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Abstract. In this paper, we study a class of fractional differential equations with Riemann-Stieltjes integral
boundary conditions. The existence and uniqueness of positive solutions for the boundary value problem
are obtained via the use of fixed point theorems on cones in partially ordered Banach spaces. Many of
the multi-point and integral boundary value problems studied previously studied are also included in our
results.

1. Introduction

Fractional differential equations have got considerable attention and importance during the last decades,
mainly due to its demonstrated applications in numerous diverse and widespread fields of engineering,
physics, biology, mechanics, and so forth; see [5, 10, 18, 23]. Recently, there has been a significant de-
velopment in the theory of boundary value problems, see [2–4, 6–9, 11–17, 19, 20, 22, 24, 26–28]. Many
researchers are keen to study the existence of positive solutions to integral boundary value problem of
nonlinear fractional differential equations.

As a more general concept compared with the classical Riemann integral, Riemann-Stieltjes integral is
a very useful tool in many research fields. In probability theory, it can be applied to both continuous and
discrete random variables. In physics, partly discrete and partly continuous mass distributions problems
can also be handled by using this integral. In the differential equation theory, Riemann-Stieltjes integral
boundary value problems contain not only the classical Riemann integral boundary value problems, but also
the two-point boundary value problems and the multi-point boundary value problems, see [21]. However,
as far as we know, the study for the Riemann-Stieltjes integral boundary value problems of fractional
differential equations is relatively scarce and many aspects of this theory are worth exploring.

In [19], Sun and Zhao investigated the following classical Riemann integral boundary value problem of
the fractional differential equationDα

0+ u(t) + q(t) f (t,u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u(1) =
∫ 1

0 1(s)u(s)ds,
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where 2 < α ≤ 3, Dα
0+ is the Riemann-Liouville fractional derivative of order α, f ∈ C([0, 1] × R+,R+), and

1, q : (0, 1)→ R+ are also continuous functions with 1, q ∈ L1(0, 1). The existence results are proved by using
the monotone iteration method.

Li et al. [11] considered the fractional Riemann-Stieltjes integral boundary value problem of the following
form 

Dα
0+ u(t) + p(t) f (t,u(t)) + q(t)1(t,u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

u(1) =
∫ 1

0 h(s)u(s)dA(s),

where
∫ 1

0 h(s)u(s)dA(s) denotes the Riemann-Stieltjes integral with a signed measure, in which A is a function
of bounded variation. Using the properties of the Green function and the fixed point theory in the cones,
the authors obtained some results on the existence of positive solutions.

Motivated by the works mentioned above, in this paper we are concerned with the existence and
uniqueness of positive solutions of the Riemann-Liouville fractional differential equation

Dα
0+ u(t) + f (t,u(t),Dα−1

0+ u(t),Dα−2
0+ u(t), · · · ,Dα−n+1

0+ u(t)) = 0, t ∈ (0, 1) (1)

with the Riemann-Stieltjes integral boundary conditions
Dα−i

0+ u(0) = 0, i = 3, 4, · · · ,n,

Dα−2
0+ u(0) =

∫ 1

0 u(s)dB1(s),

Dα−1
0+ u(1) =

∫ 1

0 u(s)dB2(s),

(2)

where Dα
0+ , Dα−i

0+ are the Riemann-Liouville fractional derivatives, n − 1 < α ≤ n, n ≥ 3 (n ∈ N), f :

[0, 1]×Rn
+ → R+ is continuous,R+ = [0,+∞),

∫ 1

0 u(s)dBi(s) are Riemann-Stieltjes integrals, where Bi (i = 1, 2)
are nondecreasing functions.

We establish a general framework to find the positive solutions for a class of fractional differential
equations, providing an effective way to deal with such problems. By utilizing our method, we do not
require operators to be compact or continuous, which are able to weaken the conditions imposed on the
nonlinearity. In particular, our results not only guarantee the existence of upper-lower solutions to the
problems and a unique fixed point, but also construct an iterative sequence for approximating the fixed
point.

2. Preliminaries

For the definitions and related theorems concerning fractional calculus, we refer to the monograph [10].

Lemma 2.1. ([1]) Assume that B is a nondecreasing function on [a, b]. If f , 1 are Riemann-Stieltjes integrable with
respect to B on [a, b], and if f (x) ≤ 1(x) for all x ∈ [a, b], then we have∫ b

a
f (x)dB(x) ≤

∫ b

a
1(x)dB(x).

Lemma 2.2. ([1]) Let h be continuous at each point (x, y) of a rectangle Q = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}. Assume
that B is a nondecreasing function on [a, b] and let H be the function defined on [c, d] by the equation

H(y) =

∫ b

a
h(x, y)dB(x),

then H is continuous on [c, d].
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Lemma 2.3. ([10]) Assume that u ∈ C(0, 1)
⋂

L(0, 1) with a fractional derivative of order α > 0 that belongs to
C(0, 1)

⋂
L(0, 1). Then we have the equation

Iα0+ Dα
0+ u(t) = u(t) + c1tα−1 + c2tα−2 + · · · + cntα−n,

for some ck ∈ R, k = 1, 2, 3, · · · ,n, where n is the smallest integer greater than or equal to α.

We denote the constants

wi =
1

Γ(α)

∫ 1

0
tα−1dBi(t), mi =

1
Γ(α − 1)

∫ 1

0
tα−2dBi(t), i = 1, 2; (3)

Λ = (1 −m1)(1 − w2) −m2w1. (4)

Throughout this paper, we always assume that

(H1) m1 = 1
Γ(α−1)

∫ 1

0 tα−2dB1(t) ≤ 1;
(H2) Λ = (1 −m1)(1 − w2) −m2w1 > 0.
We will use the space E = {u : u ∈ C[0, 1], Dα− j

0+ u ∈ C[0, 1], j = 1, 2, · · · ,n − 1} and endowed the norm

‖u‖ = max
t∈[0,1]

|u(t)| +
n−1∑
j=1

max
t∈[0,1]

|Dα− j
0+ u(t)|. Obviously, E is a Banach space. Let P = {u ∈ E : u(t) ≥ 0, Dα− j

0+ u(t) ≥

0, j = 1, 2, · · · ,n − 1, t ∈ [0, 1]}, then P ⊂ E is a normal cone.

Lemma 2.4. Let ξ ∈ C[0, 1] and n − 1 < α ≤ n, then the linear fractional boundary value problem
Dα

0+ u(t) + ξ(t) = 0, t ∈ (0, 1),
Dα−i

0+ u(0) = 0, i = 3, 4, · · · ,n,

Dα−2
0+ u(0) =

∫ 1

0 u(s)dB1(s),

Dα−1
0+ u(1) =

∫ 1

0 u(s)dB2(s)

(5)

is equivalent to

u(t) =

∫ 1

0
G(t, s)ξ(s)ds, (6)

where

G(t, s) = G0(t, s) +
m2q1(s) + (1 −m1)q2(s)

ΛΓ(α)
tα−1 +

(1 − w2)q1(s) + w1q2(s)
ΛΓ(α − 1)

tα−2, (7)

and

G0(t, s) =
1

Γ(α)

tα−1
− (t − s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1, 0 ≤ t ≤ s ≤ 1
(8)

and

qi(s) =

∫ 1

0
G0(t, s)dBi(t), i = 1, 2. (9)

Proof By Lemma 2.3, we can transform the equation Dα
0+ u(t)+ξ(t) = 0 to an equivalent integral equation

u(t) = −
1

Γ(α)

∫ t

0
(t − s)α−1ξ(s)ds + c1tα−1 + c2tα−2 + · · · + cntα−n,
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where ck ∈ R, k = 1, 2, · · · ,n. Furthermore,

Dα−1
0+ u(t) = −I1

0+ξ(t) + c1Γ(α), Dα−2
0+ u(t) = −I2

0+ξ(t) + c1Γ(α)t + c2Γ(α − 1) (10)

and

Dα−i
0+ u(t) = −Ii

0+ξ(t) +

i∑
k=1

ck
Γ(α − k + 1)
Γ(i − k + 1)

ti−k, i = 3, 4, · · · ,n. (11)

From Dα−i
0+ u(0) = 0, i = 3, 4, · · · ,n, we know that c3 = c4 = · · · = cn = 0.

And by the boundary conditions Dα−2
0+ u(0) =

∫ 1

0 u(s)dB1(s) and Dα−1
0+ u(1) =

∫ 1

0 u(s)dB2(s), we can get

c1 =
1

Γ(α)

( ∫ 1

0
ξ(s)ds +

∫ 1

0
u(s)dB2(s)

)
,

c2 =
1

Γ(α − 1)

∫ 1

0
u(s)dB1(s).

Then

u(t) = −
1

Γ(α)

∫ t

0
(t − s)α−1ξ(s)ds +

tα−1

Γ(α)

( ∫ 1

0
ξ(s)ds +

∫ 1

0
u(s)dB2(s)

)
+

tα−2

Γ(α − 1)

∫ 1

0
u(s)dB1(s)

=
1

Γ(α)

∫ t

0

(
tα−1
− (t − s)α−1

)
ξ(s)ds +

1
Γ(α)

∫ 1

t
tα−1ξ(s)ds

+
tα−1

Γ(α)

∫ 1

0
u(s)dB2(s) +

tα−2

Γ(α − 1)

∫ 1

0
u(s)dB1(s),

which is

u(t) =

∫ 1

0
G0(t, s)ξ(s)ds +

tα−1

Γ(α)

∫ 1

0
u(s)dB2(s) +

tα−2

Γ(α − 1)

∫ 1

0
u(s)dB1(s). (12)

Integrating both sides of (12) from 0 to 1 by Bi(t) respectively, we obtain
∫ 1

0 u(t)dB1(t) =
∫ 1

0 q1(s)ξ(s)ds + w1

∫ 1

0 u(s)dB2(s) + m1

∫ 1

0 u(s)dB1(s),∫ 1

0 u(t)dB2(t) =
∫ 1

0 q2(s)ξ(s)ds + w2

∫ 1

0 u(s)dB2(s) + m2

∫ 1

0 u(s)dB1(s).

Then we can get
∫ 1

0 u(t)dB1(t) = 1
Λ

(
(1 − w2)

∫ 1

0 q1(s)ξ(s)ds + w1

∫ 1

0 q2(s)ξ(s)ds
)
,∫ 1

0 u(t)dB2(t) = 1
Λ

(
(1 −m1)

∫ 1

0 q2(s)ξ(s)ds + m2

∫ 1

0 q1(s)ξ(s)ds
)
.

(13)

Substituting (13) into (12), we can get

u(t) =

∫ 1

0
G0(t, s)ξ(s)ds +

tα−1

ΛΓ(α)

(
(1 −m1)

∫ 1

0
q2(s)ξ(s)ds + m2

∫ 1

0
q1(s)ξ(s)ds

)
+

tα−2

ΛΓ(α − 1)

(
(1 − w2)

∫ 1

0
q1(s)ξ(s)ds + w1

∫ 1

0
q2(s)ξ(s)ds

)
=

∫ 1

0
G(t, s)ξ(s)ds.

The proof is completed.
�
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Lemma 2.5. The function G0(t, s) defined by (8) has the following properties:
(1) G0(t, s) is a continuous function and G0(t, s) ≥ 0 for (t, s) ∈ [0, 1] × [0, 1];
(2) tα−1(1−s)α−2s

Γ(α) ≤ G0(t, s) ≤ tα−1

Γ(α) for (t, s) ∈ [0, 1] × [0, 1].

Proof By the expression of G0(t, s), it is clear that G0(t, s) is continuous and G0(t, s) ≥ 0 for (t, s) ∈
[0, 1] × [0, 1].

For 0 ≤ s ≤ t ≤ 1, we have

Γ(α)G0(t, s) =tα−1
− (t − s)α−1

≥ tα−1
− (t − ts)α−1

≥(t − ts)α−2
(
(t − (t − ts)

)
≥tα−1(1 − s)α−2s.

On the other hand, we have

Γ(α)G0(t, s) =tα−1
− (t − s)α−1

≤ tα−1.

For 0 ≤ t ≤ s ≤ 1, we can easily get

tα−1(1 − s)α−2s ≤ Γ(α)G0(t, s) =tα−1.

The proof is completed.
�

Lemma 2.6. The function G(t, s) defined by (7) has the following properties:
(1) G(t, s) is continuous;
(2) (1−s)α−2s

ΛΓ(α)

(
(1 −m1)tα−1 + w1tα−2

)
≤ G(t, s) ≤ 1

ΛΓ(α−1)

(
(1 −m1)tα−1 + w1tα−2

)
for (t, s) ∈ [0, 1] × [0, 1].

Proof Since G0(t, s) is continuous, we can easily get qi(s) is continuous by Lemma 2.2. Therefore, G(t, s)
is continuous.

By Lemma 2.5, we can show that

tα−1(1 − s)α−2s
Γ(α)

≤ G0(t, s) ≤
tα−1

Γ(α)
, t, s ∈ [0, 1].

In view of Lemma 2.1, we have

qi(s) =

∫ 1

0
G0(t, s)dBi(t) ≥

∫ 1

0

tα−1(1 − s)α−2s
Γ(α)

dBi(t)

=(1 − s)α−2swi

and

qi(s) =

∫ 1

0
G0(t, s)dBi(t) ≤

∫ 1

0

tα−1

Γ(α)
dBi(t) = wi.

So, we have

G(t, s) =G0(t, s) +
m2q1(s) + (1 −m1)q2(s)

ΛΓ(α)
tα−1 +

(1 − w2)q1(s) + w1q2(s)
ΛΓ(α − 1)

tα−2

≥
(1 − s)α−2s

Γ(α)
tα−1 +

m2q1(s) + (1 −m1)q2(s)
ΛΓ(α)

tα−1 +
(1 − w2)q1(s) + w1q2(s)

ΛΓ(α − 1)
tα−2

≥

(1 − s)α−2s
(
Λ + m2w1 + (1 −m1)w2

)
ΛΓ(α)

tα−1 +
(1 − s)α−2s

(
(1 − w2)w1 + w1w2

)
ΛΓ(α − 1)

tα−2

=
(1 − s)α−2s(1 −m1)

ΛΓ(α)
tα−1 +

(1 − s)α−2sw1

ΛΓ(α − 1)
tα−2

≥
(1 − s)α−2s

ΛΓ(α)

(
(1 −m1)tα−1 + w1tα−2

)
.
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On the other hand, we can obtain that

G(t, s) =G0(t, s) +
m2q1(s) + (1 −m1)q2(s)

ΛΓ(α)
tα−1 +

(1 − w2)q1(s) + w1q2(s)
ΛΓ(α − 1)

tα−2

≤
1

Γ(α)
tα−1 +

m2q1(s) + (1 −m1)q2(s)
ΛΓ(α)

tα−1 +
(1 − w2)q1(s) + w1q2(s)

ΛΓ(α − 1)
tα−2

≤
Λ + m2w1 + (1 −m1)w2

ΛΓ(α)
tα−1 +

(1 − w2)w1 + w1w2

ΛΓ(α − 1)
tα−2

=
(1 −m1)
ΛΓ(α)

tα−1 +
w1

ΛΓ(α − 1)
tα−2

≤
1

ΛΓ(α − 1)

(
(1 −m1)tα−1 + w1tα−2

)
.

The proof is completed.
�

Lemma 2.7. Let ξ ∈ C([0, 1],R+), then the unique solution u = u(t) of boundary value problem (5) has the following
properties:

u(t) ≥ 0, Dα−1
0+ u(t) ≥ 0, Dα−2

0+ u(t) ≥ 0, · · · , Dα−n+1
0+ u(t) ≥ 0.

Proof By Lemma 2.6 it is easy to verify that function G(t, s) ≥ 0, (t, s) ∈ [0, 1] × [0, 1]. From (6) and let
ξ ∈ C([0, 1],R+) we can get that u(t) ≥ 0.

Next, we show that Dα− j
0+ u(t) ≥ 0, j = 1, 2, · · · ,n − 1.

From (10) and (11) we have

Dα−1
0+ u(t) = −I1

0+ξ(t) + c1Γ(α) =

∫ 1

t
ξ(s)ds +

∫ 1

0
u(s)dB2(s) ≥ 0,

Dα− j
0+ u(t) = − I j

0+ξ(t) +

j∑
k=1

ck
Γ(α − k + 1)
Γ( j − k + 1)

t j−k = −I j
0+ξ(t) + c1

Γ(α)
Γ( j)

t j−1 + c2
Γ(α − 1)
Γ( j − 1)

t j−2

=
1

Γ( j)

∫ t

0

(
t j−1
− (t − s) j−1

)
ξ(s)ds +

t j−1

Γ( j)

∫ 1

t
ξ(s)ds +

t j−1

Γ( j)

∫ 1

0
u(s)dB2(s) +

t j−2

Γ( j − 1)

∫ 1

0
u(s)dB1(s)

≥0.

The proof is completed.
�

Here we present some basic concepts in order Banach spaces, which can be found in [25] and will be
used later.

Suppose that E is a Banach space which is partially ordered by a cone P ⊂ E, that is,

x, y ∈ E, x � y⇔ y − x ∈ P.

We define the order interval [x1, x2] = {x ∈ E | x1 � x � x2} for all x1, x2 ∈ E.
The zero element of E is denoted by θ. P is called normal if there exists a constant N > 0 such that

θ � x � y implies ‖x‖ ≤ N‖y‖. The operator A : E → E is said to be increasing whenever x ≤ y implies
Ax ≤ Ay. For all x, y ∈ E, the symbol x ∼ y means that there are λ > 0 and µ > 0 such that

λy � x � µy.
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Finally, given h � θ, we denote Ph by the set

Ph = {x ∈ E | x ∼ h}.

It is easy to see that Ph ⊂ P.
Let P be a normal cone in real Banach space E, and (a, b) be an interval. We say an operator A : P→ P is

τ-ϕ-concave, if there exist two positive-valued functions τ(t),ϕ(t) on interval (a, b) such that τ : (a, b)→ (0, 1)
is a surjection, ϕ(t) ≥ τ(t) for all t ∈ (a, b) and A

(
τ(t)x

)
≥ ϕ(t)Ax for all x ∈ P, t ∈ (a, b).

Lemma 2.8. ([25]) Let E be a Banach space, P be a normal cone in E, and A : P → P be an increasing and τ-ϕ-
concave operator. Suppose that there exists θ , h ∈ P such that Ah ∈ Ph. Then there are v0,w0 ∈ Ph and δ ∈ (0, 1)
such that δw0 ≤ v0 ≤ w0 and v0 ≤ Av0 ≤ Aw0 ≤ w0, the operator A has a unique fixed point u∗ ∈ [v0,w0], and for
any initial u0 ∈ Ph, constructing successively the sequence {un} with un = Aun−1, we have ‖un − u∗‖ → 0 as n→∞.

3. Main result

This section is mainly devoted to prove the existence and uniqueness of positive solutions for the
Riemann-Stieltjes integral boundary value problems of fractional differential equation (1) - (2).

Theorem 3.1. Assume that (H1) and (H2) hold, and suppose that:
(i) f ∈ C([0, 1] × Rn

+,R+) and m
(
{t ∈ [0, 1] : f (t, 0, 0, 0, · · · , 0) , 0}

)
> 0, where for some measurable set Ω,

m(Ω) denotes the Lebesgue measure of Ω;
(ii) f (t, x0, x1, · · · , xn−1) ≤ f (t, y0, y1, · · · , yn−1) if and only if xi ≤ yi, xi, yi ∈ R+, i = 0, 1, · · · ,n − 1;
(iii) There exist two functions τ, ϕ which are positive-valued on (0, 1) and τ : (0, 1) → (0, 1) is a surjective

function such that ϕ(γ) ≥ τ(γ) and f
(
t, τ(γ)x0, τ(γ)x1, τ(γ)x2, · · · , τ(γ)xn−1

)
≥ ϕ(γ) f (t, x0, x1, x2, · · · , xn−1) for all

t, γ ∈ (0, 1).
Then
(I) The fractional Riemann-Stieltjes integral boundary value problems (1) - (2) has a unique positive solution

u∗ = u∗(t) in [v0,w0] where v0,w0 ∈ Ph with h(t) = (1−m1)tα−1 + w1tα−2, there exists a constant δ ∈ (0, 1) such that
δw0 ≤ v0 ≤ w0 and

v0(t) ≤
∫ 1

0
G(t, s) f

(
s, v0(s),Dα−1

0+ v0(s),Dα−2
0+ v0(s), · · · ,Dα−n+1

0+ v0(s)
)
ds, t ∈ [0, 1],

w0(t) ≥
∫ 1

0
G(t, s) f

(
s,w0(s),Dα−1

0+ w0(s),Dα−2
0+ w0(s), · · · ,Dα−n+1

0+ w0(s)
)
ds, t ∈ [0, 1].

(II) For any initial u0 ∈ Ph, constructing the sequence {un} converges to u∗, which is that ‖un − u∗‖ → 0 as n→ ∞,
where

un+1(t) =

∫ 1

0
G(t, s) f

(
s,un(s),Dα−1

0+ un(s),Dα−2
0+ un(s), · · · ,Dα−n+1

0+ un(s)
)
ds, n = 0, 1, 2, · · · .

Proof In view of Lemma 2.4, the problem (1) - (2) is equivalent to the integral equation

u(t) =

∫ 1

0
G(t, s) f

(
s,u(s),Dα−1

0+ u(s),Dα−2
0+ u(s), · · · ,Dα−n+1

0+ u(s)
)
ds.

Define the operator A : P→ E by

Au(t) =

∫ 1

0
G(t, s) f

(
s,u(s),Dα−1

0+ u(s),Dα−2
0+ u(s), · · · ,Dα−n+1

0+ u(s)
)
ds, t ∈ [0, 1].
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For any u ∈ P and f ∈ C([0, 1] ×Rn
+,R+), it follows Au ∈ P from Lemma 2.7.

Clearly, u = u(t) is a positive solution for the problem (1) - (2) if and only if u is a fixed point of A on P.
Further, it follows from (ii) that the operator A is increasing on P, which is that for u � v ∈ P,

Au(t) =

∫ 1

0
G(t, s) f

(
s,u(s),Dα−1

0+ u(s),Dα−2
0+ u(s), · · · ,Dα−n+1

0+ u(s)
)
ds

≤

∫ 1

0
G(t, s) f

(
s, v(s),Dα−1

0+ v(s),Dα−2
0+ v(s), · · · ,Dα−n+1

0+ v(s)
)
ds

=Av(t).

On the other hand, for any t, γ ∈ (0, 1), u ∈ P, from (iii) we can get

A
(
τ(γ)u

)
(t) =

∫ 1

0
G(t, s) f

(
s, τ(γ)u(s), τ(γ)Dα−1

0+ u(s), τ(γ)Dα−2
0+ u(s), · · · , τ(γ)Dα−n+1

0+ u(s)
)
ds

≥

∫ 1

0
G(t, s)ϕ(γ) f

(
s,u(s),Dα−1

0+ u(s),Dα−2
0+ u(s), · · · ,Dα−n+1

0+ u(s)
)
ds

=ϕ(γ)Au(t),

which implies that A is a τ-ϕ-concave operator.
Since 0 ≤ w1 ≤ m1 ≤ 1, then

h(t) = (1 −m1)tα−1 + w1tα−2
∈ P

and

h(t) = (1 −m1)tα−1 + w1tα−2
≤ 1 −m1 + m1 = 1, Dα−1

0+ h(t) = (1 −m1)Γ(α) ≤ Γ(α),

Dα−2
0+ h(t) = (1 −m1)Γ(α)t + w1Γ(α − 1) ≤ (1 −m1)Γ(α) + m1Γ(α) = Γ(α),

Dα− j
0+ h(t) =

(1 −m1)Γ(α)t j−1

Γ( j)
+

w1Γ(α − 1)t j−2

Γ( j − 1)
≤ (1 −m1)Γ(α) + m1Γ(α) = Γ(α), j = 3, 4, · · · ,n − 1.

Using Lemma 2.6 and (ii), we obtain

Ah(t) =

∫ 1

0
G(t, s) f

(
s, h(s),Dα−1

0+ h(s),Dα−2
0+ h(s), · · · ,Dα−n+1

0+ h(s)
)
ds

≤

∫ 1

0

(1 −m1)tα−1 + w1tα−2

ΛΓ(α − 1)
f
(
s, h(s),Dα−1

0+ h(s),Dα−2
0+ h(s), · · · ,Dα−n+1

0+ h(s)
)
ds

≤
h(t)

ΛΓ(α − 1)

∫ 1

0
f
(
s, 1,Γ(α),Γ(α), · · · ,Γ(α)

)
ds.

Similarly,

Ah(t) =

∫ 1

0
G(t, s) f

(
s, h(s),Dα−1

0+ h(s),Dα−2
0+ h(s), · · · ,Dα−n+1

0+ h(s)
)
ds

≥

∫ 1

0

(1 − s)α−2s
ΛΓ(α)

(
(1 −m1)tα−1 + w1tα−2

)
f
(
s, h(s),Dα−1

0+ h(s),Dα−2
0+ h(s), · · · ,Dα−n+1

0+ h(s)
)
ds

≥
h(t)

ΛΓ(α)

∫ 1

0
(1 − s)α−2s f (s, 0, 0, 0, · · · , 0)ds.
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Denote

λ1 =
1

ΛΓ(α)

∫ 1

0
(1 − s)α−2s f (s, 0, 0, 0, · · · , 0)ds

and

λ2 =
1

ΛΓ(α − 1)

∫ 1

0
f
(
s, 1,Γ(α),Γ(α), · · · ,Γ(α)

)
ds.

Then

λ1h � Ah � λ2h.

On the other hand, from (ii) we can easily get

f
(
s, 1,Γ(α),Γ(α), · · · ,Γ(α)

)
≥ f (s, 0, 0, 0, · · · , 0) ≥ 0.

Since m
(
{t ∈ [0, 1] : f (t, 0, 0, 0, · · · , 0) , 0}

)
> 0, we have

λ1 > 0, λ2 >
1

ΛΓ(α − 1)

∫ 1

0
f (s, 0, 0, 0, · · · , 0)ds > 0.

Thus we proved that Ah ∈ Ph.
Our desired results are obtained in view of Lemma 2.8. The proof is completed.

�
Next, we consider the fractional differential equation with homogeneous boundary conditions as a

special case when Bi(t) (i = 1, 2) are constants which could be zero. We can draw the following deduction.

Corollary 3.2. The two-point boundary value problem of nonlinear fractional differential equation
Dα

0+ u(t) + f
(
t,u(t),Dα−1

0+ u(t),Dα−2
0+ u(t), · · · ,Dα−n+1

0+ u(t)
)

= 0, t ∈ (0, 1),
Dα−i

0+ u(0) = 0, i = 2, 3, 4, · · · ,n,
Dα−1

0+ u(1) = 0
(14)

has a unique positive solution u∗ ∈ Ph with h(t) = tα−1 if the three conditions (i) − (iii) in Theorem 3.1 are still valid.

Proof Note that boundary value problem (14) is the special case of boundary value problem (1)-(2)
when Bi(t) (i = 1, 2) are constants, by (3) and (4) we point out that mi = wi = 0 < 1, i = 1, 2 and Λ = 1 > 0.
This means we have verified the hypotheses (H1) and (H2).

In view of Lemma 2.4, we get qi(s) ≡ 0 and G(t, s) = G0(t, s). The problem (14) is equivalent to the integral
equation

u(t) =

∫ 1

0
G0(t, s) f

(
s,u(s),Dα−1

0+ u(s),Dα−2
0+ u(s), · · · ,Dα−n+1

0+ u(s)
)
ds.

Define the operator T : P→ P by

Tu(t) =

∫ 1

0
G0(t, s) f

(
s,u(s),Dα−1

0+ u(s),Dα−2
0+ u(s), · · · ,Dα−n+1

0+ u(s)
)
ds, t ∈ [0, 1].

Obviously, u is a positive solution of the problem (14) if and only if u is a fixed point of T on P.
Similar to the proof in Theorem 3.1, we can obtain that T : P → P is an increasing and τ-ϕ-concave

operator. So Theorem 3.1 can be applied when h(t) = tα−1.
The proof is completed.

�
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4. Applications

The Riemann-Stieltjes integral boundary conditions cover the multi-point, the classical Riemann integral
and the mixed boundary conditions. In this section, we briefly indicate how our results could be applied
to some specific boundary value problems.

Application 4.1 Consider the following nonlinear fractional differential equation with the classical
Riemann integral boundary conditions

D
5
2
0+ u(t) + et sin t +

√
u(t) + D

3
2
0+ u(t) + D

1
2
0+ u(t) = 0, t ∈ (0, 1),

D−
1
2

0+ u(0) = 0,

D
1
2
0+ u(0) =

∫ 1

0 s2u(s)ds,

D
3
2
0+ u(1) = 2

∫ 1

0 su(s)ds.

(15)

Let α = 5
2 , n = 3, f (t,u, v,w) = et sin t +

√
u + v + w and B1(t) = 1

3 t3,B2(t) = t2, t ∈ [0, 1]. Then, the
boundary value problem (15) is a special case of (1)-(2). Obviously, B1(t) and B2(t) are increasing functions
on [0, 1]. f (t,u, v,w) is continuous and f (t,u1, v1,w1) ≤ f (t,u2, v2,w2) for u1 ≤ u2, v1 ≤ v2,w1 ≤ w2, and
f (t, 0, 0, 0) = et sin t. Thus the condition m

(
{t ∈ [0, 1] : f (t, 0, 0, 0) , 0}

)
> 0 holds.

Now, we define τ(t) = t, ϕ(t) =
√

t. Then τ : (0, 1) → (0, 1) is a surjection and ϕ(t) > τ(t) for t ∈ (0, 1).
Hence, for all t, x ∈ (0, 1) and u, v,w ∈ R+, we find that

f
(
t, τ(x)u, τ(x)v, τ(x)w

)
= f (t, xu, xv, xw) = et sin t +

√
xu + xv + xw

≥
√

x(et sin t +
√

u + v + w) = ϕ(x) f (t,u, v,w).

A simple calculation shows that

m1 =
1

Γ( 3
2 )

∫ 1

0
t

1
2 dB1(t) =

1
Γ( 3

2 )

∫ 1

0
t

5
2 dt ≈ 0.3224 < 1.

Clearly, the condition (H1) holds. Moreover, through a series of calculations, we obtain

m2 =
1

Γ( 3
2 )

∫ 1

0
t

1
2 dt2

≈ 0.9027, w1 =
1

Γ( 5
2 )

∫ 1

0
t

7
2 dt ≈ 0.1672, w2 =

1
Γ( 5

2 )

∫ 1

0
t

3
2 dt2

≈ 0.4299.

Then, we can easily get Λ = (1 − m1)(1 − w2) − m2w1 ≈ 0.2354 > 0, which shows that the condition (H2) is
proved.

Therefore, all the assumptions in Theorem 3.1 are satisfied. By using Theorem 3.1, we can see that
problem (15) has a unique positive solution in Ph with h(t) = 0.6776t

3
2 + 0.1672t

1
2 .

�
Application 4.2 Consider the fractional multi-point boundary value problem

D
7
2
0+ u(t) +

(
u(t) ·D

5
2
0+ u(t) ·D

3
2
0+ u(t) ·D

1
2
0+ u(t)

) 1
16 ln(2 + t) + t2 = 0, t ∈ (0, 1),

D
1
2
0+ u(0) = D−

1
2

0+ u(0) = 0,

D
3
2
0+ u(0) = 1

4 u( 1
4 ) + 1

8 u( 1
2 ) + 1

16 u( 3
4 ),

D
5
2
0+ u(1) = 1

4 u( 1
2 ),

(16)

where α = 7
2 , n = 4, f (t,u, v,w, z) = (uvwz)

1
16 ln(2 + t) + t2,

B1(t) =


0, t ∈ [0, 1

4 ),
1
4 , t ∈ [ 1

4 ,
1
2 ),

1
4 + 1

8 , t ∈ [ 1
2 ,

3
4 ),

1
4 + 1

8 + 1
16 , t ∈ [ 3

4 , 1],

and B2(t) =

 1
4 , t ∈ [0, 1

2 ),
1
2 , t ∈ [ 1

2 , 1].
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Easily, B1(t) and B2(t) are increasing functions on [0, 1]. f (t,u, v,w, z) is continuous with u, v,w, z ∈ R+

and f (t,u1, v1,w1, z1) ≤ f (t,u2, v2,w2, z2) for u1 ≤ u2, v1 ≤ v2,w1 ≤ w2, z1 ≤ z2, and f (t, 0, 0, 0, 0) = t2. Thus the
condition m

(
{t ∈ [0, 1] : f (t, 0, 0, 0, 0) , 0}

)
> 0 holds.

Let τ(t) = t, ϕ(t) = t
1
4 , we can get

f
(
t, τ(x)u, τ(x)v, τ(x)w, τ(x)z

)
= f (t, xu, xv, xw, xz) = (x4uvwz)

1
16 ln(2 + t) + t2

≥x
1
4

(
(uvwz)

1
16 ln(2 + t) + t2

)
= ϕ(x) f (t,u, v,w, z).

A simple calculation shows that

m1 =
1

Γ( 5
2 )

∫ 1

0
t

3
2 dB1(t) ≈ 0.0873 < 1.

Clearly, the condition (H1) holds. Moreover, through a series of calculations, we obtain

m2 =
1

Γ( 5
2 )

∫ 1

0
t

3
2 dB2(t) ≈ 0.0665, w1 =

1
Γ( 7

2 )

∫ 1

0
t

5
2 dB1(t) ≈ 0.0182, w2 =

1
Γ( 7

2 )

∫ 1

0
t

5
2 dB2(t) ≈ 0.0133.

Then we get Λ = (1 −m1)(1 − w2) −m2w1 ≈ 0.8994 > 0, which shows that the condition (H2) is proved.
Therefore, all the assumptions in Theorem 3.1 are satisfied. By using Theorem 3.1, we know that problem

(16) has a unique positive solution in Ph with h(t) = 0.9127t
5
2 + 0.0182t

3
2 .

�
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