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The Classification of Closed Subspaces of Noncommutative
L2 Space Associated with a Factor of Type I
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aSchool of Mathematics and Statistics, Beijing Institute of Technology

Abstract. In this article, we discuss the relationship between the projections of a factor M of type I and
the closed subspaces of the noncommutative L2 space L2(M ). Moreover, we consider the classification of
these closed subspaces.

1. Introduction

The notation and terminology in this paper agrees, for the most part, with that in Jones[4] and Xu[13].
Here are a few specific items that are worthy of attention.

Let H be a Hilbert space with an inner product 〈, 〉, denote by B(H ) the set of all bounded linear
mappings from H to itself. If M is a strongly(weakly) closed ∗-subalgebra of B(H ) containing the
unit I, M is called a von Neumann algebra. If B is a subset of B(H ), we define its commutant as
B′ = {x ∈ B(H ) : xy = yx for all y ∈ B}, and the double commutant B′′ = (B′)′. Let M be a ∗-algebra on a
Hilbert space H with I ∈M , then M is a von Neumann algebra if and only if M = M ′′.

We define the spectrum of x to be the set σ(x) = {λ ∈ C|λI − x is not invertible}. An element x ∈ M is
positive (denoted by x < θwhereθ is the zero element in M ) if x = x∗ andσ(x) ⊂ R+, set M+ = {x ∈M |x < θ}.
If an element p ∈M satisfies p = p∗ = p2, p is called a projection. We denote by P(M ) the set of projections
in M . Two projections e and f in a von Neumann algebra M are said to be equivalent relative to M , denoted
as e ∼M f (written e ∼ f for convenience ), if there is a partial isometry u ∈M such that u∗u = e and uu∗ = f .
We say e ≤ f if e(H ) ⊂ f (H ) and e - f if there is a projection f1 ∈M with f1 6 f and e ∼ f1. A projection
e ∈M is finite if the only projection f in M such that f ≤ e and f ∼ e is f = e and infinite if there is an f ∼ e
with f � e.

A factor on the Hilbert space H is a von Neumann algebra M on H such that M ∩M ′ = CI.Murray and
von Neumann showed in [9] that if M is a factor there is a unique ”dimension function” d : P(M )→ [0,∞]
subject to

1. d(θ) = 0;

2. d(
∞∑

i=1
ei) =

∞∑
i=1

d(ei) if ei⊥e j for i , j,
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3. d(e) = d( f ) if e ∼ f .

It follows that d(e) = d( f ) ⇒ e ∼ f . A factor M is said to be of type I if the range of d is {1, 2, · · · ,n} with
n = ∞ possible – of type In if n < ∞ – of type I∞ if n = ∞. It is fairly easy to prove that if M is of type I it is
like B(H ) ⊗ id on H ⊗K .

Definition 1.1. Let M be a von Neumann algebra. A trace on M is a mapping τ : M+ → [0,∞] satisfying:

1. for x, y ∈M+, λ ∈ R+, τ(x + λy) = τ(x) + λτ(y);
2. for x ∈M , τ(x∗x) = τ(xx∗).

In addition, a trace τ is said to be normal if sup
λ
τ(xλ) = τ(sup

λ
xλ) for any bounded monotonic increasing net {xλ} in

M+; finite if τ(1) < ∞; semi-finite if for any x ∈M+, there is a y ∈M+ such that y 4 x and τ(y) < ∞; faithful if for
x ∈M+, τ(x) = 0⇒ x = θ.

In the next section, unless stated in particular, M will always denote a von Neumann algebra on H . If
there is a normal faithful semi-finite trace τ on M , we call (M , τ) a noncommutative measure space.

For x ∈ B(H ), let |x| = (x∗x)
1
2 , there is a unique partial isometry u from (ker x)⊥ onto R(x) such that

x = u|x|. In addition, u∗u = P(ker x)⊥ and uu∗ = PR(x). Let r(x) = u∗u(l(x) = uu∗), then r(x)(l(x)) is called the right
(left) support of x. If x = x∗, then r(x) = l(x), this common projection is called the support of x and denoted
by s(x).

Definition 1.2. Let S+(M ) = {x ∈M+ : τ(s(x)) < ∞} and S(M ) be the linear span of S+(M ). Usually, we use S+

and S to represent S+(M ) and S(M ) respectively.

An operator x ∈M belongs to S if and only if there is an e ∈ P(M ) satisfying τ(e) < ∞ such that exe = x.
x ∈ S implies |x|2 ∈ S+, and so τ(|x|2) < ∞. Moreover, S is a strongly dense ideal of M , and x ∈ S implies
x∗ ∈ S.

Now let
‖x‖2 = [τ(|x|2)]

1
2 , x ∈ S.

Then ‖ · ‖2 is a norm on S. We denote the completion of (S, ‖ · ‖2) by L2(M , τ) (shorthand for L2(M )), it is a
Hilbert space, and we call it noncommutative L2 space.

In this paper, we classify the closed spaces of a noncommutative L2 space associated with a factor of
type I. If e ∈P(M ), eM e is a von Neumann subalgebra of M , then L2(eM e) is a closed subspace of L2(M ).
However, for any closed subspace of L2(M ), is there a projection e ∈P(M ) such that this subspace can be
expressed by L2(eM e)?

2. Main result

In this section, we study the relationship between the projections of a factor M of type I and the closed
subspaces of the noncommutative L2 space L2(M ).

Lemma 2.1. Let (M , τ) be a noncommutative measure space, e, f ∈P(M ). If e ∼ f , then eM e is ∗-isomorphism to
fM f .

Proof. Since e ∼ f , there is a partial isometry u ∈M such that u∗u = e and uu∗ = f . Let

ϕ :eM e→ fM f
exe 7→ f uxu∗ f .

We claim that ϕ is a ∗-isomorphism and left its proof to readers.

Lemma 2.2. If (M , τ) and (N , υ) are noncommutative measure spaces and π : M → N is an isomorphism such
that υ ◦ π = τ, then π maps S(M ) onto S(N ).
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Proof. For x ∈ S(M ), there is an e ∈P(M ) satisfying τ(e) < ∞ such that exe = x. Since π is an isomorphism,

π(e)π(x)π(e) = π(exe) = π(x).

Moreover, π(e) is a projection in N and

υ(π(e)) = τ(e) < ∞.

Therefore, x ∈ S(N ), and π maps S(M ) to S(N ).
For any y ∈ S(N ) ⊆ N , there exists an f ∈P(N ) satisfying υ( f ) < ∞ such that f y f = y and there is an

x ∈M such that π(x) = y. Then

π(π−1( f )xπ−1( f )) = fπ(x) f = f y f = y = π(x).

Since π is an injection, π−1( f )xπ−1( f ) = x. Besides, π−1( f ) is a projection and τ(π−1( f )) = υ( f ) < ∞.
Consequently, x ∈ S(M ), so π maps S(M ) onto S(N ).

Proposition 2.3. Let (M , τ) be a noncommutative measure space, e, f ∈P(M ). If e ∼ f , then L2(eM e) is unitary
isomorphic to L2( fM f ).

Proof. Let ϕ be the isomorphism from eM e to fM f , then ϕ maps S(eM e) onto S( fM f ). For any x ∈M ,

‖ϕ(exe)‖22 = ‖ f uxu∗ f ‖22 = τ( f ux∗u∗ f · f uxu∗ f )

=τ(uex∗exeu∗) = τ(ex∗exeu∗u) = τ(ex∗exe) = ‖exe‖22.

Since eM e is ‖ · ‖2−norm dense in L2(eM e), L2(eM e) is unitary isomorphic to L2( fM f ).

Proposition 2.3 shows that e ∼ f ⇒ L2(eM e) � L2( fM f ). Thus, it is natural to ask whether the inverse
proposition is true.

As we have known, for e ∈ P(M ), L2(eM e) ⊆ L2(M ). However, the closed subspaces of L2(M ) can
not always expressed as L2(eM e) for any e ∈ P(M ). Indeed, let M = Mn(C) and τ be a normalized trace
on M , that is τ(I) = 1. Since all the norms are equivalent on a finite dimensional normed linear space,
L2(M ) = Mn(C). There are only n + 1 projections in M up to projection equivalent, but L2(M ) has at least
n2 +1 closed subspaces up to isomorphism. Thus, there must be some closed subspaces of L2(M ) which can
not be expressed as L2(eM e) for any e ∈ P(M ). Then we will ask that under which conditions the closed
subspace of L2(M ) can be expressed as L2(eM e) for some e ∈P(M ).

In this paper, we answer these questions under the case of factor of type In and factor of type I∞. To
answer the two questions, we need the following definition.

Definition 2.4. Let (M , τ) be a noncommutative measure space and E be the orthogonal projection from L2(M ) onto
its closed subspace L. E is called a projection with bimodule property if E(y1xy2) = y1E(x)y2 and E(x∗) = E(x)∗ for
any x ∈ L2(M ), y1, y2 ∈ L.

First of all, we discuss the above two questions in the case of type In-factor.

Lemma 2.5. [11] If A is a finite dimensional C*-algebra, then A can be decomposed into the direct sum A =
n∑

k=1

⊕
Ak, where eachAk is isomorphic to the algebra of nk × nk matrices.

Theorem 2.6. Let M = Mn(C) and τ be a normalized trace on M . If L is a closed subspace of L2(M ), then
E : L2(M )→ L is a projection with bimodule property if and only ifL = Mn1 (C)⊕Mn2 (C)⊕· · ·⊕Mnk (C)⊕Ol×l(1 ≤

k ≤ n, l ≥ 0 and
k∑

i=1
ni + l = n). Furthermore, the decomposition is unique in the sense that ifL1 = Mn1 (C)⊕Mn2 (C)⊕

· · · ⊕Mns (C) and L2 = Mm1 (C) ⊕Mm2 (C) ⊕ · · · ⊕Mmt (C), then L1 � L2 ⇔ s = t and there is a σ ∈ St such that
ni = mσ(i)(1 ≤ i ≤ s), where St is the permutation group on {1, 2, · · · , t}.
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Proof. If L =


B11

. . .
Bkk

0

 where Bii ∈ Mni (C), 0 is a null matrix of order l, 1 ≤ k ≤ n, l ≥ 0 and

k∑
i=1

ni + l = n. Then for A ∈ Mn(C), A can be written as the form [Ai j] where Ai j ∈ Mni×n j (C)(1 ≤ i, j ≤

k + 1, nk+1 = l) such that

E(A) =


A11

. . .
Akk

0

 .
For any A = [Ai j] ∈Mn(C), B ∈ L,

E(A∗) = E(A)∗,

E(AB) = E




A11 · · · A1k A1k+1
...

...
...

Ak1 · · · Akk Akk+1
Ak+11 · · · Ak+1k Ak+1k+1




B11
. . .

Bkk
0




= E




A11B11 A12B22 · · · A1kBkk 0
...

...
...

...
Ak1B11 Ak2B22 · · · AkkBkk 0

0 0 · · · 0 0




= E(A)B.

Similarly, E(BA) = BE(A). Thus, E is a projection with bimodule property.
Conversely, if E : L2(M ) → L is a projection with bimodule property, then (L, ‖ · ‖) is a C*-algebra.

Indeed, for any x, y ∈ L, E(x) = x,E(y) = y, then

xy = E(x)y = E(xy) ∈ L,

x∗ = E(x)∗ = E(x∗) ∈ L,

‖xy‖ ≤ ‖x‖ · ‖y‖,

‖x∗x‖ = ‖x‖2.

Thus (L, ‖ · ‖) is a C*-algebra with dimL < ∞. Since all the norms are equivalent on a finite dimensional

space, L can be written as Mn1 (C) ⊕Mn2 (C) ⊕ · · · ⊕Mnk (C) ⊕Ol×l for some 1 ≤ k ≤ n and
k∑

i=1
ni + l = n.

Without loss of generality, we can assume n1 ≤ n2 ≤ · · · ≤ ns and m1 ≤ m2 ≤ · · · ≤ mt.
”⇐ ” If s = t and mi = ni(1 ≤ i ≤ s), then L1 = L2.
”⇒ ” If L1 � L2, we can show s = t and mi = ni(1 ≤ i ≤ s) by induction.

Definition 2.7. If L = Mn1 (C) ⊕Mn2 (C) ⊕ · · · ⊕Mns (C), where n1 ≤ n2 ≤ · · · ≤ ns and
k∑

i=1
ni ≤ n, we call L a type

(n1,n2, · · · ,ns) subspace of Mn(C).

The answers of the two questions in the case of type In-factor is in the following.

Corollary 2.8. Suppose M is a factor of type Im, that is M � Mm(C)⊗ idH where H is a finite dimensional Hilbert
space.



C. Shen et al. / Filomat 32:7 (2018), 2553–2561 2557

1. For e, f ∈P(M ), L2(eM e) � L2( fM f )⇔ e ∼ f ;
2. For a closed subspace L of L2(M ), there is an e ∈ P(M )(that is e = e0 ⊗ idH where e0 ∈ P(Mm(C))) such

that L � L2(eM e)⇔ L = L0 ⊗ IH where L0 is a type (m1)(m1 ≤ m) subspace of Mm(C).

In particular, if M = Mn(C), then for e, f ∈P(M ), L2(eM e) � L2( fM f )⇔ e ∼ f ; for a closed subspace L of
L2(M ), there is an e ∈P(M ) such that L � L2(eM e)⇔ L is a type (n1)(n1 ≤ n) subspace of L2(M ).

We now describe an example to indicate how to calculate the number of pairwise inequivalent subspaces
of type (n1,n2, · · · ,ns).

Example 2.9. Let L be a type (n1,n2, · · · ,ns) nonzero subspace of Mn(C). We can show the following conclusion by
induction.

1. If s = 1, L is isomorphic to L2(eM e) for some e ∈ P(M ), the number of such subspaces is n in a sense of
isometric ∗-isomorphism.

2. If s = 2, L is isomorphic to L2(eM e) ⊕ L2( fM f ) for some e, f ∈P(M ), the number of such subspaces up to

isometric ∗-isomorphism is
{

k2, if n = 2k;
k(k + 1), if n = 2k + 1.

3. If s = 3, for a fixed m, the number of type (m,n2,n3) subspaces up to isometric ∗-isomorphism is{
k2, if n = 2k + 3m − 2;

k(k + 1), if n = 2k + 3m − 1.
4. For any s > 3, and fixed n1,n2, · · · ,ns−2, the number of type (n1,n2, · · · ,ns−2,ns−1,ns) subspaces up to isometric

∗-isomorphism is


k2, if n = 2k + 3ns−2 +

s−3∑
i=1

ni − 2;

k(k + 1), if n = 2k + 3ns−2 +
s−3∑
i=1

ni − 1.

Proof. 1. If L = Mn1 (C), let e = e11 + · · · + en1n1 where eii is a matrix unit. Then L � L2(eM e) and n1 may be
1, 2, · · · ,n. Therefore, the number of type (n1) subspaces is n.

If L = Mn1 (C) ⊕Mn2 (C), let e = e11 + · · · + en1n1 , f = e(n1+1)(n1+1) + · · · + e(n1+n2)(n1+n2) where eii is a matrix
unit. Then L � L2(eM e) ⊕ L2( fM f ) and (n1,n2) may be

(1, 1), (1, 2), · · · , (1,n − 5), (1,n − 4), (1,n − 3), (1,n − 2), (1,n − 1),
(2, 2), (2, 3), · · · , (2,n − 4), (2,n − 3), (2,n − 2),
(3, 3), (3, 4), · · · , (3,n − 3),
...

(k, k) (if n = 2k) or (k, k), (k, k + 1) (if n = 2k + 1).
Therefore, the number of type (n1,n2) subspaces is{

(n − 1) + (n − 3) + · · · + 1 = k2, if n = 2k;
(n − 1) + (n − 3) + · · · + 2 = k(k + 1), if n = 2k + 1.

2. If s = 3, n1 = m, n = 2k + 3m − 2, Lmay be type

(m,m,m), (m,m,m + 1), · · · , (m,m,n − 2m),
(m,m + 1,m + 1), (m,m + 1,m + 2), · · · , (m,m + 1,n − 2m − 1),

...
(m,m + k − 1,m + k − 1)

If s = 3, n1 = m, n = 2k + 3m − 1, Lmay be type

(m,m,m), (m,m,m + 1), · · · , (m,m,n − 2m),
(m,m + 1,m + 1), (m,m + 1,m + 2), · · · , (m,m + 1,n − 2m − 1),

...
(m,m + k − 1,m + k − 1), (m,m + k − 1,m + k)
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Therefore, the number of type (m,n2,n3) subspaces is{
(n − 3m + 1) + (n − 3m − 1) + · · · + 1 = k2, if n = 2k + 3 ×m − 2;
(n − 3m + 1) + (n − 3m − 1) + · · · + 2 = k(k + 1), if n = 2k + 3 ×m − 1.

3. If s > 3,n = 2k + 3ns−2 +
s−3∑
i=1

ni − 2 for fixed n1,n2, · · · ,ns−2, Lmay be type

(n1, · · · ,ns−2,ns−2,ns−2), · · · , (n1, · · · ,ns−2,ns−2,n −
s−2∑
i=1

ni − ns−2),

(n1, · · · ,ns−2,ns−2,ns−2 + 1), · · · , (n1, · · · ,ns−2,ns−2 + 1,n −
s−2∑
i=1

ni − ns−2 − 1),

...

(n1, · · · ,ns−2,ns−2 + k − 1,ns−2 + k − 1).

If s > 3,n = 2k + 3ns−2 +
s−3∑
i=1

ni − 1 for fixed n1,n2, · · · ,ns−2, Lmay be type

(n1, · · · ,ns−2,ns−2,ns−2), · · · , (n1, · · · ,ns−2,ns−2,n −
s−2∑
i=1

ni − ns−2),

(n1, · · · ,ns−2,ns−2,ns−2 + 1), · · · , (n1, · · · ,ns−2,ns−2 + 1,n −
s−2∑
i=1

ni − ns−2 − 1),

...

(n1, · · · ,ns−2,ns−2 + k − 1,ns−2 + k − 1), (n1, · · · ,ns−2,ns−2 + k − 1,ns−2 + k).
Therefore, the number of type (m,n2,n3) subspaces is

(n −
s−2∑
i=1

ni − ns−2 − ns−2 + 1) + · · · + 1 = k2, if n = 2k + 3ns−2 +
s−3∑
i=1

ni − 2;

(n −
s−2∑
i=1

ni − ns−2 − ns−2 + 1) + · · · + 2 = k(k + 1), if n = 2k + 3ns−2 +
s−3∑
i=1

ni − 1.

Next, we discuss the case of type I∞-factor.
Suppose that M = B(H ) where H is a separable infinite dimensional Hilbert space and {ξi}

∞

i=1 is an

orthonormal basis of H . We define the trace τ on M to be τ(x) =
∞∑

i=1
〈xξi, ξi〉. Then S(M ) = F(H ), which is

the class of all finite rank operators and L2(M ) = L2(H ),which is the class of all Hilbert-Schmidt operators
on H . Moreover, for e ∈P(M ), L2(eM e) = L2(eH ).

In the following, we list several basic properties of L2(H ) that we shall use, often without comment, in
the sequel.

1. ‖x‖ ≤ ‖x‖2,∀x ∈ L2(H );
2. L2(H ) is a self-adjoint ideal of B(H ) and a normed ∗-algebra;
3. ‖ξ ⊗ η‖2 = ‖ξ‖‖η‖ = ‖ξ ⊗ η‖, ∀ξ, η ∈H ;
4. F(H ) is dense in L2(H ) in the norm ‖ · ‖2 and F(H ) is linearly spanned by the rank-one projections;

Lemma 2.10. Let M = B(H ) with H a separable infinite dimensional Hilbert space, e, f ∈ P(H ). If L2(eH ) �
L2( fH ), then e ∼ f .
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Proof. If L2(eH ) � L2( fH ), since H is separable, dim(L2(eH )) = dim(L2( fH )) = n with n = ∞ possible.
Let

d : P(M )→ [0,∞]

be the dimension function. Then d(e) = dim(eH ).

1. If n = ∞, then e, f are infinite projections. Therefore, d(e) = d( f ) = ∞, that is e ∼ f .
2. If n < ∞, then dim(eH ) = dim( fH ) < ∞. Therefore d(e) = d( f ) = dim(eH ), thus e ∼ f .

Theorem 2.11. Let H be a separable infinite dimensional Hilbert space, ei, fi ∈P(H ). If L1 =
n∑

i=1
⊕L2(eiH ) with

ei⊥e j for i , j, L2 =
m∑

j=1
⊕L2( f jH ) with fi⊥ f j for i , j. Then L1 � L2 ⇔ m = n and there is a σ ∈ Sn such that

ei ∼ fσ(i)(1 ≤ i ≤ n) with m,n = ∞ possible.

Proof. We may suppose n = ∞, ei - ei+1, f j - fi+1.
” ⇐ ” If m = n = ∞ and ei ∼ fi, then L2(eiH ) � L2( fiH ). Let ϕi be the isomorphic mapping from L2(eiH )

onto L2( fiH ) and ϕ =
∞∑

i=1
⊕ϕi, then ϕ is an isomorphism from L1 onto L2.

”⇒ ” If ϕ is the isomorphic mapping fromL1 ontoL2. Let ϕi = ϕ|L2(eiH ), then ϕi is an isomorphic mapping
from L2(eiH ) onto L2( fiH ). Therefore, ei ∼ fi.

Theorem 2.12. Let H be a separable infinite dimensional Hilbert space and L be a closed subspace of L2(H ), then
E : L2(H )→ L is an orthogonal projection with bimodule property if and only if there are {ei} ⊂P(M ) satisfying

ei⊥e j for i , j such that L =
n∑

i=1
⊕L2(eiH ) with n = ∞ possible.

Proof. The proof of sufficiency can be divided into three steps.
Case a. L = L2(eH ) for some e ∈ P(H ) and E is the orthogonal projection from L2(H ) onto L2(eH )

such that E(x) = exe for all x ∈ L2(H ). Then for any x ∈ L2(H ), y = eye ∈ L2(eH ),

E(x∗) = ex∗e = (exe)∗ = E(x)∗,

E(xy) = exye = exe · eye = E(x)y,

E(yx) = eyxe = eye · exe = yE(x).

Hence, E is a projection with bimodule property.

Case b. L =
n∑

i=1
⊕L2(eiH ) for some ei ∈ P(M ) such that ei⊥e j when i , j. Let E be the orthogonal

projection from L2(H ) onto
n∑

i=1
⊕L2(eiH ) such that for any x ∈ L2(H ), E(x) =


e1xe1

. . .
enxen

 . The

proof of bimodule property of E is similar to the proof of sufficiency of Theorem 2.7.

Case c. L =
∞∑

i=1
⊕L2(eiH ) for some ei ∈ P(M ) such that ei⊥e j when i , j. For x ∈ L2(H ), let E(x) =

∞∑
i=1
⊕eixei, then E is the orthogonal projection from L2(H ) ontoL. Indeed, for x ∈ L2(H ), eixei ∈ L2(eiH ). Let

Fi be an orthonormal basis in eiH , then

‖eixei‖
2
2 =
∑
ξ(i)

j ∈Fi

〈eixeiξ
(i)
j , ξ

(i)
j 〉 =

∑
ξ(i)

j ∈Fi

〈xξ(i)
j , ξ

(i)
j 〉.



C. Shen et al. / Filomat 32:7 (2018), 2553–2561 2560

The set {ξ(i)
j |ξ

(i)
j ∈ Fi, i = 1, 2, · · · } is an orthonormal set in H , it is contained in an orthonormal basis, denote

this orthonormal basis by F. Then,
∞∑

i=1
‖eixei‖

2
2 ≤

∑
ξ∈F
〈xξ, ξ〉 = ‖x‖22 < ∞. Therefore,

∞∑
i=1
⊕eixei ∈ L. For any

y =
∞∑

i=1
⊕yi ∈ L, where yi ∈ L2(eiH ), then yi = eiyiei. Since ei⊥e j for i , j,

y =

∞∑
i=1

⊕eiyiei = (
∞∑

i=1

⊕ei) · (
∞∑

i=1

⊕yi) · (
∞∑

i=1

⊕ei)

= (
∞∑

i=1

⊕ei)y(
∞∑

i=1

⊕ei) =

∞∑
i=1

⊕eiyei. (1)

For any x ∈ L2(H ), y =
∞∑

i=1
⊕eiyei ∈ L,

E(x∗) =

∞∑
i=1

⊕eix∗ei =

∞∑
i=1

⊕(eixei)∗ = (
∞∑

i=1

⊕eixei)∗ = E(x)∗.

E(xy) =

∞∑
i=1

eixyei =

∞∑
i=1

eix(
∞∑
j=1

e jye j)ei =

∞∑
i=1

eixeiyei,

E(x)y = (
∞∑

i=1

eixei)(
∞∑
j=1

e jye j) =

∞∑
i=1

eixeiyei.

Therefore, E(xy) = E(x)y. Similarly, we can get E(yx) = yE(x).
”Necessity” If E is an orthogonal projection from L2(H ) onto its closed subspace L, then ‖E‖2 ≤ 1. For

ξ, η ∈H , ‖E(ξ⊗η)‖ ≤ ‖E(ξ⊗η)‖2 ≤ ‖E‖2‖ξ⊗η‖2 ≤ ‖ξ⊗η‖2 = ‖ξ⊗η‖, then E|F(H ) is a projection with ‖E‖ ≤ 1.
Since F(H ) is dense in K(H ) in the norm ‖ · ‖, E|F(H ) has a unique norm topology extension (denoted Ẽ) to

K(H ) and ‖Ẽ‖ ≤ 1. Therefore, Ẽ is a projection from K(H ) onto L
‖·‖

with bimodule property. Hence, L
‖·‖

is

a C*-subalgebra of K(H ). ThenL
‖·‖

�
∑
ϕ∈P(L

‖·‖

)
⊕B(Hϕ),where P(L

‖·‖

) is the set of extreme point of the state

space on L
‖·‖

. Since H is separable, so is K(H ). Thus the number of ϕ in P(L
‖·‖

) is countable. Therefore,

L
‖·‖

�
n∑

i=1
⊕B(Hϕi ) where ϕi ∈ P(L

‖·‖

) with n = ∞ possible. Let Φ be the isometric ∗-isomorphism from L
‖·‖

onto
n∑

i=1
⊕B(Hϕi ) and Ii be the identity of B(Hϕi ). Set ei = Φ−1(Ii), then ei is a projection in B(H ). We claim

L �
n∑

i=1
⊕L

2(eiH ).

Indeed, for any x ∈ F(H ), E(x) =
n∑

i=1
⊕eixei. Since x is the linear combination of rank-one projections,

we may suppose x = ξ ⊗ ξ, where ξ ∈ H and ‖ξ‖ = 1. Then eixei = eiξ ⊗ eiξ is a rank-one projection or 0,

that is eixei ∈ F(eiH ). Therefore, E(F(H )) ⊂ (
n∑

i=1
⊕F(eiH ), ‖ · ‖2) ⊂

n∑
i=1
⊕L2(eiH ). Hence, L = E(F(H ))

‖·‖2
⊂

n∑
i=1
⊕L2(eiH ).

Conversely, for any x ∈
n∑

i=1
⊕L2(eiH ). If n = 1, x ∈ L2(e1H ), there is a sequence {xn} ⊂ F(e1H ) ⊂ F(H ),

such that E(xn) = xn
‖·‖2
−−→ x. Since E is ‖ · ‖2−continuous, x ∈ L. Therefore, L2(e1H ) ⊂ L. If n < ∞, x =

k∑
i=1
⊕xi

where xi ∈ L2(eiH ) with k < ∞, then for any 1 ≤ i ≤ k, there is a sequence {x(n)
i } ⊂ F(eiH ) ⊂ F(H ), such that
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E(x(n)
i ) = x(n)

i
‖·‖2
−−→ xi. Since k < ∞ and E is ‖ · ‖2−continuous, x ∈ L. Therefore,

k∑
i=1
⊕L2(eiH ) ⊂ L. If n = ∞,

∞∑
i=1
⊕L2(eiH ) = lim

k→∞

k∑
i=1
⊕L2(eiH ). By the continuity of E,

∞∑
i=1
⊕L2(eiH ) ⊂ L.
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