

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Amenability-like Properties of C(X, A)

S. Ghoraishi^a, A. Mahmoodi^a, A. R. Medghalchi^b

 a Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran. b Faculty of Mathematical Sciences and Computer, Kharazmi University, 50 Taleghani Avenue, Tehran, Iran.

Abstract. Let A be a Banach algebra and X be a compact Hausdorff space. For given homomorphisms $\sigma \in Hom(A)$ and $\tau \in Hom(C(X,A))$, we introduce homomorphisms $\tilde{\sigma} \in Hom(C(X,A))$ and $\tilde{\tau}_x \in Hom(A)$, where $x \in X$. We then study both $\tilde{\sigma}$ -(weak) amenability of C(X,A), and $\tilde{\tau}_x$ -(weak) amenability of A.

1. Introduction

Let X be a compact Hausdorff space and let A be a Banach algebra. It is known that C(X,A), the set of all A-valued continuous functions on X, is a Banach algebra with pointwise algebraic operations and the uniform norm $||f||_{\infty} := \sup_{x \in X} ||f(x)||$, $f \in C(X,A)$ [5]. In the nice papers [3, 11], Ghamarshoushtari and Zhang studied amenability and weak amenability of C(X,A). They showed that C(X,A) is amenable if and only if A is amenable. Further, if A is commutative, they proved that C(X,A) is weakly amenable if and only if A is weakly amenable.

Let A be a Banach algebra. We denote by Hom(A) the space of all continuous homomorphisms from A into A. Let A be a Banach algebra, E be a Banach A-bimodule and let $\sigma \in Hom(A)$. From [6], we recall that a bounded linear map $D: A \longrightarrow E$ is a σ -derivation if $D(ab) = D(a) \cdot \sigma(b) + \sigma(a) \cdot D(b)$, for $a, b \in A$. A σ -derivation $D: A \longrightarrow E$ is σ -inner derivation if there exists $x \in E$ such that $D(a) = \sigma(a) \cdot x - x \cdot \sigma(a)$, for all $a \in A$.

Let A be a Banach algebra and let $\sigma \in Hom(A)$. The notion of σ -amenable Banach algebras was introduced and studied by Mirzavaziri and Moslehian in [7] (see also [8]). We say A is σ -amenable if for every Banach A-bimodule E, every σ -derivation $D: A \longrightarrow E^*$ is σ -inner. Especially, a Banach algebra A is σ -weakly amenable if every σ -derivation $D: A \longrightarrow A^*$ is σ -inner [9].

For a Banach algebra A, it is known that the projective tensor product $A \hat{\otimes} A$ is a Banach A-bimodule in a natural way. A bounded net $(u_{\alpha}) \subset A \hat{\otimes} A$ is a σ -bounded approximate diagonal for A if

$$\sigma(a) \cdot u_{\alpha} - u_{\alpha} \cdot \sigma(a) \longrightarrow 0$$
, and $\pi(u_{\alpha})\sigma(a) \longrightarrow \sigma(a)$ $(a \in A)$,

where $\sigma \in Hom(A)$, and $\pi : A \hat{\otimes} A \longrightarrow A$ is the product map defined by $\pi(a \otimes b) = ab$.

Before preceding further, we set up our notations. Let X be a compact Hausdorff space and let A be a Banach algebra. For each $x \in X$, we consider the continuous epimorphism $T_x : C(X,A) \longrightarrow A$ defined by $T_x(f) := f(x)$, for all $f \in C(X,A)$. For every $a \in A$, we define $1_a \in C(X,A)$ by the formula $1_a(x) := a$, for

2010 Mathematics Subject Classification. 46M10; 46M18, 46H20.

Keywords. σ -amenability, σ -weak amenability, σ -bounded approximate diagonal.

Received: 07 June 2017; Accepted: 29 August 2017

Communicated by Mohammad Sal Moslehian

Email addresses: esm.ghoraishimadineh.sci@iauctb.ac.ir (S. Ghoraishi), a_mahmoodi@iauctb.ac.ir (A. Mahmoodi), a_medghalchi@khu.ac.ir (A. R. Medghalchi)

all $x \in X$. We notice that, every homomorphism $\sigma \in Hom(A)$ induces a homomorphism $\tilde{\sigma} \in Hom(C(X,A))$ defined by $\tilde{\sigma}(f) := \sigma f$, $f \in C(X,A)$. Conversely, for every homomorphism $\tau \in Hom(C(X,A))$ and $x \in X$, we introduce the map $\tilde{\tau}_x : A \longrightarrow A$ through $\tilde{\tau}_x(a) := T_x(\tau(1_a))$, $a \in A$. Since $1_{ab} = 1_a 1_b$, $\tilde{\tau}_x \in Hom(A)$. It is readily seen that $(T_x\tau)(1_a) = (\tilde{\tau}_x T_x)(1_a)$, for each $a \in A$. Next, for $f \in C(X)$ and $a \in A$ we define $fa \in C(X,A)$ via fa(x) = f(x)a for each $x \in X$. Throughout the paper, we keep the above definitions and notations.

In this paper, motivated by [3, 6], we deal with amenability-like properties of the Banach algebra C(X, A). Suppose that σ and τ are homomorphisms on A and C(X, A), respectively. For a given σ -bounded approximate diagonal for A, we construct a $\tilde{\sigma}$ -bounded approximate diagonal for C(X, A) (Theorem 2.1). We show that under some certain conditions, τ -(weak) amenability of C(X, A) implies $\tilde{\tau}_x$ -(weak) amenability of A (Theorems 2.4 and 3.4). For a commutative Banach algebra A, we prove that σ -weak amenability of A yields $\tilde{\sigma}$ -weak amenability of A (Theorem 3.2). Finally, we show that Theorem 3.2 is still true without the existence of a bounded approximate identity for A (Theorem 3.9).

2. σ -amenability

Suppose that *A* is a Banach algebra and *X* is a compact Hausdorff space. For $u = \sum_i u_i \otimes v_i \in C(X) \hat{\otimes} C(X)$ and $\alpha = \sum_i \alpha_i \otimes \beta_i \in A \hat{\otimes} A$, we consider

$$\Gamma(u,\alpha) = \sum_{i,j} u_i \alpha_j \otimes v_i \beta_j \in C(X,A) \hat{\otimes} C(X,A)$$

so that $||\Gamma(u, \alpha)|| \le ||u|| \, ||\alpha||$.

Theorem 2.1. Let X be a compact Hausdorff space, A be a Banach algebra and let $\sigma \in Hom(A)$. If A has a σ -bounded approximate diagonal, then C(X,A) has a $\tilde{\sigma}$ -bounded approximate diagonal.

Proof. We follow the standard argument in [3]. Let $(\alpha_v) \in A \hat{\otimes} A$ be a σ -bounded approximate diagonal for A such that $\|\alpha_v\|_p \leq M$ for all v. We claim that for any $\varepsilon > 0$ and any finite set $F \subset C(X,A)$, there is $U = U_{(F,\varepsilon)} \in C(X,A) \hat{\otimes} C(X,A)$ with $\|U\| \leq 2Mc$ such that

$$\|\tilde{\sigma}(a) \cdot U - U \cdot \tilde{\sigma}(a)\| < \varepsilon \text{ and } \|\pi(U)\tilde{\sigma}(a) - \tilde{\sigma}(a)\| < \varepsilon \text{ } (a \in F)$$

where c>0 is the constant asserted in [2, Corollary 1.2]. Given $\varepsilon>0$ and a finite set $F\subset C(X,A)$. We first assume that each $a\in F$ is of the form of a finite sum $a=\sum_k f_k a_k$, with $f_k\in C(X)$ and $a_k\in A$. It is easy to check that $\tilde{\sigma}(a)=\sum_k f_k \sigma(a_k)$. We denote by $F_A\subset A$ the finite set of all elements a_k associated to a for all $a\in F$, and by $F_C\subset C(X)$ the finite set of all functions f_k associated to a for all $a\in F$. Let N>0 be an integer that is greater than the number of the terms of $a=\sum_k f_k a_k$ for all $a\in F$, and set $L:=\max\{\|\sigma(b)\|$, $\|f\|:b\in F_A,f\in F_C\}$. By the assumption, there is $\alpha\in (\alpha_v)$ such that

$$\|\sigma(b)\cdot\alpha-\alpha\cdot\sigma(b)\|<\frac{\varepsilon}{4cNL},\ \|\pi(\alpha)\cdot\sigma(b)-\sigma(b)\|<\frac{\varepsilon}{NL}\ (b\in F_A).$$

On the other hand, by the same argument as in the proof of [2, Theorem 2.1], we obtain an element $u \in C(X) \otimes C(X)$ with $\pi(u) = 1$ and $||u|| \le 2c$ for which

$$||f \cdot u - u \cdot f|| < \frac{\varepsilon}{2||\alpha||LN} \quad (f \in F_C).$$

Putting $U := \Gamma(u, \alpha)$, for $a = \sum_k f_k a_k$ we see that

$$\begin{split} \|\tilde{\sigma}(a)\cdot U - U\cdot \tilde{\sigma}(a)\| &= \|\sum_k (\Gamma(f_k u, \sigma(a_k)\alpha) - \Gamma(uf_k, \alpha\sigma(a_k))\| \\ &= \|\sum_k \Gamma(f_k u, \sigma(a_k)\alpha - \alpha\sigma(a_k)) + \Gamma(f_k u - uf_k, \alpha\sigma(a_k))\| \\ &\leq \sum_k (L\|u\| \|\sigma(a_k)\alpha - \alpha\sigma(a_k)\| + L\|\alpha\| \|f_k u - uf_k\|) \\ &\leq NL(2c\frac{\varepsilon}{4cNL} + \|\alpha\| \frac{\varepsilon}{2\|\alpha\|_P LN}) = \varepsilon \end{split}$$

and

$$\|\pi(U)\tilde{\sigma}(a) - \tilde{\sigma}(a)\| = \|\pi(u)\pi(\alpha)\tilde{\sigma}(a) - \tilde{\sigma}(a)\| = \|\sum_{k} f_{k}(\pi(\alpha)\sigma(a_{k}) - \sigma(a_{k}))\|$$

$$\leq L \sum_{k} \|\pi(\alpha)\sigma(a_{k}) - \sigma(a_{k})\| < NL \frac{\varepsilon}{NL} = \varepsilon.$$

Now, we assume that $F \subset C(X,A)$ is an arbitrary finite set. From the proof of [2, Theorem 2.1], we know that for each $a \in F$ there exists an element $a_{\varepsilon} = \sum_k f_k a_k$ where the right side of a_{ε} is a finite sum, $f_k \in C(X)$ and $a_k \in A$ such that $\|\tilde{\sigma}(a) - \tilde{\sigma}(a_{\varepsilon})\| < \min\left\{\frac{\varepsilon}{4}, \frac{\varepsilon}{8Mc}\right\}$. Applying the above argument for the finite set $F_{\varepsilon} := \{a_{\varepsilon} : a \in F\}$, we get $U \in C(X,A) \hat{\otimes} C(X,A)$ such that $\|U\| \le 2cM$ and

$$\|\tilde{\sigma}(a_{\varepsilon}) \cdot U - U \cdot \tilde{\sigma}(a_{\varepsilon})\| < \frac{\varepsilon}{2} \text{ and } \|\pi(U)\tilde{\sigma}(a_{\varepsilon}) - \tilde{\sigma}(a_{\varepsilon})\| < \frac{\varepsilon}{2} (a_{\varepsilon} \in F_{\varepsilon}).$$

Therefore

$$\|\tilde{\sigma}(a) \cdot U - U \cdot \tilde{\sigma}(a)\| < \varepsilon \text{ and } \|\pi(U)\tilde{\sigma}(a) - \tilde{\sigma}(a)\| < \varepsilon \text{ } (a \in F)$$

so that the claim is proved. Finally, the net $(U_{F,\varepsilon})$ with the natural partial order $(F_1, \varepsilon_1) < (F_2, \varepsilon_2)$ if and only if $F_1 \subset F_2$ and $\varepsilon_1 \ge \varepsilon_2$ is the desired $\tilde{\sigma}$ -approximate diagonal for C(X, A). \square

Remark 2.2. To our knowledge, we do not know whether or not the existence of σ -bounded approximate diagonal is equivalent to σ -amenability. Hence, we can not prove or disprove if σ -amenability of A implies $\tilde{\sigma}$ -amenability of C(X,A).

Proposition 2.3. Suppose that $\sigma \in Hom(A)$ and $\tau \in Hom(B)$, where A and B are Banach algebras. Suppose that $\phi : A \longrightarrow B$ is a continuous homomorphism with a dense range and $\tau \phi = \phi \sigma$. If A is σ -amenable, then B is τ -amenable.

Proof. We may either prove it or else look at [8, Proposition 3.3]. \Box

Theorem 2.4. Let X be a compact Hausdorff space, let A be a Banach algebra and let $\tau \in Hom(C(X,A))$ such that $T_{x_0}\tau = \tilde{\tau}_{x_0}T_{x_0}$, for some $x_0 \in X$. If C(X,A) is τ -amenable, then A is $\tilde{\tau}_{x_0}$ -amenable.

Proof. We have already seen that the map T_{x_0} is surjective, so this is immediate by Proposition 2.3. \square

We note that homomorphisms $\tau \in Hom(C(X, A))$ satisfying the condition of Theorem 2.4 exist in abundance. Take an arbitrary homomorphism $\eta \in Hom(C(X, A))$ and define the map $\tau : C(X, A) \longrightarrow C(X, A)$ by

$$\tau(f)(x) := \tau(1_{f(x)})(x) := \eta(1_{f(x)})(x) \quad (f \in C(X, A), x \in X) .$$

Then, we may check that $\tau \in Hom(C(X, A))$ and $T_x \tau = \tilde{\tau}_x T_x$ for all $x \in X$.

3. σ -weak amenability

For a Banach algebra A and a homomorphism σ on A, we write $Z^1_{\sigma}(A, E)$ for the set of all σ -derivations from A into a Banach A-bimodule E.

Let *A* be a σ -weakly amenable Banach algebra, and $\sigma \in Hom(A)$ such that $\sigma(A)$ is a dense subset of *A*. A more or less verbatim of the classic argument, shows that $\overline{A^2} = A$ (see [6, Theorem 6] for details).

Proposition 3.1. Let A be a commutative Banach algebra and let $\sigma \in Hom(A)$ with a dense range. If A is σ -weakly amenable, then $Z^1_{\sigma}(A, E) = 0$ for each Banach A-module E.

Proof. Assume towards a contradiction that there is a nonzero element $D \in Z^1_{\sigma}(A, E)$. Since $A^2 = A$, there exists $a_0 \in A$ with $D(a_0^2) \neq 0$. Hence $\sigma(a_0) \cdot Da_0 \neq 0$ and so there exists $\lambda \in E^*$ with $\langle \sigma(a_0) \cdot Da_0, \lambda \rangle = 1$. Consider $R_{\lambda} \in {}_AB(E, A^*)$ such that $\langle a, R_{\lambda} x \rangle = \langle a \cdot x, \lambda \rangle$, for $a \in A$ and $x \in E$ [2, Proposition 2.6.6]. It is not hard to see that $R_{\lambda} \circ D \in Z^1_{\sigma}(A, A^*)$. Then we have

$$\langle \sigma(a_0), (R_\lambda \circ D)(a_0) \rangle = \langle \sigma(a_0) \cdot Da_0, \lambda \rangle = 1$$

so that $R_{\lambda} \circ D \neq 0$, a contradiction of the fact that A is σ -weakly amenable. \square

Proposition 3.2. Let X be a compact Hausdorff space and let A be a commutative Banach algebra with a bounded net (e_v) for which $(\sigma(e_v))$ is a bounded approximate identity for A, where σ belongs to Hom(A) with a dense range. If A is σ -weakly amenable, then C(X, A) is $\tilde{\sigma}$ -weakly amenable.

Proof. Using the map $a \mapsto 1_a$, we may consider A as a closed subalgebra of the commutative Banach algebra C(X,A). Suppose that $D:C(X,A) \to C(X,A)^*$ is a $\tilde{\sigma}$ -derivation. Notice that C(X,A) is naturally a commutative A-bimodule with actions a. f(x) = f. a(x) := af(x), $(a \in A, f \in C(X,A), x \in X)$. We also note that $\tilde{\sigma} = \sigma$ on A. Therefore $D \mid_A: A \to C(X,A)^*$ is a σ -derivation and then, by Proposition 3.1, $D \mid_A = 0$. On the other hand, $(\sigma(e_v))$ is also a bounded approximate identity for C(X,A) and wk^* -lim $D(\sigma(e_v)) = 0$. An argument similar to that in the proof of [2, Proposition 4.1] shows that wk^* -lim $D(f\sigma(e_v))$ exists for each $f \in C(X)$. So we may define $\tilde{D}: C(X) \to C(X,A)^*$ via $\tilde{D}(f) = wk^* - \lim_v D(f\sigma(e_v))$. Clearly C(X,A) is a commutative C(X)-bimodule. Then

$$D(fg\sigma(e_v)) = wk^* - \lim D(fg\sigma(e_\mu)\sigma(e_v))) = wk^* - \lim D(f\sigma(e_\mu)g\sigma(e_v)))$$

$$= wk^* - \lim D(f\sigma(e_\mu)) \cdot \tilde{\sigma}(g\sigma(e_v)) + \tilde{\sigma}(f\sigma(e_\mu)) \cdot D(g\sigma(e_v))$$

$$= \tilde{D}(f) \cdot \tilde{\sigma}(g\sigma(e_v)) + f \cdot D(g\sigma(e_v))$$

for $f, g \in C(X)$. Taking wk^* -limit in v, we get

$$\tilde{D}(fq) = \tilde{D}(f) \cdot q + f \cdot \tilde{D}(q) \quad (f, q \in C(X)).$$

Hence \tilde{D} is a derivation on amenable C(X). Therefore $\tilde{D}=0$, and then

$$D(f\sigma(a)) = \tilde{D}(f) \cdot \sigma(a) + f \cdot \tilde{D}(\sigma(a)) = 0 \quad (a \in A, f \in C(X)).$$

Whence D=0 on the linear span of $\{f\sigma(a): f\in C(X), a\in A\}$ which is dense in the linear span of $\{fa: f\in C(X), a\in A\}$, by the density of range of σ . The latter is itself dense in C(X,A) by [2], so that D=0 on the whole C(X,A). \square

In Proposition 3.2, as an special case, we may suppose that (e_v) is itself a bounded approximate identity for A. Indeed if (e_v) is a bounded approximate identity for A, then the density of the range of σ shows that $(\sigma(e_v))$ is still a bounded approximate identity for A.

The following was proved in [9, Proposition 18], and so we omit its proof.

Proposition 3.3. Suppose that $\sigma \in Hom(A)$ and $\tau \in Hom(B)$, where A and B are Banach algebras such that A is commutative and σ has a dense range. Suppose that $\phi : A \longrightarrow B$ is a continuous epimorphism for which $\tau \phi = \phi \sigma$. If A is σ -weakly amenable, then B is τ -weakly amenable.

The following is the converse of Proposition 3.2.

Theorem 3.4. Let X be a compact Hausdorff space, let A be a commutative Banach algebra and let $\tau \in Hom(C(X, A))$ with a dense range such that $T_{x_0}\tau = \tilde{\tau}_{x_0}T_{x_0}$, for some $x_0 \in X$. If C(X, A) is τ -weakly amenable, then A is $\tilde{\tau}_{x_0}$ -weakly amenable.

Proof. We use Proposition 3.3. \square

We extend [1, Theorem 1.8.4] as follows, where the proof reads somehow the same lines.

Proposition 3.5. Let I be an ideal in a commutative algebra A, E be an A-module and D : $I \longrightarrow E$ be a σ -derivation. Then the map

$$\tilde{D}: I \times A \longrightarrow E, \quad \tilde{D}(a,b) := D(ab) - \sigma(b) \cdot D(a)$$

is bilinear such that

- (i) $\tilde{D}(a,b) = \sigma(a) \cdot D(b)$ $(a,b \in I)$;
- (ii) for each $a \in I^2$, the map $b \mapsto \tilde{D}(a,b)$, $A \longrightarrow E$ is a σ -derivation.

Proof. We only prove the clause (ii). For $a_1, a_2 \in I$, and $b_1, b_2 \in A$, we have

$$\begin{split} \tilde{D}(a_{1}a_{2},b_{1}b_{2}) &= D(a_{1}a_{2}b_{1}b_{2}) - \sigma(b_{1}b_{2}) \cdot D(a_{1}a_{2}) \\ &= \sigma(a_{1}b_{1}) \cdot D(a_{2}b_{2}) + \sigma(a_{2}b_{2}) \cdot D(a_{1}b_{1}) - \sigma(b_{1}b_{2}) \cdot D(a_{1}a_{2}) \\ &= \sigma(b_{1}) \cdot \left[\sigma(a_{1}) \cdot D(a_{2}b_{2}) - \sigma(b_{2})\sigma(a_{1}) \cdot D(a_{2}) \right] \\ &+ \sigma(b_{2}) \cdot \left[\sigma(b_{1}a_{1}) \cdot D(a_{2}) + \sigma(a_{2}) \cdot D(a_{1}b_{1}) - \sigma(b_{1}) \cdot D(a_{1}a_{2}) \right] \\ &= \sigma(b_{1}) \cdot \left[D(a_{1}a_{2}b_{2}) - \sigma(a_{2}b_{2}) \cdot D(a_{1}) - \sigma(b_{2}a_{1}) \cdot D(a_{2}) \right] \\ &+ \sigma(b_{2}) \cdot \left[D(a_{1}a_{2}b_{1}) - \sigma(b_{1}) \cdot D(a_{1}a_{2}) \right] \\ &= \sigma(b_{1}) \cdot \left[D(a_{1}a_{2}b_{1}) - \sigma(b_{1}) \cdot D(a_{1}a_{2}) \right] \\ &+ \sigma(b_{2}) \cdot \left[D(a_{1}a_{2}b_{1}) - \sigma(b_{1}) \cdot D(a_{1}a_{2}) \right] \\ &= \sigma(b_{1}) \cdot \tilde{D}(a_{1}a_{2}, b_{2}) + \sigma(b_{2}) \cdot \tilde{D}(a_{1}a_{2}, b_{1}) \end{split}$$

as required. \Box

The following is an analogue of [1, Lemma 2.8.68].

Lemma 3.6. Let A be a σ -weakly amenable commutative Banach algebra, I be a closed ideal in A, and E be a Banach A-module. Take $\sigma \in Hom(A)$ with a dense range such that $\sigma(I) \subseteq I$. Then $D|_{I^4} = 0$ for each $D \in Z^1_{\sigma}(I, E)$.

Proof. We first observe that $F := {}_{A}\mathcal{B}(I, E)$ is a Banach A-module for the action $(a \cdot T)(b) = T(ab)$, $(a \in A, b \in I)$. Then we notice that the map $j : E \longrightarrow F$ with $j(x)(a) = a \cdot x$, $(a \in I, x \in E)$ belongs to ${}_{A}\mathcal{B}(E, F)$. Whence $j \circ D \in Z^1_{\sigma}(I, E)$. Clearly the map

$$\tilde{D}: I \times A \to F$$
, $(a,b) \longmapsto (j \circ D)(a,b) - \sigma(b) \cdot (j \circ D)(a)$

is bilinear. Therefore $\tilde{D}(a,b) = \sigma(a) \cdot (j \circ D)(b)$, by Proposition 3.5 (i), for $a,b \in I$. Take $a \in I^2$. By Proposition 3.5 (ii), the map $A \longrightarrow F$, $b \longmapsto \tilde{D}(a,b)$, is a σ -derivation. It follows from Proposition 3.1, that this map is zero and so $\tilde{D}(I^2 \times A) = 0$. Hence, for $a \in I^2$ and $b,c \in I$, we have

$$\sigma(a)c \cdot D(b) = (i \circ D)(b)(\sigma(a)c) = (\sigma(a) \cdot (i \circ D)(b))(c) = \tilde{D}(a,b)(c) = 0.$$

In particular, choosing $c \in \sigma(I)$, we may see that $\sigma(I^3) \cdot D(I) = 0$, and whence $D \mid I^4 = 0$. \square

Proposition 3.7. Let A be a σ -weakly amenable commutative Banach algebra, I be a closed ideal in A, and $\sigma \in Hom(A)$ with a dense range such that $\overline{\sigma(I)} = I$. Then I is σ -weakly amenable if and only if $\overline{I^2} = I$.

Proof. If *I* is σ -weakly amenable, then $\overline{I^2} = I$ by [9, Theorem 6].

Conversely if $\overline{I^2} = I$, then $\overline{I^4} = I$. Suppose that $D \in Z^1_{\sigma}(I, I^*)$. Then by Lemma 3.6, $D|_{I^4} = 0$ so that D = 0. Hence I is σ -weakly amenable. \square

Lemma 3.8. Let X be a compact Hausdorff space, let A be a Banach algebra and let $\sigma \in Hom(A)$. If σ has a dense range, then $\tilde{\sigma}$ has a dense range as well.

Proof. Take $f \in C(X)$ and $a \in A$ and put $h := fa \in C(X,A)$. By the assumption, there exists a sequence $(a_n) \subseteq A$ such that $\lim_n \sigma(a_n) = a$. Define $h_n := fa_n$, (n = 1, 2, ...). Then it is easy to verify that $\lim_n \tilde{\sigma}(h_n) = h$. This completes the proof, since the set of all linear combinations of elements of C(X,A) of the form fa $(f \in C(X), a \in A)$ is dense in C(X,A) [2]. \square

We recall that a homomorphism $\sigma \in Hom(A)$ is extended to a homomorphism $\sigma^{\sharp} \in Hom(A^{\sharp})$ through $\sigma^{\sharp}(a + \lambda e) = \sigma(a) + \lambda e \ (a \in A, \lambda \in \mathbb{C})$, where e is the identity of A^{\sharp} , the unitization of A.

Now, we are ready to prove our last goal.

Theorem 3.9. Let X be a compact Hausdorff space, let A be a commutative Banach algebra and let $\sigma \in Hom(A)$ with a dense range. If A is σ -weakly amenable, then C(X, A) is $\tilde{\sigma}$ -weakly amenable.

Proof. Suppose that A is σ -weakly amenable. By [6, Theorem 12], A^{\sharp} is σ^{\sharp} -weakly amenable. Applying Proposition 3.2, we see that $C(X,A^{\sharp})$ is $\tilde{\sigma}^{\sharp}$ -weakly amenable. Our assumptions together with [6, Theorem 6], imply that A^2 is dense in A. We learn from the proof of [8, Theorem 1] that $C(X,A)^2$ is dense in C(X,A), and also C(X,A) is a closed ideal of $C(X,A^{\sharp})$. Next, it is easy to verify that $\tilde{\sigma}^{\sharp}(f) = \tilde{\sigma}(f)$, for all $f \in C(X,A)$. Hence

$$\overline{\tilde{\sigma}^{\sharp}(C(X,A))} = \overline{\tilde{\sigma}(C(X,A))} = C(X,A)$$

by Lemma 3.8. Now, an application of Proposition 3.7 yields that C(X, A) is $\tilde{\sigma}$ -weakly amenable. \square

References

- [1] A. Bodaghi, M. Eshaghi Gordji, A. R. Medghalchi, A generalization of the weak amenability of Banach algebras, *Banach J. Math. Anal.* 3, no. 1, (2009), 131-142.
- [2] H. G. Dales, Banach Algebras and Automatic continuity, Clarendon Press, Oxford, 2000.
- [3] R. Ghamarshoushtari, Y. Zhang, Amenability properties of Banach algebra valued continuous functions, J. Math. Anal. Appl. 422 (2015), 1335-1341.
- [4] B. E. Johnson, Cohomology in Banach Algebras. Mem. Amer. Math. Soc. 127, 1972.
- [5] L. Kaplansky, Topological rings, Amer. J. Math. 69 (1947), 153-183.
- [6] M. Mirzavaziri, M. S. Moslehian, σ-Derivations in Banach algebras, Bull. Iranian Math. Soc. 32 (1) (2006), 65-78.
- [7] M. Mirzavaziri, M. S. Moslehian, σ-amenability of Banach algebras, Southeast Asian Bull. Math. 33 (2009), 89-99.
- [8] M. Moslehian, A. N. Motlagh, Some notes on (σ, τ)-amenability of Banach Algebras, Stud. Univ. Babes-Bolyai Math. 53 (3) (2008), 57-68.
- [9] T. Yazdanpanah, I. Moazzami Zadeh, σ-weak Amenability of Banach Algebras. Int. J. Nonlinear Anal. Appl. 4, no. 1, (2013), 66-73.
- [10] T. Yazdanpanah and H. Najafi, σ-contractible and σ-biprojective Banach algebras, Quaestiones Math. 33 (2010), 485-495.
- [11] Y. Zhang, Addendum to "Amenability properties of Banach algebra valued continuous functions", J. Math. Anal. Appl. 431 (2015), 702-703.