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Abstract. In this paper we consider the concept of statistical causality between filtrations associated with
stopping times, which is based on Granger’s definition of causality. Especially, we consider a generalization
of a causality relationship ”G is a cause of E within H” from fixed to stopping time. Then we apply the
given causality concept to local uniqueness for the solution of the martingale problem. Also, we give some
applications in finance.

1. Introduction

Many of the systems to which it is natural to apply tests of causality, take place in continuous time (see
[4-7, 16-19, 21]). So, in this paper we consider the continuous time processes. Continuous time models
become more and more frequent in econometrics, demography, finance.

The paper is organized as follows. After Introduction, in Section 2, we present a generalization of a
causality concept “G is a cause of E within H” which is based on Granger’s definition of causality (see [7]).
The given causality concept can be connected to definitions of weak solutions and local weak solutions of
stochastic differential equations driven with semimartingales (see [21, 22]). This conceptis closely connected
to the extremality of measures and the martingale problem as it is shown in [21]. The given concept of
causality was extended from fixed to continuous times in [20].

The last two sections contain our main results. In Section 3 we give a connection between a local weak
solution of stochastic differential equation driven with semimartingale (given by the Definition 5 in [22])
and a solution of stopped martingale problem, associated to the same equation.

In Section 4, we relate the given concept of statistical causality which involves stopping times to the
local uniqueness for the solutions of the martingale problem.
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2. Preliminary Notions and Definitions

Causality is, in any case, a prediction property and the central question is: is it possible to reduce
available information in order to predict a given filtration?

A probabilistic model for a time-dependent system is described by (Q3, 7, ¥, P) where (QQ, 7, P) is a
probability space and {#;, t € I,I € R*} is a “"framework” filtration. We suppose that the filtration (F;)
satisfies the “usual conditions”, which means that (¥;) is right continuous and each (#;) is complete.
Foo = Vier Tt is the smallest g-algebra containing all the (7;) (even if sup I < +0). An analogous notation
will be used for filtrations H = {H,}, G = {G;} and E = {&;}. It is said that the filtration G is a subfiltration
of H and written as G C H, if G; C H, for each t.

A family of o-algebras induced by a stochastic process X = {X;, t € I} is given by FX = {F X, t € I}.

The intuitive notion of causality formulated in terms of Hilbert spaces is given in [6] and generalized in
[18]. We consider the analogous notion of causality for filtrations.

Definition 2.1. (see [18] and [21]) It is said that G is a cause of E within H relative to P (and written as Ek G; H; P)
if o € Hoo, G C Hand if (Ew) is conditionally independent of (H;) given (Gy) for each t, i.e. Eo L HilG: (ie.
&y L H,|G; holds for each t and each u), or

(VA € &) P(AIH:) = P(AIGY). 1)

Intuitively, Ek G; H; P means that, for arbitrary ¢, information about E., provided by (H;) is not “bigger”
than that provided by (G;).

If G and H are such that G|< G;H; P, we shall say that G is its own cause within H. It should be
noted that ”G is its own cause” sometimes occurs as a useful assumption in the theory of martingales and
stochastic integration (see [2]). It also, should be mentioned that the notion of subordination (as introduced
in [25]) is equivalent to the notion of being “its own cause” as defined here. Also, if G is its own cause
within H we have

Go L Hi|G; for each t,

which is equivalent to Hypothesis (H) introduced in [2]. Namely, Hypothesis (H) implies that (G;) has a
nice structure with respect to (H;): G = H; N G« (see Theorem 3 in [2]).

Let us mention that, having in mind classification of causality concepts given in [4], the given causality
concept lies in the strong-global group.

Remark 2.2. The condition of Granger causality is actually a condition of transitivity largely used in sequential
analysis (in statistics), see e.g. [1] or [8] and in the marginalization of Markov processes (see [5], section 6.4.2).

Definition 2.1 can be applied to stochastic processes if we consider corresponding induced filtrations.
For example, (¥;)-adapted stochastic process X; is its own cause if (%) is its own cause within (7;) i.e. if
FXk FX;F; P holds.

The process X, which is its own cause, is completely described by its behavior relative to its natural
filtration FX (see [21]). For example, the process X = {X;,t € I} is a Markov process with respect to the
filtration F = {#;,t € I} on a filtered probability space (Q2, ¥, ¥, P) if and only if X is a Markov process
with respect to FX and it is its own cause within F relative to P. As a consequence, the Brownian motion
W = {W;, t € I} with respect to the filtration F = {#,t € I} on a filtered probability space (Q3, ¥, ¥, P) is its
own cause within F = {F},t € I} relative to probability P.

As a special case, we can consider the set L which contains the right continuous modifications of the
processes L; = P(A | /%), i.e. suppose that we have the set of the form

L = {L; = P(AIFX); A € FZX). )

The elements of the set L are (F;, P)-martingales if and only if FX k FX; F; P holds (see [21]).
The next properties of the causality relationship from Definition 2.1 will be needed later.
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Lemma 2.3. ([15]) In the measurable space (QQ, H) let the filtrations E = (&}, G = (G} and H = {H} be given

and let P and Q be probability measures on H satisfying Q < P with Z—% as (Ec)-measurable. Then

Ek G;H; P implies Ek G; H; Q.

The definition of the extremal measure is carried over from [10] section 11.1: P is an extremal measure
of the set M (and is denoted by P € ext(M), where ext(M) is the set of extreme elements of M), if from
P=aQ+ (1-a)Q,wherea e (0,1),Q,Q € M, it follows that Q = Q" = P.

Suppose that H is the set of right continuous modifications of processes

H={M;=PA|H)Ae€H.)} 3)
The following result holds.

Proposition 2.4. ([15]) Let (QQ, G, P) be a probability space with a filtration G = {G;}. Let H be a set of (G;, P)-
martingales. Then the following statements are equivalent

1) P is extremal in M, the set of probability measures Q on (Ge) which coincide with P on G_o. = NG, and
under which all elements of H are (G, Q)-martingales.

2) For any filtration ¥ = {#7) on an extension (Q, F, P) of (Q, G, P) if G, € F7 for each t and if all elements of
H are (F5, P)—martingales, then
Gk G;E;P.

In many situations, we observe some system up to some random time, for example, till the time when
something happens for the first time. Definition 2.1 is extended from fixed times to stopping times in [20].

The o-field (1) = {A € F : AN{T < t} € ¥4} is usually interpreted as the set of events that occurs before
or at time T (see [3]). For a process X, we set X(w) = X1(e)(w), whenever T(w) < +00. We define the stopped
process X! = {Xjr, t € I} with

X (@) = Xiat()(@) = Xexpeer) + XX (t27)-

Note that if X is adapted and cadlag and if T is a stopping time, then the stopped process X is also adapted.
Let us mention that the truncated filtration (F;,7) is defined as

Fr, t<T,

ﬁAT:ﬁmTT:{fT P> T

A martingale stopped at a stopping time is still a martingale. The natural filtration for the stopped
martingale X;,t is FX' = (ﬁ)A(T), with respect to which the process X;,t is completely described. So, we have

the definition of causality which involves the stopping times.

Definition 2.5. ([20]) Let H = {H}}, G = {Gi} and E = (&}, t € I, be given filtrations on the probability space
(Q,F,P) and let T be a stopping time with respect to filtration E. The filtration GT entirely causes ET within H'
relative to P (and written as ET k GT; HT; P) if ET € HT, GT C H” and if Er is conditionally independent of Hint
given Giat foreach t, ie. (Vt)  Er L Finr | Giar, OF

(Vte (YA€ EY) P(A|Hinr) = PA | Ginr). 4)

The concept of causality given in Definition 2.5 includes the stopped filtrations. Namely, the causality
relationship is defined up to a specified stopping time T.

Let us consider the following example.
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Example 2.6. In order to show a simple example of application of Hypothesis (H) (introduced in [2, 26]), we set
G = Guar in relation Gk G; H; P, where T is a stopping time with respect to G, so G k GT; H'; P holds. Then, we
have

Gr L HinrlGirt

and, intuitively, this means that for predicting a filtration (Gr), associated to (G:)-stopping time T, it is enough to
have all information from the stopped (truncated) filtration GT = {Gin1). Also, due to Hypothesis (H) in [2], every
martingale with respect to (Giat) is (Hiar)-martingale and conversely, i.e we have the preservation of the martingale
property with respect to the enlarged filtration (Hiat).

Indeed, if N is the set of right continuous modifications of martingales

N = (N} = P(A | Gin1), A € GT), (5)
then from the causality relation GT k GT; H'; P we have
Gr L HinrlGiar o1, equivalently, (YA € Gr) P(A | Hirr) = P(A | Giar)-
Obviously, if NtT is (Giar)-martingale, then

E(P(A| Gr) | Hiar) = E(E(xa | G1) | Hirr) = E(xa | Hinr) = P(A | Hiar)
P(A | Ginr) = NI

E(Nt | Hint)

and {NT} is (Hyr)-martingale.

Conversely, if every element of the set (5) is a martingale with respect to filtrations (Hiat) and (Giat), we have

E(NT | 7‘{1,‘/\T) = E(NT | gt/\T)
E(P(A|Gr) | Hinr) = EP(A|Gr)|Ginr)
E(xa | Hiar) = E(xa | Giar),

(since xp is (Gr)-measurable function), then it follows that P(A | Hiar) = P(A | Giar), for every A € (Gr), or
equivalently, that GT k GT; HY; P holds.

3. Martingal problem and stopped martingale problem

We now consider stochastic differential equation of the form:

dX; = u/(X)dZ
{ X t: x,t t ©)

where the driving process Z = {Z;,t € I} is an m-dimensional semimartingale (Zy = 0) and the coefficient
u(X) is an n X m-dimensional predictable functional.

The definition of the weak solution of the stochastic differential equation (6) driven with semimartingales
(using the concept of causality) is introduced in [15].

Definition 3.1. ([15]) Set of objects (Q3, F, Ft, X1, Zt, P) is regular weak solution of the stochastic differential equation
(6) if:

1. uz(A) = P(Z € A) coincides with a predetermined measure on the function space where Z, take values,

2. Xy and Z; satisfy the equation (6),



Lj. Petrovi¢, D. Valjarevié / Filomat 32:8 (2018), 2851-2860 2855
3. foreveryt > 0, F* k F#;F; P holds, i.e.
VAeFL PAIF)=PAIF).

Definition 3.2. ([15]) The regular weak solution (QQ, F, F, Xs, Zt, P) of the equation (6) is weakly unique if there is
no other measure Q # P on ﬁf’x, so that (Q, ﬁf’x, ?‘tZ’X, X, Zy, Q) is a weak solution.

Local weak solutions of the given stochastic differential equations were investigated in [13, 14] and [22]
(see Definition 5).

Suppose that (), 7, ﬁz,x ) is a filtered probability space (no measure on it, yet) and that #Z is a sub-o-field
of (F%%), called the initial o-field.
We consider the definition of the martingale problem given by Jacod and Shiryaev.

Definition 3.3. ([11]) Assume that on the basic space (QQ,F) a right continuous filtration F#X = (TtZ’X)tZO
with (F&X) = (F) and a processes Z; = (Zy)is0, Xi = (X0 are given. A solution of the martingale problem
(X, F#X,Pz, A, C,v) is a probability measure P on (Q, F) such that:

(i) the restriction Plgz = Py
(ii) Xy is a local martingale on the basis (QQ, F, ﬁZ’X, P) with (A, C,v) as its predictable characteristics.

The process X from the previous definition is called the solution-process and the law P the solution-
measure. The definition of the martingale problem can be found in the [27], but we use the definition from
[11], because it is related to the characteristics of semimartingales. The collection of all solutions of the
martingale problem is denoted by I's(X, F2X,P;, A, C,v) (the used notation is from [9]). Now, the measure
P is defined as a solution of the martingale problem and the filtered probability space (Q2, 7, ﬁZ’X, P) is
complete.

Remark 3.4. The solution process is often required to have continuous or cadlag paths. In this case the solution of
the martingale problem corresponds to a probability measure on the Borel sets of the canonical space.

Definition 3.5. ([11]) The solution of the martingale problem (X,F**X,Pz,A,C,v) is weakly unique if any two
solution measures P and Q (where P,Q € T,,(X,F*X,Pz,A,C,v)) of the martingale problem coincide on the o-field

(FZ).

Remark 3.6. The uniqueness of solutions for the martingale problems is directly connected to the Markov property
of their solutions.

Let us mention that the uniqueness of solutions of the martingale problems means that any two solutions
have the same finite-dimensional distributions (in one dimensional case, all marginal distributions coincide).

For stochastic differential equations driven by the Wiener process, the equivalence between the problem
of finding a weak solution of the equation and the solution of martingale problem associated with the
equation is shown in [11, 12]. This equivalence for stochastic differential equations of the form (6), which
are driven by semimartingales, is considered in [23].

Theorem 3.4 from [23] shows that the existence of an extremal solution of the martingale problem can
be related to the concept of causality. The following theorem shows that the existence of extremal solution
of the martingale problem and of weakly unique solution of the martingale problem can be related to the
concept of causality.

Theorem 3.7. Let P be a solution of the martingale problem (P € T (X, F2X,P;,A,C,v)). Then the following
statements are equivalent:
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(1) F#Xk F#X;F; P;
(2) the measure P is an extremal solution of the martingale problem (P € ext(M,));
(3) the measure P is a weakly unique solution of the martingale problem;

(4) if X € RY and uy(X) is predictable functional, then the weak solution of the equation (6) is weakly unique.

Proof. The equvalence between statements (1) an (2) is proved as Theorem 3.4 in [23].

(2) = (3) Let P be a solution of the martingale problem and an extremal measure of the set M,. We
need to prove that the solution of the martingale problem is weakly unique, or equivalently, that for another
solution measure of martingale problem Q; € M, (Q; € I'(X, F“X,P;,A,C,v)), it follows that P = Q; on
(FZ¥). Suppose that P # Q; and define the probability measure Q; on (FZ2*) by P = aQ; + (1 — a)Q.
Obviously, Q; and Q», coincide with P on (?‘_Zo’f). Elements of the set L (of the form (2)) are (ﬁZ’X, P)-
martingales (because P is a solution measure of the martingale problem), and from Q; € M, according
to Lemma 2.3, we have that elements of L are (th’x, Q1)-martingales, too. Hence, they are (7—'tz’X, Q2)-
martingales. It follows (by an ordinary change of variables formula, see e.g [24]) that Q1 f !, Q2f ! € M,,

hence P is not extremal in M. So, we proved that P = Q; on (ch’x), and that P is a weakly unique solution
of the martingale problem.

(3) = (4) Let the measure P be a weakly unique solution measure of the martingale problem (P €
T(X, F#X,Pz,A,C,v)). According to Theorem 3.4 in [23], (QQ, F, F:, X;, Z, P) is a regular weak solution
of the equation (6). Suppose that the solution (Q, ¥, 7, X;, Z;, P) is not weakly unique solution, i.e. that
(Q, FLX, (FtZ’X, Q, Z;, X;) is another solution. Due to Theorem 3.4 in [23], the measure Q is another solution
of the martingale problem associated to the equation (6). But, by Definition 3.2 we have P # Q on the
filtration (TOE’X ), which is contradiction. Hence (Q, ¥, 4, P, Z;, X;) is weakly unique solution of the equation

(6).
(4) = (1) Follows directly by Theorem 4.3 in [21]. O

Now, we consider the stopped martingale problem.

Suppose that triplet (4,C,v) is a local characteristic of the semimartingale X. If T is a (¥;X)-stopping
time, XT, AT, CT are stopped processes and the “stopped random measure” v! is defined as

VT(CL), dS, dZ) = v(a), dS, dz)I{ng(m)]-

The definition for the local weak solution of the stochastic differential equation (6) was investigated in
[13, 22].

Definition 3.8. ([22]) A set of objects (Q), F, F+, P, Xt, Z¢, T) is a local weak solution of equation (6) if:
1) uz(A) = P{Z € A} coincides with predetermined measure on the function space where Z takes values;

2) F2 kK F4,FL;Por
VAe(FL)  PAIFS) =PA|Finr),

3) Tis (ﬁZ’X)-stopping time (called the lifetime of X);
4) X is adapted and satisfy the equation (6).
The notion of stopped martingale problem was introduced in [11, 13].

Definition 3.9. ([11]) Assume that on the basic space (Q, F) a right continuous filtration F#X = (ﬁz’x)tzo with
(TOE’X ) = (F) and a processes Xy = (X)120, Zt = (Zt)i0 are given. A probability measure P on (Q, F) is called a
solution of the stopped martingale problem (X, F%X)", P,, AT, CT,v7) for the (F/X)-stopping time T such that:
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(i) the restriction P|lgz = Py,
(ii) XT is a martingale on the basis (Q, F, ﬁ(Z’X)T, P) with (AT, CT,vT) as its predictable characteristics.

The following theorem gives a connection between the local weak solution of the equation (6) and the
solution of the stopped martingale problem.

Theorem 3.10. For every local weak solution (Q, ¥, F, P, X;, Z;, T) of the equation (6), P is a solution of the stopped
martingale problem, i.e. P € T,,(XT,F¢X)" p,, AT, CT,v7),

Proof. Suppose that (QQ, 7, 71, P, X;, Z;, T) is a local weak solution of equation (6). Due to Theorem 3 in [22],
(QQ, F,F+, P, Xs, Zy) is a regular weak solution of the same equation (simply if T = o0). According to Theorem
5.3 in [21], P is a solution of the martingale problem, i.e. P € T,(X,F%X,Pz, A, C,v), and by assumption
T is (TtX)—stopping time. So, on the basis (QQ, ¥, #;, P) semimartingale X is a solution with characteristics
(A,Cv). XT is a semimartingale with characteristics (AT, CT,vT). According to Definition 3.9, P is a solution
of the stopped martingale problem, i.e. P € [,,,(XT,F#X)", p,, AT,CT,vT). O

Let us mention that every solution of the stopped martingale problem is not a local weak solution of
the associated stochastic differential equation. According to Definition 5 in [22] and Definition 3.9, we need
to find conditions under which the concept of causality from the filtration #7 should be extended to the
filtration (). This is not the case in generally, but this problem can be overcome if we suppose that a
measure P is extremal on F.

Let LT be a set of processes defined according with (2) as
LT = {Lixr = P(A | FXp), A € F7). ()

Let MT be a set of all measures Q for which the process Lixr (of the form (7)) is (Fiar, P)-martingale.
Now, we consider connections between the extremal solutions of the stopped martingale problem and the
relation “being its own cause” for stopped processes and stopped filtrations.

Theorem 3.11. Let T be a (F*X)-stopping time and P € T,,(XT, FZX)' p, AT,CT vT). The measure P is extremal
solution of the stopped martingale problem (P € ext(MUL)) if and only if F#X)" is its own cause within F7, i.e.

FZ0"  FZOLFT P

Proof. Suppose that P is an extremal solution of the stopped martingale problem for the (¥,%)-stopping time
T, ie. P e T, (XT,F4X" P, AT,CT vT). Therefore, elements of the set LT (defined as in (7)) are (7"&?, P)-
martingales. On the other hand, P € ext(MD) (ext(MTI) is a set of extremal measures, for which the process
Liat is (Fiat, P)-martingale). Now, from Proposition 2.1,
it follows that
F(Z,X)T l< F(Z,X)T; FT/ P.

Conversely, suppose that FZX)" k FZX", ET; P, holds, or equivalently,
VA € F2% P(A| Finr) = P(A | F520). ®)

Let the measure P be a solution of the stopped martingale problem. Then the elements of the set LT of the
form (7) are (F,%, P)-martingales, i.e. (according to Hypothesis ) FX' k FX'; FZX)"; P holds. So, we have

VA e FX PA|F) = P(A| FXp). )

tAT
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From (8), (9) and ¥ C TTZ X forall A e FX it follows that
P(A| Fp) = PA | Fr) = P(A | Finr)-
So, elements of the set LT are (¥4, P)-martingales and FX' k FX'; F”; P holds, or equivalently,
VYA e FY  PA|Finr) = DA FXp).

Now, we can apply Proposition 2.4. Hence, the measure P is an extremal measure in the set M (the
set of measures Q for which the process Liat, is (Fiar, Q)-martingale) and P is the extremal solution of the
stopped martingale problem. [

The following martingale problem may be considered to be a stock price model, where the same event
not only changes the return process X! but also increases the volatility X? of the stock. In this example the
volatility can be interpreted as an arrival rate of price changes.

Example 3.12. (see [12]) Fix parameters u € R,a,B,0,x0 € Ry, x1 € (a,00). Let ¢ be a measure on (R, B)
with A-density x — —le W, We define the measure P(((w', w?),t),-) as the image of h(a)z)(p, where h : R — R,
such that h(x) > jlor any x € R, and h(x) = x for any x € (o, 00). Moreover, define the drift by b(®) =
(1, —(@* — a)B + fx2P((a), t),d(x1,x2))) for any (@,t) = (@', @%),t) € D* X Ry.. Then, for the martingale problem
I, Tty, €y, A,0,v) (where A; and v are defined in ([12])), the process Y = (X!, X?) is its own cause.

For a solution process (X*, X?), we interpret X? as a volatility. It increases due to positive jumps (which also affect
X') and is pulled back towards the lower bound a by the drift term —(@* — a)B. Therefore, X* always stays above a.

Whereas in this example, the volatility can be interpreted as a measure of the average size of the stock price jumps.

Example 3.13. (see [12]) Fix parameters u € R, a,B,0,x9 € R, x1 € (a, ), and let ¢, h be as in the previous
example. For any (@', @%),t) € R?> X R, we define the measure P((&0!, @?),t),-) as the image of ¢ under the
mapping R — R%,x — (ah(d)tz)x,h(cbf)lxl). Moreover, define b as in Example 3.1. Then the martingale problem
(Y, 7—?/, €y,, A, 0,v) has a unique solution measure, that is, by Theorem 4.1, process Y = (XY, X?) is its own cause.

4. Local uniqueness and statistical causality

Now, we consider the concept of local uniqueness, a form of uniqueness that is stronger than ordinary
uniqueness. It is important for studying absolutely continuity or singularity questions for solutions of the
martingale problem and it can be applied to a local weak solutions, too.

Let (7,") be a filtration which is not right continuous and we have that

(Fi-) € (F)c(F), t>0

where (F1)° = N FL, FL = (FZ*) and (F)° = (Fo)? = V(F1)°. Then, the filtration F° = {(F;)°,t € I} is
the smallest filtration such that (Z, X) is adapted. The next definition considers stopping times with respect
to the filtration (7;)°.

Definition 4.1. ([11]) A strict stopping time (or a stopping time relative to F°) is a map T : Q — R, such that
{T <ty € F forall t € Ry. If T is a strict stopping time, then (F7) denotes the o-field of all A € F such that
AN{T <t} belongs to (F) for all t € R,.

Remark 4.2. A strict stopping time is a stopping time. Also, Fr- C F7 C Fr on the set {T > 0}, where
Fr-={AeF,An{T <t} e F, VYVt >0}

Let us consider the martingale problem I';,(X, F“XP,, A, C,v) associated with the equation (6). The local
weak uniqueness (that is, the local uniqueness in the sense of distributions) for the martingale problem is
given by Jacod and Shiryaev in [11].
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Definition 4.3. ([11]) Assume that (?;Z’X)O is not right continuous. We say that the local uniqueness holds for the
solution of the martingale problem T, (X, F%X, Pz, A, C,v) if, for every strict stopping time T, any two solutions P
and P’ of the stopped martingale problem T,,(XT,F&X", P,, AT, CT,v7) coincide on the o-field (TTZ X)0,

The similiar concept to the local uniqueness is given in [13], named as ”stopped uniqueness” and it is
not defined for strict stopping times, but for stopping times relative to the filtration (¥;) which satisfies the
usual conditions.

Remark 4.4. Note that the local uniqueness implies the uniqueness (if we take T = oo). If the uniqueness holds,
then every solution of the stopped martingale problem can be extended (beyond the stopping time) to a solution of the
(local) martingale problem.

From the definition of the local uniqueness, it is evident that it is not easy to be checked, unless it is
proved that this property can be implied by the uniqueness. The local uniqueness can be connected with
the concept of causality given in Definition 2.5 as it is proved in [23] (see Theorem 4.4). In this paper,
we consider connections between the local uniqueness of the solution of the martingale problem and the
relation “being its own cause” for stopped processes and stopped filtrations.

Let LT be a set of processes defined according with (2) as

L™ = {Linr = P(A | F2), A € FL5). (10)

tAT

Let M° be the set of all probability measures Q on (77)°, under which all elements of the set M are

(ﬁi? )O-martingales. In the following theorem we give conditions for the local uniqueness of the solution
of the martingale problem.

Theorem 4.5. Let T be a strict stopping time with respect to the filtration (ﬁZ’X)O. The solution of the martingale
problem T,,(X, F*X, Pz, A, C,v) is locally unique if and only if the process (Z, X)" is its own cause within F', i.e.

F#X"  F@XT FT P,

Proof. Suppose that T is a strict stopping time and the measure P is a solution of the martingale problem
I.(X,F>X, P, A, C,v), for which the local uniqueness holds. According Theorem 4.4 in [23], we have that
FZY |« FZX FT; P holds. Since FY" ¢ FZY, it follows that F#X)" k F&X)"; FT; P,

Conversely, let T be a strict stopping time and P be a solution of the martingale problem, P €
U(X, F*, Pz,
A,C,v). The measure P will be a solution of the stopped martingale problem T, (X7, FZX)' p, AT,CT vT),
too. Namely, if X is (th’x, P)-martingale with characteristics (A4, C,v), then XTis (Tj’?, P)-martingale with
characteristics (AT, CT,vT), which satisfy the definition for the solution of the stopped martingale problem
in [11, 13].

By the assumption, such a measure P satisfies the causality condition

Fex" k Fex" :F:P, or equivalently,

VAeFIX PAIFEY) =PA| Finr)

Now, from
E(Lty | Fint) = EPA | FL5) | Fint) = EEQca | FL5) | Finr) = E(xa | Fiar) = E(xa | F72) = Linr

it follows that the elements of the set L;sr are (Fiar, P)-martingales.

According to Proposition 2.2 in [15], the measure P is extremal on the (?TZ’X). In other words, if there are
another measures Q; and Q,, for which P = aQ; + (1 — a)Q; holds, we have P = Q; = Q; on (TTZ’X) and this
measures are the solutions of the same stopped martingale problem. Due to the inclusion (TTZ’X)0 c (TTZ ),

obviously P = Q; = Qx on (TTZ’X)O, so the solution of the martingale problem I',,(X, F“X,P;,A,C,v)is locally
unique. [
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As a consequence of Theorem 3.10, Theorem 4.5 and Theorem 3.1 in [23], we have the following result.

Theorem 4.6. Let T be a stopping time with respect to the filtration (ﬁz’x)o. A local weak solution of the stochastic
differential equation (6) is locally unique if and only if

FX" K F@XT FT P,
The following theorem holds.
Theorem 4.7. A weakly unique solution (QQ, F, F, P, X;, Z;) of the equation (6) is locally unique.

Proof. Let (QQ, ¥, F+, P, Xi, Z+) be a weak solution of the equation (6). According to Theorem 3.7, the solution
of the associated martingale problem is weakly unique, or F#X k F#X;F; P holds. Due to Remark 1 in [20],

we have that FZX)'" k FZX'; FT; P holds. By Theorem 4.5, the solution of the martingale problem is locally
unique. According to the equivalence between the weak solution of the equation (6) and the solution of the
associated martingale problem (see Theorem 3.3 in [23]), it follows that the weak solution of the stochastic
differential equation is locally unique for the (¥*)-stopping time T.
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