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Abstract. In this paper we introduce f-rough weighted statistical limit set and f-weighted statistical
cluster points set which are natural generalizations of rough statistical limit set and f-statistical cluster
points set of sequence respectively. Some new examples are constructed to ensure the deviation of basic
results. So both the sets don’t follow the nature of usual extension properties which will be discussed here.

1. Introduction

The concept of statistical convergence was introduced by Fast [7] and Steinhaus [25]. Later on reintro-
duced by Schonenberg [24] independently as follows: let K be a subset of the set of all natural numbers IN and

K
let us denote the set {k < n : k € K} by K(n). Then the asymptotic density of K is given by d(K) = lim ﬂ,

n—o 1N

where |K(n)| denotes the cardinality of K(n). Clearly we know that d(IN\K) = 1-d(K). A sequence x = {x,}nen
of real numbers is said to be statistically convergent to a real number c if for every ¢ > 0,

1
Iim—[{k<n:|xx—c|>¢}|=0.
n—oo M
Statistical convergence turned out to be one of the most active areas of research in summability theory after
the works of Fridy [8] and Salat [23].

In the year 2014, the concept of f-statistical convergence was introduced by Aizpuru et al. [1, Definition

2] just by replacing |{k < n : |xx — c| > €}] and % by f({k <n:|xc—c| = €}]) and ﬁ respectively, where f

is an unbounded modulus function. The notion of a modulus function was introduced by Nakano [17].

We recall that a modulus function f is a function from [0, o) to [0, o) such that (i) f(x) = 0 iff x = 0, (ii)

flx+y) < f(x)+ f(y) VY x,y >0, (iii) fis increasing and f is continuous from the right at 0. The f-density
(IK(m)l)

of K € N is denoted and defined by d¢(K) = lim —————. A sequence of real numbers x = {x,},eN is

f(n)
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said to be f-statistically bounded [15, Definition 3.5] if there exists a positive real number M such that
dr(fk € N : |xx| = M}) = 0.

In case of f-density, the relation d¢(IN \ K) = 1 — d¢(K), exist only d¢(K) = 0, where f is any unbounded
modulus function. In other all cases the relation can’t be hold.

Example 1.1 [1, Example 2.1]. If f(x) = log(1 + x) and K = {21 : n € N} then d¢(K) = df(N \ K) = 1. This
shows that asymptotic density and f-density are totally different.

The concept of weighted statistical convergence was initially introduced by Karakaya and Chishti [13]
in the year 2009 and gradually developed by Mursaleen et al. [16], Ghosal [10] and Das et al. [6] by taking
the weighted sequence {t,},en of real numbers such that lim inft, > 0 (this was also done to some extent

n—o0

in [9, 11]). However an important question remains unanswered: If the weighted sequence is properly
divergent to +co then liminff, does not exist. The definition of weighted statistical convergence can't
n—oo

consider this case. Also the definition of weighted statistical convergence was independently introduce
by Braha [3], is not well in the sense that each bounded real sequence is weighted statistically convergent
to any real number. So some problems are still there, therefore it will be modified in this paper and the
question of uniqueness of limit value is proved. We primarily show that under some general assumptions
of weighted sequence {t,},en We can generalize the definition of weighted statistical convergence by using
the definition of f-density.

On the other hand, idea of rough convergence is a generalization of the ordinary convergence, which
was first defined by Lim [14] in the year 1974 and most recently in 2001 this subject developed by Phu [20].
In Phu’s papers [21] and [22] related to the subject, he defined the rough continuity of linear operators and
rough convergence in infinite dimensional spaces respectively. In particular an interesting generalization
of rough convergence was introduced by Aytar [2] as follows: a sequence of real numbers x = {x,},enN is
said to be rough statistically convergent to a real number x. w.r.t the roughness of degree r (where r > 0),

denoted by x, L x, provided for any ¢ > 0, the set {k € IN : |x; — x.| > r + £} has asymptotic density zero.

Here r is called the roughness degree. The set st — LIM"x = {x. € R : x, 2, x.} is called the r-statistical limit
r
set of the sequence x = {x,},en. A sequence x = {x,},en is said to be r-statistically convergentif st—LIM"x # @.

Theorem 1.2 [2, Theorem 2.2]. For a sequence x = {x,},en We have diam(st — LIM"x) < 2r. In general,
diam(st — LIM"x) has no smaller bound.

A sequence x = {x,}qen is said to be statistically bounded [26, Definition 1] if there exists a positive real
number G such that the set {#n € IN : |x,,| > G} has the natural density zero.

Theorem 1.3 [2, Theorem 2.4]. A sequence x = {x,}sen is statistically bounded if there exists a non-
negative real number r such that st — LIM'x # @.

A real number c is said to be a statistical cluster point [26, Definition 2] of a sequence x = {x,},en
provided that the asymptotic density of the set {k € IN : |[x; — ¢| < ¢} is different from zero for every ¢ > 0.
The set of all statistical cluster points of the sequence x is denoted by I'y. More result on this convergence
can be found in [4, 12, 19].

Theorem 1.4 [2, Lemma 2.9]. For an arbitrary c € I'; of a sequence x = {x,,},en we have |x, —c| <7, Vx, €
st — LIM"x.

Theorem 1.5 [5, Corollary 3(3)]. Let x = {x,},en be a bounded sequence of real numbers then the
statistical cluster points set I'y of x = {x,},en is a compact set of IR.
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Theorem 1.6 [18, Corollary 1]. If x = {x,},en is a statistically bounded sequence in R (m-dimensional
space) then the set I'y is non-empty and compact.

A real number c is said to be a f-statistical cluster point [15, Definition 3.1] of a sequence x = {x,},eN
provided that the f-density of the set {k € IN : |x; — c| < €} is different from zero for every ¢ > 0. The set of

all f-statistical cluster points of the sequence x is denoted by F£ .

Theorem 1.7 [15, Corollary 3.9]. For any sequence x = {x,},en in any normed linear space, the set Ff: is
closed.

In a natural way, in this paper we combine the approaches of f-statistical convergence, weighted
statistical convergence and rough statistical convergence and introduce new and more general summa-
bility methods, namely, f-rough weighted statistical convergence, f-weighted statistically bounded and
f-weighted statistical cluster point. On a continuation we also define f-rough weighted statistical limit
set Wist — LIM}x and and f-weighted statistical cluster points set th"£ . We mainly investigate whether
the above mentioned Theorems 1.2 to 1.7 are satisfied for f-rough weighted statistical convergence or
not? The answer is no. Some new examples are constructed to ensure the deviation of basic Theorems
1.2to 1.7. So both the sets don’t follow the nature of usual extension properties which will be discussed here.

2. Main Results

Recently, Braha [3, Definition 1.1] have defined the concept of weighted statistical convergence as
follows: Let {p,}uen and {gn}nen be two non-negative real sequences such that

Py=Y pe, Pa=pi=0andQu=) %, Qi1=q1=0V neN.
k=1 k=1

Convolution of the above sequences we will denote by R,, = (p*g), = ZPk-fin—k- A sequence of real numbers

k=0
x = {xn}nen is said to be weighted statistically convergent to a real number c if for every ¢ > 0,

1
hmR— Itk < Ry @ prigrlxi — cl = €} = 0.

n—o Xy

In this case we write SN,, — lim x, =c.

n—oo

But the above definition is not well defined in general. This follows from the following remark.

Remark 2.1. Let us consider thatp, =1, g, = % ¥ n e N and x = {x,},en be any bounded sequence of real
numbers. It is quite clear that Sy, — lim x, = ¢ where c is any real number, i.e., any bounded sequence
! n—00

of real numbers is weighted statistically convergent to any real number. Hence the definition is not well
defined. So the definition of weighted statistical convergence need to be modified.

Again in the year (2014) Ghosal [10, Definition 2.1 and Remark 2.1(i)] (for o, = 1,8, = n ¥V n € N and
y = 1) weighted ap-statistical convergence of order y coincides with the concept of weighted statistical
convergence as follows: Let t = {f,},en be a sequence of real numbers such that liminft, > 0 and T, =
n—oo
n
Ztk ¥V n € IN. Then the sequence of real numbers x = {x,,},en is said to be weighted statistically convergent
k=1
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to c if for every € > 0,

1
lim T—I{k <T, :tlxg—cl > €}l =0.

n—oo n

Remark 2.2. If the weighted sequence {t,},en is properly divergent to +co (for example t, = n ¥V n € IN)
then lim inft, can’t exists. So the definition of weighted af-statistical convergence can’t consider the case
n—oo

when weighted sequence is properly divergent to +oco. For this reason we can generalize the definition of
weighted statistical convergence by using the unbounded modulus function.

Definition 2.3. Let f be an unbounded modulus function and ¢ = {,},en be a sequence of real numbers

n
such that t, > 6 V¥ n € IN (where 0 is a positive real number) and T,, = Ztk ¥ n € IN. Then the sequence of
k=1
real numbers x = {x,},en is said to be f-weighted statistically convergent to c if for every € > 0,

lim

n—0co f%f(l{k <Ty: tklxk - C| 2 S}|) =0.

. . Wistf
In this case we write x,, — c.

torf torf
It can be very easy to proved that x, W, cand x, 5 dthen ¢ = d.

Throughout the paper we assume that t = {t,},en is a weighted sequence of real numbers such that

n

t, > 0 ¥ n € N (where 0 is a positive real number), T, = Ztk ¥ n € N and f be an unbounded modulus
k=1

function.

Now we introduce the definition of f-rough weighted statistical convergence as follows:

Definition 2.4. Let r be a non-negative real number and ¢ = {t,},en be a weighted sequence. Then the
sequence of real numbers x = {x,},en is said to be f-rough weighted statistically convergent to x. w.r.t the
roughness of degree r if for every ¢ > 0,

lim L

Jim s fk < T s bl =l 2 7+ el) = 0

torf torf
and we write x, ~——> x,. The set W'st — LIM;x ={x. e R:x, Wt x.} is called the f-rough weighted
r

P
statistical limit set of the sequence x = {x,},en With degree of roughness r. The sequence x = {x,},en is said
to be f-rough weighted statistically convergent with degree of roughness r provided that W'st — LIMx # @.

Theorem 2.5. The set Wst — LIM;x of a sequence x = {x,},en is convex.

Proof. Proof is similar to the Theorem 2.7 [2], so omitted. [

In general, for a weighted sequence {t,},eN, the f-rough weighted statistical limit of a sequence {x,},en
may not be unique, infact, it may be infinite for some roughness of degree r > 0. We will show this in our
next example.

Example 2.6. Let us define the sequence x = {x,},en and the weighted sequence t = {t,},en in the following
manner.

2

(-1, if n#m?*VmeN,
Xn = .
ns, otherwise,
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and
. 1+1/n, ifnsm?VmeN,
"\, otherwise.
Letr >4 and f(x) = Vx. Thenforany 0 < ¢ <1,
lim ——f({k < Ty : tlxx — 0l = 7+ €}|) = 0 and hm —— k< Ty telxx =1 =27+ ¢€}]) =0.

n—eo f(T ) f(T )

This shows that 0 and 1 are the f-rough weighted statistical limits of the sequence x = {x,},eN.

Since the set W'st — LIM}x is convex so [0,1] ¢ W'st — LIM;x. This shows that the set containing f-rough

weighted statistical limits of the sequence x = {x,},en is infinite. Note that for this sequence x = {x,},en,
weighted statistical limit set is empty.

Theorem 2.7. The f-rough weighted statistical limit set W'st — LIM".x of a sequence x = {x,},eN is singleton
or empty if the weighted sequence t = {t,},eN is f-statistically unbounded.

Proof. Let W'st — LIM'x = @, then the theorem is obvious. So assuming Wist — LIMix # @. Let there exists
two points x. # y. such that x,, y. € W'st — LIM;x. Take ¢ = lx;—yl > 0.

Case 1: Let the weighted sequence {t,},cn is properly divergent to +oco. Then for any positive real number
G there exist ng € IN such thatt, > G Y n > ny.
Then

11m—f(|k Tyt > f”ze

o }D=g$7%jfmkSD:M%—y42%+2§b

Shlxe —xd =7+ €}]) + hm

. 1
< k<
n=e f(Ty) —e f (

Which is a contradiction.

f(| (k<T,:tlxx—yl=r+e}l) =0.

Case 2: Let the weighted sequence {t,},en is unbounded but not properly divergent to +co. Then there
exists two infinite subsets of IN say K and L such that KUL = IN, KNL = @ and {t,},ex is a unbounded
subsequence and {t,},¢, is a bounded subsequence of {t,},eN.

Subcase 2(i): Let the f-density of K is zero i.e., d f(K) = 0. Since {t,}seL is a bounded subsequence of
{t:}uen then there exists a positive real number G such thatt, < GV n € L.So{n € N : t, > G} =
K\ {a finite subset of IN}. Since the f-density of the set K'is zero. So d¢({k € N : t, > G}) = 0i.e,,

Wmﬂmﬂw<n|m>cm

which contradict that {f,},en is f-statistically unbounded.

Subcase 2(ii): Let the f-density of K is nonzero, i.e., d¢(K) # 0. Since T, (where n € IN) is a real number
then there exists a natural number m such that m < T,, < m + 1. Since f is an increasing function so we have

f(m) < f(Ty) < f(m +1).

Then
fk<T,:keK}|]+1>|{k<m+1:keK}|,
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= f(k<T,:keKl+1)> f(lk<m+1:keK}|),
= f((k<T,:keK})+ f(1) > f(tk<m+1:keK}),
f(1)

fllk<m+1:keK}|).

>
f(T) f(T) ~ f(m+1)
Let n — oo then m — oo, so we get lim]ﬁf(l{k <T,:keK})#0.
Then 1
0# lim f(—f(l{k < T, :k € K\ {a finite subset of IN}}|)
2r + 2¢
< lim STyt >
n—»oof( n)f k Ix* - y*l }|)
= lim (—f(l {k < Ty telx. — yul = 2r 4+ 2¢}])
< hmmf(l (k<T,: tilxg—xd =r+e}]) + hmf( )f(l (k<Ty:tlxx—yd=r+e}l) =0,

which is a contradiction. Hence the result. O

If the weighted sequence {t,},c is f-statistically bounded then there exists a positive real number M
such that

hm— Wk<m:t =Mj}|) =0.
m%oof(m) k i)

Since T,, (where n € IN) is a real number then there exists a natural number m such that m < T, < m + 1.
Since f is an increasing function so we have

f(m) < f(Ty,) < f(m+1).
Now we have
fk<T,: =M} <|{k<m:ty>M}+1,
zf(l{kST,,:thM}|)<f(|k<m:tk>M N+ (1),
f(1)

flik<T,: =M} < o)

ﬁ]% f(|k<m B> M) + 2—

If m — oo then n — oo. Then

f

= lim I{k = Mj})=0.
Jim o ik < )
So, lim J%f(I{k <T,:keA}) =1 where A ={k € N:t < M} (as we know that if K ¢ IN and d¢(K) =
then d¢(IN \ K) = 1). Then the subsequence {t,},c4 of the sequence {t,},en, is bounded so the limit inferior
exists. Throughout the paper lim qunft,, denote the limit inferior of the sequence {t,},c4 when the weighted
ne.

sequence {t,}nen is f-statistically bounded.

Theorem 2.8. For a sequence x = {x,},en, we have

diam(W'st — LIM}x) < lim inf,
0, if the weighted sequence is f-statistically unbounded.

if the weighted sequence is f-statistically bounded,

In general it has no smaller bound than if the weighted sequence is f-statistically bounded.

2r
lim inft,,
neA
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Proof. Case 1:If possible let the diam(W'st — LIM’, x) > T > 0, then there exists a positive real number

neA
S i : top r 2r 2r
a (0, hrr{é }\nftn) such that diam(W'st — LIM fx) > 2> limfilnft

Then there exists y,z € W'st — LIer such that |y —z| > Z. Take ¢ € (0, aU A _ r).Since y,z € Wtst—LIM}x
then

lim —f(| (k<Ty:tlxx—yl>r+e}) =0and lim J%f(I{k STy tlxg—zl =r+e€}]) =0.

Since the weighted sequence is f-statistically bounded then there exists a positive real number M such
that hm m T )f(l {k<T,:ke N\A})=0 where A={kelN:t <M} Alsoa < lim/ilnftn then there exists a
ne

natural number kg such thata < t,,, Vn > kpand n € A.

Choose B =A\{1,2,3,..,kg—1},C={ke N: flxx —yl <r+eland D = {k € N : fglxx —z| <7+ ¢}. Let
K=N\B,L=IN\Cand P=IN\D,sod¢(K)=ds(L)=de(P)=0

Then
fk<T,:ke KUL|<|{k<T,:keK}|+|{k<T,:kelLl,
=>fT)f(|k<T keKuLI)_f( n)f(|k<T keK|)+f(T f(ltk < T, : k € LY.
So it follows that lim f(|k<T ke KUL})=0.

fim 77

Similarly, we can prove that hm ——f({k<T,:ke KULUP}|)=0.

f(T )
(k< Ty : k € BACNDJ) = 1 since N\(BNCND) = (N\B)UIN\C)U(N\D) = KULUP).

Sowehave lim

1
”_’mf( )

Now we chooseany p € BN CND. Thent, > a, tylx, —y| <r+ecand tylx, —z| <r +e.

Laly -zl <alx, -yl +alx, -zl <tplx, =yl +tplx, — 2l <2(r + &) < aly — 2],

aly z|

(since ¢ < — 1), which is a contradiction.

Case 2: Let the weighted sequence is f-statistically unbounded. Then from the Theorem 2.7, diam(W'st—
LIM"x) = 0.
f

Now let us prove the second part of the theorem.

totf
Consider a sequence x = {x,},en such that x, Wt ¢ and the weighted sequence t = {t,},en is bounded
which satisfies the condition f, < lim uixfnft” ¥ n € IN (such a sequence exists for example, let f(x) = +fx,
ne

Vx>0,

1, ifn=m?¥VmeNN,
X, =
" 0, otherwise,

1
andtn:2—EVne]N,

totf
then x, W, 0 and b, <2= limﬂi\lnftn V¥ neN).
ne
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1
f(Tw)

Choosing L = liminft, and B;(c) = {y € R: ly —c| < f} =[c— {,c+ {].

Then for any ¢ > 0, lim fUk < Ty 2 telxxe —cl = €}]) = 0.
n—oo

Letyeg%(c), then
tk|xk—y|stklxk—c|+tk|c—y|<e+L£=r+ere]N\{ke]N:tklxk—CIZE},

= kelN: g —yl>r+el SlkeN: flxe —c| > €}

Therefore we gety € Wtst—LIM}x. So Wtst—LIM}x = E% (c). Since the diam(E% (c)) = %, this shows that in

general, the upper bound I of the diameter of the set W'st — LIM}x can’t be decreased anymore. []

2r
im inft,
neN
In [2, Theorem 2.2] Aytar showed that the diameter of a rough statistical limit set is < 27 (where r is the
roughness of the convergence). For the case of f-rough weighted statistical convergence the diameter of
rough weighted statistical limit set may be strictly greater than 2r. We show this in our next example.

Example 2.9. Define x = {x,},en and f = {t,}nen by,

.- 2+ L ifn#m?,meN,
n2, otherwise,

and
n=

|3+ L ifn#Em?meN,
n, otherwise.
Letr=1and f(x) = VxV x> 0.

Then{(k € N: tlxy —0| > 1+ ¢} C k€ N:k=m?>V meIN}UD (where D is a finite subset of natural
number).

So, lim Lf(l{k <T,:txx—0/>1+¢))) =0= 0€ W'st — LIMLx.
n—»oof(Tn) f
Similarly, we get lim j%f(l{k ST, ity —4>21+¢))=0=> 4€ Whst - LIM}x.

From the Theorem 2.5 we get, [0,4] ¢ W'st — LIM}x.

Xe

Now take any x. > 0. Then for any 0 < ¢ < 5 we have,

1
lim mf(“k <Ty,: tk|xk + X*| >1+ 6}|) =1,

n—oo

(where filxg + x| = (3 + DR+ 1 +x) =1+ 5)+ (& + T + &) > 1+ Yk # m? and k > ko, for some positive

integer kg and m € IN). This implies —x, ¢ W'st — LIMjlfx.
Similarly, we can show that, (4 + x.) ¢ W'st — LIM}x Y x, > 0.
This shows that W'st — LIM}x =[0,4].
So, diam(W'st — LIM}x) =4 > 2r (since r = 1). Hence the result.

Theorem 2.10. The set W'st — LIM}x of a sequence x = {x,},en is closed.
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Proof. Case 1: Let {t,}nen be f-statistically bounded and W'st — LIM;,x = @, then it is trivial.

So assume that W'st — LIM}x # ¢ and let p, € Wist — LIM;x. Then there exists a sequence p = {p,}sen in
Wist — LIM',x such that p, — p. as n — co. We have to show that p. € W'st — LIMx.

Since {tu}uen is f-statistically bounded, then hm ——fk<T,:tr 2M}|) =0

f(T)

Also p, — p.asn — co. Then for any ¢ > 0, there exists ko such that [py — p.| < 55; YV k > ko.
Then from the triangle inequality, tlxx — p.| < tlxx — pr| + telpr, — p<l ¥ k € IN.
We have {k € N : tylxg —p | <r+ 5tN{keN:tp <M} C{k € N: tlxg —p.| <7 +el},

S{keN:flg-—plzr+el} SkeN: khlxg —pr|l 2r+ 5 Ulke Nt > M},

= hm—f(lk Tyt telxx —pd =7+ €}l) =0.

n—oo (

So, p. € W'st — LIMx. Hence Wist — LIMx is closed.

Case 2: Let {t,}yen is f-statistically unbounded. Then by Theorem 2.7, W'st — LIM}x is either singleton
set or empty. Hence it is closed. [

Remark 2.11. The set Wst — LIM}x of a sequence x = {x,},en is path connected, compact, totally bounded,
complete and separable. Also the set W'st — LIMZx contains more than one point then the set is uncountable
and is an interval.

Now we introduce the definitions of weighted bounded and f-weighted statistically bounded of a se-
quence of real numbers as follows:

Definition 2.12. Let t = {t,},en be a weighted sequence. Then the sequence x = {x,},en is said to be
weighted bounded if there exists a positive real number G such that x| < GV n € IN. The set of all
weighted bounded sequences is denoted by W'(B).

Definition 2.13. Let t = {t,},en be a weighted sequence. Then the sequence x = {x,},en is said to be
f-weighted statistically bounded if there exists a positive real number G such that

}}l_rgf T )f(| k< Ty : tlxel = GlI) =

We denote the set of all f-weighted statistically bounded sequence by W'S/(B).
Remark 2.14. (i) If a sequence {x

true. For example, choose x,, =
weighted bounded.

ninen is weighted bounded then it is bounded. But the converse is not

{x
% and t, = n2 VY n € N. Then it is quiet clear that {x,},en is bounded but not

(ii) It is obvious that W!(B) C W!Sf(B). But it is possible to find out a sequence {x,},en Which is f-
statistically bounded but not f-weighted statistically bounded. For this we consider the sequence {x,},eN
and {t,},en define in Remark 2.14.(i).

Theorem 2.15. Let the weighted sequence {t,},en satisfies the condition hm /}((t'%”) = 0 and {x,},en be a

f-weighted statistically bounded sequence of real numbers then {x,},en is f statlstlcally bounded.
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Proof. Let 6 > 0 and {x,},en be a f-weighted statistically bounded sequence. So there exists a positive real
number G such that

}ggomf(l {k < Ty : tilxel = GOY|) =

For m € IN, then there exists a positive integer n such that T, <m < T,s1 = f(T,) < f(m) < f(Tps1). Then
[k <m:|xx|l = Gl < [tk < Thyr = bl = GO} = [{k < Ty = tilxkl = GOY + tisa,
= fltk <m:lxl > GH) < f(ltk < Ty« tilxxl = GOY) + f(tne1),

f(tn+1)
f(Tw)

:>f—f(|k<m ka|>GI)_f(T)

Let m — oo then n — oo and R.H.S tends to 0, it follows that

s telxl > Goll) +

11111—1>1<}0f( )f(| fk<m:|xl>G})=

and consequently the sequence {x,}.en is f-statistically bounded. [

Is this type of weighted sequence {t,},cn satisfies the condition hm ff(:"T*ll) = (O exists ? Answer is yes. For

example, chooset, =nV¥ne€Nand f(x) =x",0<p<landx > 0.

Theorem 2.16 (Decomposition Theorem). If x = {x,},eN is a f-weighted statistically bounded sequence of
real numbers then there exists a weighted bounded sequence y = {y,},en and f-weighted statistically null
sequence z = {z,},en such that x = y + z. However this decomposition is not unique.

Proof. Let x = {x,},en be a f-weighted statistically bounded sequence of real numbers. Then there exists a
G > 0 such that

r}l_l){)lof fk < Ty« tilxi = Gl) =

Let P = {k € N : ti|xx| > G}. Define,

EY if nelN\P,
Yn = 0, otherwise,
and
{a if neN\P,
Zy = .
X, otherwise.

Then x = y+2z, where y is a weighted bounded sequence and z is a f-weighted statistically null sequence.
So W!Sf(B) ¢ W!(B) + wfsg (where WtS£ is the set of all f-weighted statistically null sequences).

Now if we take any y € Wf(B) and z € W*Sé . Then there exist G > 0, such that |yx| < GV k € N and for
every ¢ > 0, we have 11 m T f(| (k<T,:tlzl = €}) =0

Since tlyx + zil < trlyel + telzil < G + tlzil. Then {k € IN : telyx + zil = G+ €} C {k € IN : f|zi| = ¢}. This
shows (y + z) is a f-weighted statistically bounded sequence of real numbers.

Hence W'S/(B) = W!(B) + W'S].



S. Ghosal, S. Som / Filomat 32:7 (2018), 2583-2600 2593

2nd Part: Now let ¢ = {c,},en be a real sequence with finitely many nonzero terms.

Let {c1, ¢y, 3, ..., Cy} are the nonzero terms of ¢ = {¢,,},enwy and G; = max{ticy, taco, t3C3, ..., tuCi}.

Define,
(e —cn), if nelN\P,
Pn = 0, otherwise,
and
_)en if nelN\P,
= X, otherwise.

Then [tprl = 1t(xx — co)l < ltxel + ltker] < G+ G1 = G2 V k € IN. Hence p = {pu}nen is weighted bounded
sequence of real numbers.

For any ¢ > 0,{k € IN : tlql > €} € P U Py (where Py is a finite set). So g = {gn}uen is f-weighted
statistically null sequence and we have x = p + 4. Hence the decomposition is not unique. O

Theorem 2.17. If a sequence x = {x,},en is f-weighted statistically bounded then there exist a non-negative

real number 7 such that Wst — LIM;x * @.

Proof. Let € > 0. Since the sequence x = {x,},en is f-weighted statistically bounded, then there exists a
positive real number G such that

lim L

n—>oof(Tn)
Let K = {k € N : fx]xx| > G}. Define r = inf{ty|x| : k € K}. Then we have r > G.

k< Ty : il > GH) = 0.

So,
1

fkeN:tix| >r+¢} CK = lim T )f(l{ksT,,:tklxk|2r+e}|)=0.

n—oo (

Then 0 € Wtst — LIM:,x. Hence Wist — LIM}x 2. O

But the converse is not true and to show that we will give an example. Again Aytar [2, Theorem 2.4]
had shown that a sequence x = {x,},eN is statistically bounded if there exists a non-negative real number
r such that st — LIM"x # @. For the case of rough weighted statistical convergence we show that f-rough
weighted statistical limit set is non-empty where as the sequence is not f-weighted statistically bounded.
We show this in our next example.

Example 2.18. Take the sequence

.- 5 ifn=m*VmeN,
" 1—711—2, otherwise.

Let the weighted sequence is defined by f, = n ¥ n € N. and take f(x) =*’,x >0and 0 <p < 1.

Then for any 7, ¢ > 0, we have

lim ﬁf(l{k <Toiblto— 12 r+ el) < lim ﬁm{k ST, by 11> el])
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. 27 nn+1)
= —_— < N - >
Jim = ik < = sk = 11 2 el
P 1 5
< lim 2 £ n(n+1) :limz—zp:O

n—oo(n(n + 1))P 2 = (p(n + 1))z

So the sequence x = {x,},en is f-rough weighted statistically convergent to 1. This implies 1 €
Wist — LIMx.
But for any real G > 0, we have lim ]%f(l{k < T, : tlxxl = G}|) = 1. So the sequence x = {x,},en is not
n—oo n

f-weighted statistically bounded.

Now we introduce the definition of f-weighted statistical cluster point of a sequence of real numbers as
follows:

Definition 2.19. Let t = {t,},en be a weighted sequence and ¢ € R is called a f-weighted statistical cluster
point of a sequence x = {x,},en if for every € > 0,

7];1_1;1010 'ﬁfﬂ{k < Ty tilxe —cl < e}]) #0.

We denote the set of all f-weighted statistical cluster points of the sequence x = {x,},en by th"{ .

In [2, Lemma 2.9] Aytar had shown that for an arbitrary ¢ € I'y of a sequence x = {x,},en We have
|x. —c| <1, V¥ x. € st — LIM"x. Rather for the case of f-weighted statistical cluster points and the set of

f-rough weighted statistical limit points, |x. — ¢| may be > r for some x, € W'st — LIM x and c € W'T. We
show this in our next example.

Example 2.20. Consider the sequences x = {X,}ueN, t = {tn}nen and f(x) = Vx V x > 0 defined in Example
2.9. Then we get W’T£ = {2}. It follows that W'st — LIM}x = [0,4]. Choose x, = 0,c =2 then |x. —c| =2 > r
(since r = 1).

Now we give some important relations between the set of f-weighted statistical cluster points and the
set of f-rough weighted statistical limit points of a sequence x = {xy},en.

Theorem 2.21. For an arbitrary c € WT{ of a sequence x = {x,},en, we have

m, if the weighted sequence is f-statistically bounded,

n

|x* _ C| < neA
r

inft,’

nelN

if the weighted sequence is f-statistically unbounded,

Y x, € Wist — LIM}x.

Proof. Case 1: Let the weighted sequence {t,},en be f-statistically bounded. If possible, let there exist a point

ce W"Tf; and x. € Wist — LIM".x such that |x, — ¢| > 7——F— > 0.
f lim inft,,
neA
diminft,)|x. —c| — 7
neA

This implies

3 > 0. Then there exists a positive real number « € (0, lim qunft,,) such that
ne

lim inft,)|x, — c| — r
( neA n)b. = dl alx, —c|—r

3 > 3 > 0.
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“'x%cl_r > 0. Since @ < lim /ianftn so there exist kg € IN such thatt,, > a ¥ n > ky and n € A where
ne

={ke N:ty <M}andds(IN\A)=0

Define ¢ =

Let B = A\ {1,2,...,ko — 1}, then d¢(IN \ By) = 0. Now as c € th"£ so for every ¢ > 0 we have

1mf—f(| {k < Ty, : tlxg —c| < €}]) #0.

Take B = {k € IN : fi]|xx — c| < €}. Then four subcases arises.

Subcase 1(i): If BN By = @ then B C IN'\ By. Since d¢(IN \ By) = 0 then d¢(B) = 0. Which is a contradiction
so this subcase can never happen.

Subcase 1(ii): If B C By, then d¢(B N By) = d¢(B) # 0.
Subcase 1(iii): If By C B, then d¢(B N By) = d¢(Bo) = 1.

Subcase 1(iv): f BN By # @, B\ By # @ and By \ B # @ then B \ (BN By) € IN '\ By.
This implies d¢(B \ (B N By)) = 0 (since d(IN \ By) = 0).

Again,
k<T,:keB}={k<T,:ke B\(BNBy)}Ulk<T,:keBnBy},
= f(lk<T,:keB)) < f({k<T,: ke B\ (BNBy)ll) + f(I{k < T, : k € BN By}l).
Then

lim e k< T, ke B)

<r}gxc}omf(|k<]" keB\(BnBO)}|)+ggj%
:’}ggf(“qur :ke€ BN By}|) #0.

This shows that for all existing cases d¢(B N Bg) # 0. So there exists natural number k € B N By.

f{k < Ty : k€ BN Bo}l),

Then
telxe — x| > telxe —c| = tilxe —c| > 3e+r—ec=r+2e>r+e,

= {(keN:txp—x|>r+e} 2{keIN: tlxr — c| < &} N By,
1
= lim Tf(l{k STyt — x| =7+ €}]) #0.
This contradicts the fact that x, € Wst — LIM}x.

Case 2: Let the weighted sequence {t,},en be f- statistically unbounded. If possible, let exists a point

ce th"f and x, € Wist — LIM}x such that |x, — ¢| > 1nft
nelN

Lete = @, where { = inft,.
neN
We know that fi|x, — x¢| > tlx. —c| — telxe — c] = Qe — | — tlxx — ¢l = 7+ 2 — il — | YV k € IN.

Then
fkeN:tix. —c| < e} C ke N : fixp — x| > 7+ €}
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1
Since ¢ € WI’L we have lim mf(l{k < Ty telxx — ¢l < €}]) # 0 this implies
n—oo n
lim Lf(|{k<T Shlxk —x] =r+el) #0
n—mof(Tn) = Ip - LklAk x| = y
which contradicts the fact x, € Wist — LIM’.x. [

f

Corollary 2.22. If both the sets W'T, and W'st — LIM"x are non-empty then from the Theorem 2.8 and
Theorem 2.21, we get the set W'T, is bounded.

Pehlivan et al. [18, Corollary 1], had shown that if a sequence in a finite dimensional normed linear
space is statistically bounded then the statistical cluster points set is non-empty. For the case of f-weighted
statistical convergence the f-weighted statistical cluster point set may be empty even if the space is finite
dimensional and the sequence is statistically bounded.

To prove this important fact, we consider the sequence of real numbers x,, = % VYneNandt, =n?Vne
IN. Then the sequence x = {x,},en is statistically bounded but W’F{ =Q.

Theorem 2.23. (a) For an arbitrary c € W‘Tﬁf of a sequence x = {x,},en, We have

Wist — LIM'.x C

{E; (c), if the weighted sequence is f-statistically bounded,
f

E; (c), if the weighted sequence is f-statistically unbounded,
where p = liminft, and g = inft,.

neA neN
(b)

() B:(0) € fx. € R: W'T, C B:(x)),
ceWr’
Wist — LIM % if the_ weighted sequence is f;statistically bounded,
71 () Be(© € . € R: WIT] € B: (),
q q
ceWr’
if the weighted sequence is f-statistically unbounded.

Proof. (a) From the Theorem 2.21 the results are obvious.

(D) Case 1: Let the weighted sequence is f-statistically bounded. Then from the Theorem 2.23(a), we can
write _
Wist - LIMx € () B:(c).
ceWT,

Now assume that y € ﬂ Eé(c). Then we have |y — ¢| < £, forall ¢ € th”fi, which equivalent to

CEW“F){

r
p
WIT] C B:(y), ie,

(1) B:(0) € fx. € R: WS € B: (x.)).

cew'rf

Case 2: Proof is similar to Case 1 so omitted. [
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The following examples show that equalities of the above Theorem 2.23 may or may not occur.
Example 2.24.

Case 1: The weighted sequence is f-statistically unbounded.

(i) Let

0, if n even integer,
Xn = .
1, otherwise,

andt, =nVneN, f(x) =logx+1)Vx>0,r>0.

Then WITL = (0,1}, g =1, E5 0) = [-r,7], Eéa) =[1-71+r]and W'st - LIM}x = @.So

— . 1
Eé(o) mg;(l) = {[1 T,T], lfT > 3

@, otherwise.
This shows that W'st — LIM}x ¢ E; ) ifr> 1.
(ii) Let

.o 1,ifn=m?>VmeN,
" 710, otherwise,

andt, =nV¥neN, f(x) = yxforallx >0and r = 1.
Then th"f: ={0},g=1, Eﬁ (0) = [-1,1] and W'st — LIM x = {0}. This shows that W'st — LIMx & E; (0).
Case 2: The weighted sequence is f-statistically bounded.
(iii) Let

. 1,ifn=m?>VmeN,
" 710, otherwise,

andtn=1+%\7’n€]N,f(x):log(1 +x) forallx > 0 and r = %

Then W'T{ = (0,1}, p =1, B,(0) N B, (1) = [,
W'st — LIMx = E% 0)n E% 1).

1n[1,3]={1} and W'st - LIMjx = {3}. This shows that

NI—=

(iv) Let
2+ 1 ifn#Em’meN,

Xn = .
{nz, otherwise,

B T+l ifn+m?meN,
n — .
n, otherwise,

andr =1and f(x) = Yx¥ x> 0.
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Then WT; ={2,p=1, E;(Z) = [0,4] and Wist — LIM}x = [0,4] (by the Example 2.9). This shows that
W'st — LIMx = E;(O).

Remark 2.25. From the Example 2.24 (i) and (iii), we get the set Wtrf: is not a convex set.

Theorem 2.26. The set W! 1"£ is closed if the weighted sequence t = {t,},en is f-statistically bounded.

Proof. 1f W’T£ = ¢ then there is nothing to prove. So we assume that WTi # ¢. Letx, € W'T£ . Then there

exist a sequence {y,}nen In th"f such that y, — x, as n — co. We have to show that x, € th"f Lete > 0.
Since {t,}uen is f-statistically bounded so there exist M > 0 such that hm ——f{k<T,: ke N\ A} =

where A = {k € N : t, < M}.

f(T)

Since y, — x. as n — oo, so there exist ko € IN such that [y, — x.| < 557 ¥ 1 > ko.
Let B = {k € N : flx; — Y| < &). Since yy, € W'TL s0 d¢(B) # 0.
Then four cases arises.

Case 1: 1f AN B = @ then B C IN \ A this implies d¢(B) = 0 (since d¢(IN \ A) = 0). Which is a contradiction
so this case can never happen.

Case 2:1f BC A, then ds(A N B) = d((B) # 0.
Case 3:1f A C B, then d¢(A N B) = dy(A) = 1.

Case4:fANB+@,A\B#+@and B\A # @thenB\ (ANB)CIN\A.
This implies d¢(B \ (A N B)) = 0 (since d¢(IN \ A) = 0).

Then

({k < T, : k€ B)))

1
Vl—)oof(T

<g§of( )f(|k<T ke B\ (ANB)}) +11mf( )f(|k<T ke ANBY),

= hmmf(|k<Tn ke AnB}|) #0.

This shows that for all existing cases d¢(A N B) # 0. Now we have the inequality

teloek — x| < lok — vl + Brlyr, — X,

= ke IN: filxe — yil < = } (ke N:ty <M} ClkeN: fix — x| < ¢},

2
= ANBClkeN:tlx — x| <el},

= df({k € IN: tylxp — x.] < €}) #0.

This shows that x. € WT; . This completes the proof. [
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Connor et al. [5, Corollary 3(3)] had shown that the statistical cluster points set I'y of a bounded se-
quence x = {X,;}uen is @ compact subset of IR and Pehlivan et. al. [18, Corollary 1] had shown that if
X = {xu}uen is a statistically bounded sequence in R" (m-dimensional space) then the set Iy is compact.
Again Listan-Garcia [15, Corollary 3.9] had shown that, for any sequence x = {x,},en in any normed linear
space, the f-statistical cluster points set l"£ is closed. For the case of f-weighted statistical convergence, the
f-weighted statistical cluster points set may not be closed even if the space is R (finite dimensional) and
the sequence is bounded (or, statistically bounded). The following example shows that in general, if the
weighted sequence t = {t,},en is f-statistically unbounded then the set WT{ is may not closed (i.e., not
compact).

Example 2.27. Let N = UAf be a decomposition of N (i.e., Ay, N A, = @ for m # n). Assume that
j=1
Aj= {27125 -1):se N}V j=1,2,3,...

Setting
fx)=x"Vx200<p<l {=kVkel,
1 1 .
xk=;+ﬁ\7’ keAjandj=1,2,3,.. .

Then for each j € IN, we get

. 1 1 , ' .
’}g?o mfﬂ{k < Ty bl — ;I < e}]) 2 dg(Aj \ {a finite sub set of IN})

1 1
— #0.

1 1
im —— (T V(= + — =
> lim (T, ( i Tn) -

n—oo (Tn)p
This shows that % eWT/VjeN.
Next we assume k € IN then there exists an integer j € IN such that k € A; some j € IN. This implies k is
of the form k = 2/~1(2s — 1) where some s € IN.
Now for each k € N,

2j

1 12
277

@12 -1

(since2">n, Yn>1land2s-1>1, Vs =>1).

teled] = 27125 — 1){% + )= (2s-1)+

1

2125 —1) 2
So we choose 0 < ¢ < 1, then

lim L

n—oo f(T‘rl)

This implies 0 ¢ th"£ .So WtH: is not a closed set under f-statistically unbounded weighted sequence.

fUk £ Ty - trlxkl < €}]) = 0.

Listan-Garcia [15, Corollary 3.7] had shown that, if x = {x,},en is a f-statistically bounded sequence in
any normed linear space, then the set 1"£ is bounded. But no such example is given that what will effect on
the cluster points set F£ if the sequence is not f-statistically bounded. We show this in our next example.

Example 2.28. Consider a decomposition of IN, i.e., Aj = {Zf‘l(Zs -1):seN}, Vj=1273,... Setting
f()=x"Vx20,0<p<lfr=1¥VkeNandx =j+ 5 YkeAjandj=1,23,....
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In this case f-weighted statistical convergence coincides to f-statistical convergence. Then for each
jeNand0< e <1, weget

FQlk < n: bl — 1 < ell) = d(A) = — #0.

lim L .
2jp

o Fn)

This shows that j € WTﬁ ¥V jeN. So th"£ is not a bounded set. This implies the set 1"£ may not be
bounded.

Theorem 2.29. Let x = {x,}yen and y = {y,}.en be two sequences of real numbers and ¢t = {t,},en and
s = {sulnen be corresponding weighted sequences such that d¢({k € IN : xp # y}) = dp(fk € N : b # s5¢}) = 0.

Then W'T] = W°T),

Proof. Let € € Wfl"i,A =lkeN:x #wu,B={keN:t #s5} C=1{keN:H{x—-{ < ¢ and
D ={keN:slyr — | < e}. Then C\ (AU B) C D and d¢(A U B) = 0. Hence the result. [
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