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Abstract. In this note, we give some results on the ascent and descent of multiplication and composition
operators on Orlicz spaces.

1. Preliminaries and Introduction

Let X be a linear space and M : X −→ X be a linear operator with domain D(M) and range R(M) in X.
The null space of the iterates of M, Mn, is denoted by N(Mn), and we know that the null spaces of Mn’s
form an increasing chain of subspaces (0) = N(M0) ⊂ N(M) ⊂ N(M2) ⊂ . . .. Also the ranges of iterates
of M form a nested chain of subspaces X = R(M0) ⊃ R(M) ⊃ R(M2) ⊃ . . .. Note that if N(Mk) coincides
with N(Mk+1) for some k, it coincides with all N(Mn) for n > k. The smallest non-negative integer k such
that N(Mk) = N(Mk+1) is called the ascent of M and denoted by α(M). If there is no such k, then we set
α(M) = ∞. Also if R(Mk) = R(Mk+1), for some non-negative integer k, then R(Mn) = R(Mk) for all n > k.
The smallest non-negative integer k such that R(Mk) = R(Mk+1) is called descent of M and denoted by δ(M).
We set δ(M) = ∞ when there is no such k. When ascent and descent of an operator are finite, then they
are equal and the linear space X can be decomposed into the direct sum of the null and range spaces of a
suitable iterates of M. The ascent and descent of an operator can be used to characterized when an operator
can be broken into a nilpotent piece and an invertible one; see, for example, [1, 12]. For some results on
ascent and descent of an operator in general setting see, for example, [11, 13].

Recently, R. Kumar in [8] has studied ascent and descent of weighted composition operators on Lp-
spaces; see also [2]. In this paper, we, among other things, give some necessary and sufficient conditions
for a product of multiplication and composition operators on Orlicz spaces to have finite ascent and decent.
In particular, our results generalize and improve known results on the classical Lebesgue spaces.

First, for the convenience of the reader, we gather some necessary facts on Orlicz spaces. For more
details on Orlicz spaces see [7, 9].

A function Φ : [0,∞)→ [0,∞] is called a Young function if Φ is convex and Φ(0) = 0; we also assume that
Φ is neither identically zero nor identically infinite on (0,∞). With each Young function Φ one can associate
another convex function Ψ : R→ R+ having similar properties, which is defined by

Ψ(y) = sup{x|y| −Φ(x) : x ≥ 0} (y ∈ R).
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Then Ψ is called the complementary Young function of Φ.
A Young function Φ is said to satisfy the 5′ condition, if there exists c > 0 such that

Φ(xy) ≥ c Φ(x)Φ(y) (x, y ≥ 0).

Throughout the paper, let (X,Σ, µ) be a σ-finite complete measure space and L0(X) be the linear space
of all equivalence classes of all Σ-measurable real-valued functions on X, that is, we identify any two
functions that are equal µ-almost everywhere on X. The support of a measurable function f is defined as
S( f ) = {x ∈ X : f (x) , 0}. Let Φ be a Young function, then the set of Σ-measurable functions defined as

LΦ(X) =

{
f ∈ L0(X) : ∃k > 0,

∫
X

Φ(k| f |)dµ < ∞
}

is a Banach space with respect to the norm

‖ f ‖Φ = inf
{

k > 0 :
∫

X
Φ(| f |/k)dµ ≤ 1

}
.

The pair (LΦ(X), ‖ · ‖Φ) is called an Orlicz space. If Φ(x) = xp/p for x ≥ 0, where 1 < p < ∞, then Φ is a Young
function and Ψ(x) = xp′/p′, where 1 < p′ < ∞ and 1/p + 1/p′ = 1. In this case we recover the classical
Lebesgue spaces: LΦ(X) = Lp(X).

For a measurable function u ∈ L0(X), the rule taking u to u · f , is a linear transformation on L0(X) and
we denote this transformation by Mu. In the case that Mu is continuous, it is called a multiplication operator
induced by u.

Let T : X → X be a measurable transformation, that is, T−1(A) ∈ Σ for any A ∈ Σ. If µ(T−1(A)) = 0
for all A ∈ Σ with µ(A) = 0, then T is said to be non-singular. This condition means that the measure
µ ◦ T−1, defined by µ ◦ T−1(A) = µ(T−1(A)) for A ∈ Σ, is absolutely continuous with respect to the µ (it is
usually denoted µ◦T−1

� µ). The Radon-Nikodym theorem ensures the existence of a non-negative locally
integrable function h0 on X such that

µ ◦ T−1(A) =

∫
A

h0 dµ (A ∈ Σ).

Any non-singular measurable transformation T induces a linear operator (composition operator) CT from
L0(X) into itself defined by

CT( f )(x) = f (T(x)) (x ∈ X, f ∈ L0(X)).

Here the non-singularity of T guarantees that the operator CT is well-defined as a mapping from L0(X) into
itself. If Mu and CT are well-defined, then we denote their composition as MT,u = CTMu. Composition
operators have been studied extensively in many function spaces and recently the investiagtion of such
operators on Orlicz spaces has attracted some attention.

2. Main Results

Throughout the paper we assume that Φ is a Young function, T : X −→ X is a non-singular measurable
transformation and u : X −→ R is a Σ-measurable function such that S(u) = X. Also, for a Young function
Φ, we assume that MT,u is a bounded operator on the Orlicz space LΦ(X).

Here we give a sequence of measures (µn)n defined inductively by

µn(A) =

∫
T−1(A)

hn−1(Φ ◦ |u|) dµ (A ∈ Σ)

where for natural number n, hn is the Radon-Nikodym derivative dµn/dµ and h0 = d(µ◦T−1)/dµ. Moreover,
we set

Sn = S(hn), LΦ(Xn) = { f ∈ LΦ(X) : S( f ) ⊆ Sc
n, µ-a.e.}

where Sc
n = X − Sn for n ∈N.

First we prove a technical lemma that we use in the next assertions.
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Lemma 2.1. If A ∈ Σ and A ⊆ Sc
n for some n ∈N, then T−k(A) ⊆ Sc

n−k for k ≤ n.

Proof. we have

µn(A) =

∫
T−1(A)

hn−1(Φ ◦ |u|) dµ =

∫
A

hn dµ = 0.

Therefore hn−1 |T−1(A)
= 0, and hence T−1(A) ⊆ Sc

n−1. Applying this to the set T−1(A) ⊆ Sc
n−1 and measure µn−1,

we find that T−2(A) ⊆ Sc
n−2. By continuing this, we get T−k(A) ⊆ Sc

n−k for k ≤ n.

A non-singular measurable transformation T : X −→ X is called essentially surjective if T(X) ∈ Σ and
µ[X \ T(X)] = 0.

Remark 2.2. In [8] it was claimed that a non-singular measurable transformation T is essentially surjective
if and only if MT,u is injective. As noted in [5] this is not true. Consider the following example taken
from [10]: X = [0, 1], and let m denote the Lebesgue measure defined on σ-algebra of Lebesgue measurable
subsets of X. Let T(x) = (x + h(x))/2, where h is the singular Cantor-Lebesgue function. Then T is an onto
homeomorphism on X. Note that d(µ ◦ T−1)/dµ = 1/2 almost everywhere. Letting u = 1 and noting that
MT,u is a well-defined bounded weighted composition operator on Lp([0, 1]). If K denotes the Cantor set,
then m(T(K)) = 1/2 while m(K) = 0. It follows that MT,u(χT(K)) = 0; i.e., MT,u is not injective.

In the next theorem we obtain an upper bound for the null space of Mn
T,u on the Orlicz space LΦ(X).

Lemma 2.3. Let MT,u be a bounded operator on LΦ(X) with Φ ∈ 5′. If T is an essentially surjective non-singular
measurable transformation, then for all n ∈N, we haveN(Mn

T,u) ⊆ LΦ(Sc
n−1).

Proof. If f ∈ N(Mn
T,u), then, for all x ∈ X,

Mn
T,u f (x) =

n∏
i=1

u(Ti(x)) f (Tn(x)) = 0.

Therefore, for all α > 0

0 =

∫
X

Φ
(
α
∣∣∣∣ n∏

i=1

(u ◦ Ti(x)) f ◦ Tn(x)
∣∣∣∣)dµ

=

∫
X

h0(x)Φ
(
α
∣∣∣∣u(x)

n−1∏
i=1

(u ◦ Ti(x)) f ◦ Tn−1(x)
∣∣∣∣)dµ

≥ c
∫

X
h0(x)Φ(|u(x)|).Φ

(
α
∣∣∣∣ n−1∏

i=1

(u ◦ Ti(x)). f ◦ Tn−1(x)
∣∣∣∣)dµ

≥ c
∫

X
h0(T−1(x))Φ(|u(T−1(x))|).Φ

(
α
∣∣∣∣u(x)

n−2∏
i=1

(u ◦ Ti(x)). f ◦ Tn−2(x)
∣∣∣∣)dµ ◦ T−1

≥ c
∫

X
Φ
(
α
∣∣∣∣u(x)

n−2∏
i=1

(u ◦ Ti(x)). f ◦ Tn−2(x)
∣∣∣∣)dµ1

= c
∫

X
h1(x).Φ

(
α
∣∣∣∣u(x)

n−2∏
i=1

(u ◦ Ti(x)). f ◦ Tn−2(x)
∣∣∣∣)dµ,

where c > 0 is a constant satisfies in the definition of condition Φ ∈ 5′. Repeating the argument, we see that

cn
∫

X
hn−1(x).Φ

(
α
∣∣∣∣u(x). f (x)

∣∣∣∣)dµ ≤ 0,
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and hn−1 |S( f )= 0, this means that, f ∈ LΦ(Sc
n−1).

Here we give a lower bound for the null space of Mn
T,u.

Lemma 2.4. Let MT,u be a bounded operator on LΦ(X). For all n ∈N, we have LΦ(Sc
n−1) ⊆ N(Mn

T,u).

Proof. Suppose f ∈ LΦ(Sc
n−1). So S( f ) ⊆ Sc

n−1 and, by Lemma 2.1, T−(n−1)(S( f )) ⊆ Sc
0. Therefore for all α > 0,

we have∫
X

Φ(α|
n∏

i=1

(u ◦ Ti(x)). f ◦ Tn(x)|)dµ =

∫
X

h0(x)Φ(α|u(x).
n−1∏
i=1

(u ◦ Ti(x)). f ◦ Tn−1(x)|)dµ = 0;

i.e., f ∈ N(Mn
T,u).

Now, under a weak condition on the Young function, a combination of lemmas 2.3 and 2.4 gives us the
null space of Mn

T,u.

Corollary 2.5. Let MT,u be a bounded operator on LΦ(X) and Φ ∈ 5′. If T is an essentially surjective non-singular
measurable transformation, then LΦ(Sc

n−1) = N(Mn
T,u).

Here we can give a necessary and sufficient condition for MT,u to have finite ascent.

Theorem 2.6. Let MT,u be a bounded operator on LΦ(X), Φ ∈ 5′, and T be an essentially surjective non-singular
measurable transformation. For some n ∈N, α(MT,u) = n if and only if µk−1

� µk
� µk−1 for every k ≥ n.

Proof. Suppose µk−1
� µk

� µk−1 for all k ≥ n. First, we show that Sc
k−1 = Sc

k for all k ≥ n. Since µk
� µk−1

and µk−1(Sc
k−1) = 0,

µk(Sc
k−1) =

∫
Sc

k−1

hkdµ = 0.

It means that hk |Sc
k−1

= 0 and also Sc
k−1 ⊆ Sc

k. Now since µk−1
� µk, with the same method, we have

Sc
k ⊆ Sc

k−1. Thus Sc
k−1 = Sc

k. In other words for every k ≥ n;

N(Mk
T,u) = LΦ(Sc

k−1) = LΦ(Sc
k) = N(Mk+1

T,u ).

That means α(M) = n.
The converse is obvious.

Remark 2.7. Our Theorem 2.6 in the special case of Lebesgue spaces, generalizing Theorem 2.4 in [8], gives
necessary and sufficient condition for a weighted composition operator to have finite ascent.

Proposition 2.8. If n is the smallest natural number such that Sn−1 ⊂ Tn+1(Sn−1), then α(MT,u) = n.

Proof. We know that for every natural number n, LΦ(S) = LΦ(Sc
n−1) + LΦ(Sn−1). Thus if f ∈ N(Mn+1

T,u ), then
there exist 1 ∈ LΦ(Sn−1) and h ∈ LΦ(Sc

n−1) ⊆ N(Mn
u,T), with f = 1+ h. From that we see that Mn+1

T,u f = Mn+1
T,u 1 =∏n+1

i=1 (u ◦ Ti)(1 ◦ Tn+1) = 0 almost everywhere. Since u ◦ Ti , 0 almost everywhere, we conclude that for
every measurable subset A, we have (1 ◦ Tn+1).χA = 0, almost everywhere. This means that if we take
A = Sn−1, because of Sn−1 ⊂ Tn+1(Sn−1) we get 1.χA = 0 a.e. Thus 1 = 0 a.e. and f = h. It shows that
N(Mn+1

T,u ) ⊂ N(Mn
T,u), and consequently, α(MT,u) = n.

In the next result we provide a necessary condition for MT,u to have infinite ascent.
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Proposition 2.9. Suppose for all A ∈ Σ with µ(A) > 0, we have T(A) ∈ Σ. If α(MT,u) = ∞, then there exists a
sequence {Ak} of measurable sets with positive measure such that Ak ⊆ Tk(Bk) for some Bk ∈ Σ and Ak , Tk+1(Ck) for
all Ck ∈ Σ.

Proof. Suppose α(MT,u) = ∞, thenN(Mk
T,u)  N(Mk+1

T,u ) for each k ∈N. Thus there exists a non-zero function
f ∈ LΦ(X) such that f ∈ N(Mk+1

T,u ) but f < N(Mk
T,u). Since f ∈ N(Mk+1

T,u ), then for all C ∈ Σ, we have

Mk+1
T,u f .χC = 0.

Therefore f ◦ Tk+1.χC = 0, for all C ∈ Σ. Moreover, since f < N(Mk), then there exists a set Bk such that

Mk f .χBk , 0.

Hence f ◦ Tk.χBk , 0. Since T(Bk) is a measurable set with positive measure and µ is σ-finite, then there
exists a measurable set Ak with positive measure such that Ak ⊆ Tk(Bk). We can see that f .χAk , 0. Suppose
on the contrary that there exists a measurable set Ck with positive measure such that Ak = Tk+1(Ck), and we
have

Mk+1
T,u f .χCk = 0

This means that f ◦ Tk+1.χCk = f .χAk = 0, which is a contradiction.
Therefore we get a sequence {Ak} of sets with positive measure such that Ak ⊆ Tk(Bk) for some Bk ∈ Σ

and Ak , Tk+1(Ck) for all Ck ∈ Σ.

Theorem 2.10. If {Ak}k∈N is a sequence of measurable sets with positive measure such that for all k ∈ N,
µ(T−(k+1)(Ak)) = 0 but µ(T−k(Ak)) , 0, then α(MT,u) = ∞.

Proof. Assume that {Ak}k∈N is a sequence of non-zero measurable sets such that for all k ∈N, µ(T−(k+1)(Ak)) =
0 and µ(T−k(Ak)) , 0. If we take fk = χAk , it is obvious that fk ∈ LΦ(X) and fk < N(Mk

T,u) for k ∈ N, since
fk ◦ Tk.χBk , 0 for a non-zero measurable Bk such that Bk ⊆ T−K(Ak). But fk ◦ Tk+1 = χ

T−(k+1)(Ak )
= 0 a.e.

Therefore for all C ∈ Σ with µ(C) , 0, fk ◦ Tk+1.χC = 0. This means that fk ∈ N(Mk+1
T,u ). So, we conclude that

N(Mk
T,u)  N(Mk+1

T,u ) for all k ∈N. Thus α(MT,u) = ∞.

An atom in a measure space (X,Σ, µ) is a set A ∈ Σ with µ(A) > 0 such that for every B ∈ Σ, if B ⊆ A, then
we have either µ(B) = 0 or µ(A) = µ(B). Let A be an atom, since µ is σ-finite, it follows that µ(A) < ∞. It is a
well-known fact that every σ-finite measure space (X,Σ, µ) can be partitioned uniquely as X =

(⋃
n∈N An

)
∪B,

where {An}n∈N is a countable collection of pairwise disjoint Σ-atoms and B, being disjoint from each An, is
non-atomic [14]. If B = ∅, then we say that X is purely atomic measure space. For an arbitrary purely atomic
measure space, we can assume, without loss of generality, that the measure space is of the form (N, 2N, µ),
where µ is counting measure, so that atoms can be considered as singletons {n}with n ∈N.

Proposition 2.11. Suppose (N, 2N, µ) be a measure space with the counting measure µ and u : N −→ R be a
function such that S(u) = N. For a non-singular transformation T : N −→N and the operator MT,u on LΦ(N), we
have α(MT,u) = ∞ if and only if there exists a sequence {ak} ⊂N with ak ∈ Tk(N) and ak < Tk+1(N) for all k ≥ 1.

Proof. The proof is similar to the proof of Theorem 3.1. in [2], and we omit it.

Our final results deal with infinite descent case.

Proposition 2.12. Let u : X −→ R be a measurable function that is bounded away from zero. If δ(MT,u) = ∞, then
the map θk : R(Tk) −→ C × R(Tk) is not one-to-one for all k ≥ 1 where θk(Tk(x)) = (

∏k+1
i=1 u(Ti(x)),Tk+1(x)) for all

x ∈ X.
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Proof. Assume that δ(MT,u) = ∞. We show that θk is not injective for all k ≥ 1. On the contrary, if θk is
injective for some k, then for f ∈ R(Mk

T,u), there is 1 ∈ LΦ(X) such that Mk
T,u1 = f . Now define h as follows

h(x) =

{
1(x)/u(x) if x ∈ R(Tk), θ(x) = (

∏k+1
i=1 u(Ti(x)), x)

0 otherwise

Clearly, h ∈ LΦ(X). Note that

Mk+1
T,u h(x) =

k+1∏
i=1

u(Ti(x)).(h ◦ Tk+1)(x)

=

k∏
i=1

u(Ti(x)).(1 ◦ Tk)(x)

= f (x)

Therefore f ∈ R(Mk+1
T,u ). In other words, R(Mk+1

T,u ) = R(Mk
T,u). This implies that δ(MT,u) < ∞ which is a

contradiction.

A measure space (X,Σ, µ) is called separable if every two distinct points of X can be separated by two
measurable sets A and B with positive measures such that A ∩ B = ∅.

Proposition 2.13. Let (X,Σ, µ) be a separable measure space. Then δ(MT,u) = ∞, if the mapθk : R(Tk) −→ C×R(Tk)
is not one-to-one for all k ≥ 1, where θk(Tk(x)) = (

∏k+1
i=1 u(Ti(x)),Tk+1(x)) for all x ∈ X.

Proof. Suppose θk is not one-to-one for all k ≥ 1. Therefore there exist a, b such that a1 = Tk(a) , Tk(b) = b1 ∈

R(Tk) and
∏k+1

i=1 u(Ti(a)) =
∏k+1

i=1 u(Ti(b)),Tk+1(a) = Tk+1(b). Since (X,Σ, µ) is a separable measure space, then
we can choose two measurable sets A and B with positive measure such that a1 ∈ A, b1 ∈ B and A ∩ B = ∅.
Since (X,Σ, µ) is σ-finite, we can choose two measurable sets A′ ⊆ A and B′ ⊆ B such thatµ(A′) < 0, µ(B′) < 0.
Now, we define two measurable functions f (x) = χA′ − χB′ and 1(x) = Mk

T,u( f (x)) =
∏k

i=1 u(Ti(x)).( f ◦ Tk)(x).
Since Mk

T,u is bounded on LΦ(X) and f ∈ LΦ(X), we see that 1 ∈ LΦ(X).
We claim that 1 < R(Mk+1

T,u ). Suppose, on the contrary, that there exists a non-zero function h ∈ LΦ(X)
with Mk+1

T,u (h) = 1, then

k∏
i=1

u(Ti(a)) = 1(a)

=

k+1∏
i=1

u(Ti(a)).(h ◦ Tk+1)(a)

=

k+1∏
i=1

u(Ti(b)).(h ◦ Tk+1)(b)

= 1(b)

= −

k∏
i=1

u(Ti(b))

This is a contradiction and hence 1 < R(Mk+1
T,u ). This means that R(Mk+1

T,u ) ⊂ R(Mk
T,u) for all k ≥ 1 and

δ(MT,u) = ∞

Finally we provide some examples to illustrate our main results.
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Example 2.14. i) Let X = [0, 1], µ be the Lebesgue measure. If T(x) = x/2 and u is a non-zero arbitrary
measurable function, then, by letting An = ( 1

2n , 1
2n−1 ) in Theorem 2.10, we find that α(MT,u) = ∞, where

MT,u is a bounded operator on LΦ(X) for any Young function Φ. Also, if u is an injective measurable
function on X, then by Proposition 2.13, δ(MT,u) is finite.

ii) Consider (N, 2N, µ), where µ is the counting measure and let u : N −→ R be a function such that
S(u) = N. Define T : N −→ N by T(n) = n + 1. Then (k + 1)k∈N is a sequence with the properties
k + 1 ∈ Tk(N) and k + 1 < Tk+1(N) for each k ∈N. Therefor, by Theorem2.11, for all bounded operator
MT,u on the Orlicz space LΦ(N) with Young function Φ, α(MT,u) = ∞. If we take T(n) = n, then there is
not any sequence (ak) ⊂ N with ak ∈ Tk(N) and ak < Tk+1(N) for each k ∈ N. Thus, by Theorem 2.11,
α(MT,u) is finite.
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