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Singular Value inequalities for Hilbert space Operators
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Abstract. In this paper we show that if A;, B;, X; are Hilbert space operators such that X; is compact
i=1,2,...,nand f, g are non-negative continuous functions on [0, o) with f()g(f) = t for all ¢ € [0, o), also
h is non-negative increasing operator convex function on [0, o), then

n

h (s]- (Zn: a),-A;XjB,-)] <s (Z wh(A fIX1)A) @ i w,-h(ng(lX,-I)zB,-))
i=1

i=1 i=1

forj=1,2,...and Y\, w; = 1.
Also, applications of some inequalities are given.

1. Introduction

Let H be a complex Hilbert space with inner product (-, -) and let 8(H) denote the C*-algebra of all
bounded linear operators on a complex separable Hilbert space H. For a compact operator X € B(H), let
51(X) > 52(X) > - - - denote the singular values of X; i.e., the eigenvalues of [X]| = (X*X)? (The absolute value
of X), arranged in decreasing order are repeated according to multiplicity. Note that s;(X) = s;(X") = s;(|X])
for j=1,2,.... For A,B € B(H), we utilize the direct sum notation A @ B for the block-diagonal operator

| Ig g ] defined on H & H. It has been shown in [8] that if X and Y are compact operators, then

S]‘(X +Y)< ZSJ‘(X@ Y)

forj=1,2,....

The usual operator norm of an operator A € B(H) is denote by ||A|| = sup{l|Ax]| : [lx]| = 1}. As an
immediate consequence of the min-max principle (see e.g.,[2, p. 75]), if A, B, and X are in B(H) such that X
is compact, then

sj(AXB) < [|A[llIB]Is;(X) @

for j=1,2,.... For 1 < p < oo, the Schatten p-norm of compact operator A is defined by [|A]|, = (tr|A|”)%,
where tr is the usual trace functional. One can show that

A @ BJ| = max(]|All, [|BI])
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and
A @ Bll, = (IAll, + IBIl,)? .

In addition to the usual operator norm, which is defined on all of B(H), we consider unitarily invariant
norms |||-|||. Each of these norms is defined on a norm ideal contained in the ideal of compact operators, and
for the sake of brevity, we will make no explicit mention of this ideal. Thus, when we consider |[||X]||, we
are assuming that the operator X belongs to the norm ideal associated with |||-|||. Moreover, each unitarily
invariant norm |||-{|| is symmetric gauge function of the singular values, and is characterized by equality
IIX]| = IIUXV]|| for all operator X and for all unitary operators U and V € B(H). For the general theory of
unitarily invariant norms, we refer to [2] or [7]. It has been shown by Bhatia and Kittaneh in [4] that if A, B
are compact operators in B(H), then

2||A*BJll < IlIAA™ + BB (2)
and
IA*B + B*Al|| < [I|AA™ + BB'||| 3)

for every unitarily invariant norm.

The inequality (2) has attracted the attention of several mathematicians, and different proof of a stronger
version of it have been given. See [3], [8], [9] and [11]. It has been shown by Kittaneh [10] the generalized
from of the mixed Schwarz inequality, that if A is an operator in B(H) and f and g are non-negative
functions on [0, co) which are continuous and satisfy the relation f(t)g(t) =  for all ¢ € [0, c0), then

KAx, )l < || F1A D] |lgcAny||
for all x and y in H.

In this paper, we generalize inequalities (2) and (3) and present a bound that involves operator A and B.
2. Main Results

In this section, we establish generalized singular value inequalities for Hilbert space operator. The
following Lemmas are essential role in our analysis. The first one on the Mixed schwarz inequality has
been proven by Kittaneh [10].

Lemma 2.1. Let A, B, C € B(H), such that A and B are positive, then T = [ é %
and only if {Cx, y)*> < (Ax, x)(By, y) for all x,y in H.

We prove the second one by Lemma 2.1.

] is a positive in B(H & H) if

Lemma 2.2. Let A, B and X be operators in B(H) and let f and g be non-negative continuous functions on [0, co)
that satisfy the relation f(t)g(t) =t for all t € [0, 00), then

Af(XPA  A'X'B

B'XA B*g(|X|)*B

is positive.

Proof. For any x,y in H
KB'XAx, )| = KXAx, Byl < (f(IX')?Ax, Ax)?(g(X])*By, By)?.

By Lemma 2.1

A f(IX)?A  AX'B
> 0.

B'XA  B'g(X|)*B
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The third Lemma is Theorem 2.1 in [1].

*

Lemma 2.3. Let A, B and C be compact operators in B(H) and [ é % } is positive. Then s;(C) < sj(A & B) for
i=12,...

Now we establish a general singular value inequality, from which singular value inequalities for products
of operators follow as special cases.

Theorem 2.4. Let A;, B; and X; be operators in B(H), where X; is compact operator i = 1,2,...,nand let f and g
be non-negative functions on [0, 00), which are continuous and satisfy the relation f(t)g(t) = t for all t € [0, o0), also
let h be a non-negative increasing operator convex function on [0, c0). Then

n
h (S]' Z a)iA;X;B,‘
i=1

for j=1,2,...and positive real numbers w; such that Y;_; w; = 1.

Proof. The matrix fori=1,2,...,n

* *\2 *\T*
AF(XI2A;  AIXCB;

<5 [Z wil(A; fIX1)*A) @ 2 wih(B;g(1Xil)*B:)
i1

i=1

>0 (by Lemma 2.2).
B XiA; B:g(IXil)*B;

So, by Lemma 2.3 and some property of singular values, we have

n
Y AX:B
i=1

for j =1,2,.... Now consider the non-negative increasing operator convex function / on [0, o) and in the
inequality (4), put yw;A;, \w;B; instead of A;, B; respectively . It follows that

h [s ; ] <h (s ; Z WA FIXI2A; © Z wB:g(1X)*B; ]

|

5j

: (4)

<) [Zl, A f(X;)A; @ le B;g(1Xil)*B;
1= 1=

n

Y wiAiX;B;

i=1

= h[sj Y @i A FIXIPA; @ Big(Xi))7B,)

i=1

=5[] Y w4 f(XIPAi @ B;g(IXil)’B)

i=1
(by elementary functional calculus)

<sj| Y oA XA @ Big(1Xi)’B:)
i=1

(h is operator convex)

=3

<

Y oA f(XPA) @ ) wi(Big(Xil)B:)
i=1 i=1

forj=1,2,.... O
Corollary 2.5. Let A;, Bi, X; € B(H) such that X; is compact fori=1,2,...,n. Then

Y @A XBi| < [Z wi (A FIX;IPA) @) w (B;fg<|x,-|)2Bi)’]
i=1 i=1

i=1
forj=1,2,...

r
s’
)
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Proof. Let h(x) = x" (1 < r < 2) in Theorem 2.4, and we get the result. [
A particular case of Theorem 2.4 and Corollary 2.5 can be seen as follows.

Corollary 2.6. Let U;, Vi, X; € B(H) such that U;, V; are unitary and X; is compact fori=1,2,...,n. Then

<sj {Z w3 fIX)? U @ Z w;V;g(Xi)*' Vi
i1 i1

n
1) ol x;v;
i=1

j=1,2,.... Inparticular,

n

S uxv,

i=1
i=12,...

SS]'

n n
Y uxruse Y ViIxid'v;
i=1 i=1

Proof. The result follows from Theorem 2.4 by letting h(x) = x" (1 <r <2), A; = U; and B; = V; unitary

operatorsfori =1,2,...,n, and using Lemma 1.6 in [6]. The particular case follows by letting f(t) = g(t) = t2
and w; = % fori=1,2,...,n. O

As an application of the inequality (4), we get the following corollaries.

Corollary 2.7. Let A;, Bi, X; € B(H) such that X; is compact fori=1,2,...,n. Then

n
Y AX:B;
i=1

for every unitarily invariant norm. In particular,

<

(5)

Y A F(X;)2Ai® Y Bg(XilPB;
i=1 i=1

n n n
Y AXBi| < max || Y ATFX;PA, Z‘ng(lXiI)zB,-]
=1 i=1 i=1
and

1
n n P n P\r
Y axch| <||Y Afaxin?ad| + | Big(xi)B:
i=1 p i=1 p i=1 p

for1<p < oo

Remark 2.8. Let A and B be in M,(C). Puttingn =2, f(t) = g(t) = t1,A; =A, Ay =B,B; =B, B, = Aand
X; = X5 = L'in the inequality (5), we get

lA*B + B*"A) @ 0|| < [I(A"A + B'B) & (A"A + B*B)|]|
for every unitarily invariant norm, which was given by Hirzallah and Kittaneh in [8].

Corollary 2.9. Let X; € B(H) be compact fori=1,2,...,n. Then

n
L%
i=1

for every unitarily invariant norm.

<

Y (x;1elXi)
i=1

Proof. Put A’ = A; =B; = B;=1Ifori=1,2,...,n,and f(t) = g(t) = t2 in the inequality (5) and we get the
result. [
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Corollary 2.10. Let A;, X € B(H),i=1,2,...,n such that X is a compact positive operator. Then
n
<Y |(cHaext) e (xhiarx?)
i=1

i=

|A1XA; + A XA + -+ + A XA

| ©)

for every unitarily invariant norm.

Proof. Put A] = Ay, By = A}, A; = Ay, By = A},..., A, = Ay, B, = A}, X7 = Xfori=1,2,.,nand
ft)=g@t) = tz forallt € [0, o) in the inequality (5) and we have

[I|[A1XA; + A2 XA + -+ + A, XA;

< ZA;XAi@ZA;XAi
i=1 i=1
vlh4 o][x olfa o
ol o Ao x| oA
n 1 * 1
_ X o[a o X o[a o
oo x| o4 0 X| |0 A
i=
“rx o114l o FIx ol o *
- 0 X 0 14|l o x (since ||IT*T|| = ITT"|))
i=1 L
=Y [I(x21Aax) o (xHA LX) |

[y

i=
for every unitarily invariant norm. []

Remark 2.11. In M,,(C) if taken X; =1, fori =1,2,...,nin (6), then

n n
1
p S EllllAilzéBlAilzllf 2v ’ElllAiIIf,
1= 1=

for 1 < p < oo, which is another version of the inequality in [5, Corollary 2.3 ].

A1AS + ArAS + - + A A
lA14; + 2215 1

Corollary 2.12. Let A, B € M,(C). Then
s{(A"A~B'B) <s;((IAP + BP) & (1P + BF))
forj=1,2,...,n.

Proof. Putn =2, f(t) = g(t) = tz, Al=(A+B),B1=(A-B),A;=(A-B),By=(A+B),X] =X, =1 in the
inequality (4), also 2(A*A - B*'B) = (A + B)*(A - B) + (A - B)'(A + B).
We have

25(A"A-B'B)=s{((A+B)(A-B)+(A-B)' (A+B))
<s((A+B)'(A+B)+(A-B)'(A-B)
®(A-B)(A-B)+(A+B)'(A+B)))
=5;(2(A"A + B'B)®2(A"A + B'B))
=25, (1A + 1BP) @ (|AP + 1BP))

for j=1,2,.... This completes the proof. O
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Based on Theorem 2.4 and the inequality (1), we have the following singular value of the operator AX*B.

Theorem 2.13. Let A, B, X € B(H) such that X is compact, A and B are self-adjoint with |A| < a and |B| < b for
some real numbers a and b. Then

s/(AX"B) < (max{a, b} s (X & X) 7)
forj=1,2,...
Proof. Let
=[]
Note that C is positive and C < max{a, b}, therefore
ICIl < max{a, b}.
Hence

s{(AX"B) < s;(A|IX"|A @ B|X|B) (by Theorem 2.4)
<|ICIPsi(X @ X) (by the inequality (1))
< (max a, b} ) si(X®X)

forj=1,2,.... O

Corollary 2.14. Let A, B, X, Y € B(H) such that X and Y are compact and A, B are as in Theorem 2.13, then
S/(AX'B + AY'B) < ( max{a, b} ) s((X+Y)® (X +Y)). (8)

Proof. The inequality (8) follows from the inequality (7) by replacing the operator Xby X +Y. O
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