3.344725434548341 × 10−11s14. (47)
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3. Figures:

Here the obtained results are illustrated graphically.
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Figure 1: Shows comparison of the solution achieved by OHAM-2 with that of exact solution as well as
with the results achieved by Methods in [13] for model 1. It shows that the results achieved by the applied
OHAM-2 are far better.
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Figure 2: Indicates comparison of the solution obtained by OHAM-2 with the exact solution as well as
with the results achieved by Methods in [9] for model 2. It shows that the results achieved by the applied
OHAM-2 are more better.

4. Tables:

This section shows the comparison of the achieved results with already published work in the form of
tables
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s EXACT OHAM-2 E∗ E∗ E∗

(B-splines) (OHAM) (OHAM-2)

0.0 0.0 0.0 · · · 2.1 ×10−13 0.0
0.1 0.0998334 0.0998335 9.7 ×10−7 3.4 ×10−8 -3.7 ×10−8

0.2 0.198669 0.198669 4.1 ×10−6 1.1 ×10−7 -5.1 ×10−8

0.3 0.29552 0.29552 8.0 ×10−6 2.1 ×10−7 -4.7 ×10−9

0.4 0.389418 0.389418 1.0 ×10−5 2.8 ×10−7 4.0 ×10−8

0.5 0.479426 0.479426 1.2 ×10−5 3.2 ×10−7 2.0 ×10−8

0.6 0.564642 0.564643 1.4 ×10−5 2.9 ×10−7 -4.8 ×10−8

0.7 0.644218 0.644218 1.2 ×10−5 2.1 ×10−7 -8.1 ×10−8

0.8 0.717356 0.717356 7.7 ×10−6 1.2 ×10−7 -3.4 ×10−8

0.9 0.783327 0.783327 4.5 ×10−6 3.4 ×10−7 2.1 ×10−8

1. 0.841471 0.841471 · · · 1.4 ×10−13 4.2 ×10−9

Table 1: Shows Comparison of the errors gained by method in [13], OHAM [11] and OHAM-2 for model 1,
E∗=Exact-Approx.

s EXACT OHAM-2 E∗ E∗ E∗

(DTM) (OHAM) (OHAM-2)

0.0 1.0 1. 0.0000 0.0000 0.0000
0.1 1.05127 1.05127 1.0 ×10−9 -9.2 ×10−10 1.4 ×10−12

0.2 1.10517 1.10517 2.0 ×10−9 -5.0 ×10−9 5.0 ×10−12

0.3 1.16183 1.16183 1.0 ×10−8 -1.1 ×10−8 7.5 ×10−12

0.4 1.2214 1.2214 2.0 ×10−8 -1.5 ×10−8 7.9 ×10−12

0.5 1.28403 1.28403 3.1 ×10−8 -1.6 ×10−8 6.7 ×10−12

0.6 1.34986 1.34986 3.7 ×10−8 -1.4 ×10−8 4.2 ×10−12

0.7 1.41907 1.41907 4.1 ×10−8 -9.9 ×10−9 7.9 ×10−13

0.8 1.49182 1.49182 3.1 ×10−8 -5.6 ×10−9 -1.6 ×10−12

0.9 1.56831 1.56831 1.4 ×10−8 -1.1 ×10−9 1.2 ×10−13

1.0 1.64872 1.64872 0.0000 0.0000 9.4 ×10−12

Table 2: Shows Comparison of the errors achieved by methods: DTM in [14], OHAM in [9]and OHAM-2
for model 2
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