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Abstract. The object of the present paper is to study mixed quasi-Einstein spacetimes, briefly M(QE)4

spacetimes. First we prove that every Z Ricci pseudosymmetric M(QE)4 spacetimes is a Z Ricci semisym-
metric spacetime. Then we study Z flat spacetimes. Also we consider Ricci symmetric M(QE)4 spacetimes
and among others we prove that the local cosmological structure of a Ricci symmetric M(QE)4 perfect fluid
spacetime can be identified as Petrov type I, D or O. We show that such a spacetime is the Robertson-Walker
spacetime. Moreover we deal with mixed quasi-Einstein spacetimes with the associated generators U and
V as concurrent vector fields. As a consequence we obtain some important theorems. Among others it
is shown that a perfect fluid M(QE)4 spacetime of non zero scalar curvature with the basic vector field of
spacetime as velocity vector field of the fluid is of Segré characteristic [(1, 1, 1), 1]. Also we prove that a
M(QE)4 spacetime can not admit heat flux provided the smooth function b is not equal to the cosmological
constant k. This means that such a spacetime describe a universe which has already attained thermal
equilibrium. Finally, we construct a non-trivial Lorentzian metric of M(QE)4.

1. Introduction

General relativity is the flagship of Applied Mathematics. Almost from the inception, general relativity
was regarded as an extra-ordinary difficult theory and triuamph of the human intellect, the most beautiful
physical theory ever created. General relativity is an essential tool for the study of cosmology, the science
of universe and a model of nature, especially of gravity that neglects quantum effects.

To day for the domain of macrophysics, general theory of relativity is the best available simple and
elegant theory and is expected to be very exciting for many years to come. What Physicists / Mathemat-
ical Scientists can learn or acquire knowledge from the discovery of general relativity ? They generally
learn/study the three stages in the evolution of Einstein’s ideas from special to general relativity. (i) The first
is the abandonment of the privileged states of inertial frame, i.e., Newtonian-Euclidean space mechanics
for the study of nature. (ii) The second is acceptance of the dynamical role of the mertic (1), i.e., the study
of non-linear behaviour of nature. (iii) The third is that a spacetime has to be considered as an equivalence
class of pseudo-Riemannian geometry, i.e., by modern differential geometry.
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Modern differential geometry has become more and more important in theoretical physics which it has
led to a greater simplicity in mathematics and a more fundamental understanding of physics.

The spacetime of general relativity and cosmology is regarded as a connected 4-dimensional semi-
Riemannian manifold (M4, 1) with Lorentzian metric 1with signature (−,+,+,+). The geometry of Lorentz
manifold begins with the study of causal character of vectors of the manifold. It is due to this causality
that Lorentz manifold becomes a convenient choice for the study of general relativity. Indeed by basing its
study on Lorentzian manifold the general theory of relativity opens the way to the study of global questions
about it ([2], [7], [11], [12], [13]) and many others.

A non-flat semi-Riemannian manifold (Mn, 1) (n > 2) is defined to be a quasi-Einstein manifold [4] if its
Ricci tensor S of type (0, 2) is not identically zero and satisfies the condition

S(X,Y) = a1(X,Y) + bA(X)A(Y), (1)

where a, b are scalars. Such an n-dimensional manifold is denoted by (QE)n.
In 2010 Nagaraja [17] generalizes the quasi-Einstein manifold as follows:
A non-flat semi-Riemannian manifold (Mn, 1) (n ≥ 3) is called mixed quasi-Einstein manifold if its Ricci
tensor S of type (0, 2) is not identically zero and satisfies the condition

S(X,Y) = a1(X,Y) + bA(X)B(Y) + cB(X)A(Y), (2)

where a, b and c are smooth functions and A and B are non-zero 1-forms such that 1(X,U) = A(X) and
1(X,V) = B(X) for all vector fields X and U and V being the orthogonal unit vector fields called the
generator of the manifold.
From (2), it follows that

S(Y,X) = a1(Y,X) + bA(Y)B(X) + cB(Y)A(X). (3)

From (2) and (3), it follows that
(b − c)[A(X)B(Y) − A(Y)B(X)] = 0.

This shows that either b = c or, A(X)B(Y) = A(Y)B(X). Motivated by this result De and Mallick [14] have
given the following definition:
A non-flat semi-Riemannian manifold (Mn, 1) (n ≥ 3) is called mixed quasi-Einstein manifold if its Ricci
tensor S of type (0, 2) is not identically zero and satisfies the condition:

S(X,Y) = a1(X,Y) + b[A(X)B(Y) + A(Y)B(X)], (4)

where a, b are scalars of which b , 0 and A and B are non-zero 1-forms such that

1(X,U) = A(X), 1(X,V) = B(X), 1(U,V) = 0,

where U, V are unit vector fields. In such a case A, B are called associated 1-forms and U, V are called the
generators of the manifold. Such an n-dimensional manifold is denoted by the symbol M(QE)n.
If b = 0, then the manifold becomes an Einstein manifold. If A = B, then the manifold reduces to a quasi-
Einstein manifold. This justifies the name mixed quasi-Einstein manifold.
In 2012, Mantica and Molinari [15] defined a generalized (0, 2) symmetric Z tensor given by

Z(X,Y) = S(X,Y) + φ1(X,Y), (5)

where φ is an arbitrary scalar function. In Refs. ([15], [16]) various properties of the Z tensor were pointed
out. A spacetime is said to be Z flat if the Z tensor vanishes at each point of the spacetime.
A semi-Riemannian manifold (Mn, 1),n ≥ 3, is said to be Z Ricci pseudosymmetric [22] if and only if the
relation

Z.L = fLP(1,L). (6)

holds on the set UL = {x ∈ M : P(1,L) , 0 at x}, where L is the Ricci operator defined by S(X,Y) =
1(LX,Y) and fL is some smooth function on UL. Also P(1,L) is defined by P(1,L)(W; X,Y) = L((X ∧1 Y)W)
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for all vector fields X, Y, W.
A Lorentzian manifold (M4, 1) is said to be mixed quasi Einstein spacetime if the Ricci tensor satisfies (4).
Einstein’s field equation without cosmological constant is given by

S(X,Y) −
r
2
1(X,Y) = κT(X,Y). (7)

The equation (7) of Einstein imply that matter determines the geometry of spacetime and conversely, the
motion of matter is determined by the metric tensor of the space which is not flat.
In general relativity the matter content of the spacetime is described by the energy momentum tensor. The
matter content is assumed to be a fluid having density and pressure and possing dynamical and kinematical
quantities like velocity, acceleration, vorticity, shear and expansion.
In a perfect fluid spacetime, the energy momentum tensor T of type (0, 2) is of the form ([18]):

T(X,Y) = p1(X,Y) + (σ + p)A(X)A(Y), (8)

where σ and p are the energy density and the isotropic pressure respectively. The fluid is called perfect
because of the absence of heat conduction terms and stress terms corresponding to viscosity [12]. In
addition, p and σ are related by an equation of state governing the particular sort of perfect fluid under
consideration. In general, this is an equation of the form p = p(σ,T0), where T0 is the absolute temperature.
However, we shall only be concerned with situations in which T0 is effectively constant so that the equation
of state reduces to p = p(σ). In this case, the perfect fluid is called isentropic [12]. Moreover, if p = σ, then
the perfect fluid is termed as stiff matter (see [21], page 66).

The curl of a vector field U [18] is given by

(curlU)(X,Y) = 1(∇XU,Y) − 1(∇YU,X).

If we denote the projection tensor h, then h(X) = X + A(X)U. Since the vorticity tensor ω is the projection of
curl of U, from above equation we get

ω(X,Y) = 1(∇hXU, hY) − 1(∇hYU, hX) = 0.

Again the shear tensor σ [6] is given by

σ =
1
2

[1(∇hXU, hY) − 1(∇hYU, hX)] −
1
3

(divU)1(hX,Y).

Several authors have studied spacetimes in different ways. Motivated by the studies of those authors in
the present paper we characterize mixed quasi-Einstein spacetimes.
The present paper is organized as follows:
After introduction in Section 2, we study Z Ricci pseudosymmetric mixed quasi-Einstein spacetimes.
Section 3 is devoted to study Z flat spacetimes. In Section 4, we study Ricci symmetric mixed quasi-Einstein
spacetimes. Section 5 deals with mixed quasi-Einstein spacetimes with the associated vector fields U and
V as concurrent vector fields. Section 6 deals with heat flux in a M(QE)4 spacetime. Finally, we construct
an example of a mixed quasi-Einstein spacetime.

2. Z Ricci pseudosymmetric mixed quasi-Einstein spacetimes

In this section we consider Z Ricci pseudosymmetric M(QE)4. Therefore from (6) we get

(Z(X,Y).L)W = fLP(1,L)(W; X,Y), (9)

for any vector fields X, Y, W. If fL = 0, then the manifold reduces to a Z Ricci semisymmetric manifold.
Now

(Z(X,Y).L)(W) = ((X ∧Z Y).L)W
= (X ∧Z Y)LW − L((X ∧Z Y))
= Z(Y,LW)X − Z(X,LW)Y − Z(Y,W)LX
−Z(X,W)LY. (10)
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Also

P(1,L)(W; X,Y) = L((X ∧1 Y)W)
= L(1(Y,W)X − 1(X,W)Y)
= 1(Y,W)LX − 1(X,W)LY. (11)

From (10) and (11) we have

Z(Y,LW)X − Z(X,LW)Y − Z(Y,W)LX − Z(X,W)LY
= fL{1(Y,W)LX − 1(X,W)LY}. (12)

From (4) we infer that

LX = aX + b[A(X)V + B(X)U]. (13)

Using (13) in (12) it follows that

aZ(Y,W)X + b(φ + a){A(W)B(Y) + B(W)A(Y)}X
+b2
{A(W)A(Y) + B(W)B(Y)}X

−aZ(X,W)Y − b(φ + a){A(W)B(X) + B(W)A(X)}Y
−b2
{A(W)A(X) + B(W)B(X)}Y

= {Z(Y,W) + fL1(Y,W)}LX + {Z(X,W) − fL1(X,W)}LY. (14)

Putting X = U in (14) yields

aZ(Y,W)U + b(φ + a){A(W)B(Y) + B(W)A(Y)}U
+b2
{A(W)A(Y) + B(W)B(Y)}U

−aZ(U,W)Y − b(φ + a){A(W)B(U) + B(W)A(U)}Y
−b2
{A(W)A(U) + B(W)B(U)}Y

= {Z(Y,W) + fL1(Y,W)}LU + {Z(U,W) − fL1(U,W)}LY. (15)

Again substituting Y = V in (15) we have

aZ(V,W)U + b(a + φ)A(W)U + b2B(W)U
−a{(a + φ)A(W) + bB(W)}V − b(a + φ)B(W)V − b2A(W)V

= {S(V,W) + φ1(V,W) + fL1(V,W)}(aU + bV)
+{(a + φ)A(W) + bB(W) − fLA(W)}LV. (16)

Taking inner product of (16) with U, we get

fL(aB(W) − bA(W)) = 0. (17)

Therefore either fL = 0, or aB(W) − bA(W) = 0.
If aB(W) − bA(W) = 0, then aV − bU = 0. Thus a = 0 = b. Therefore from (4), we have S(X,Y) = 0. This
contradicts the definition of M(QE)4. Therefore in view of the above we can state the following:

Theorem 2.1. A Z Ricci pseudosymmetric M(QE)4 is Z Ricci semisymmetric spacetime.



Y. J. Suh et al. / Filomat 32:8 (2018), 2707–2719 2711

3. Z flat spacetimes

The Einstein’s field equation without cosmological constant is given by

S(X,Y) −
r
2
1(X,Y) = κT(X,Y), (18)

where κ is the gravitational constant and T is the energy momentum tensor of type (0, 2).
Again for Z flat spacetimes we have from the definition

S(X,Y) = −
r
4
1(X,Y), (19)

which implies that the manifold is an Einstein spacetime. Hence r is constant. Using (19) in (18) we get

−
r
4
1(X,Y) −

r
2
1(X,Y) = κT(X,Y) (20)

Taking covariant derivative of (20), we obtain

κ(∇WT)(X,Y) = 0. (21)

Thus in view of (21) we conclude the following:

Theorem 3.1. In a Z flat spacetime the energy momentum tensor is covariant constant.

Remark 3.2. In [5] Chaki and Ray characterize general relativistic spacetimes with covariant constant energy
momentum tensor.

4. Ricci symmetric mixed quasi-Einstein spacetimes

A Lorentzian manifold is said to be Ricci symmetric if the Ricci tensor satisfies the condition ∇S = 0,
where ∇ is the semi-Riemannian connection. In this section we consider Ricci symmetric M(QE)4. Then
from (4) we obtain

(∇WS)(X,Y) = (Wa)1(X,Y) + (Wb)[A(X)B(Y) + A(Y)B(X)]
+b[(∇WA)(X)B(Y) + A(X)(∇WB)(Y)
+(∇WB)(X)A(Y) + B(X)(∇WA)(Y)]. (22)

Since the manifold is Ricci symmetric, we have

(∇WS)(X,Y) = 0. (23)

From (22) and (23) we obtain that

(Wa)1(X,Y) + (Wb)[A(X)B(Y) + A(Y)B(X)]
+b[(∇WA)(X)B(Y) + A(X)(∇WB)(Y)

+(∇WB)(X)A(Y) + B(X)(∇WA)(Y)] = 0. (24)

Taking a frame field and after contraction over X, Y we get from (24)

4(Wa) + 2[(∇WA)(V) + (∇WB)(V)] = 0. (25)

Since 1(U,V) = 0, we get 1(∇WU,V) + 1(U,∇WV) = 0 and hence

(∇WA)(V) + (∇WB)(V) = 0. (26)

Therefore (25) and (26) yields

(Wa) = 0. (27)
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Thus a is constant.
Again putting X = U, Y = V in (24) we get

(Wb) = 0. (28)

From the above we infer that b is also constant.
Putting Y = U in (24) and using the fact that a, b are constants, we have

(∇WB)(X) = 0. (29)

This means that the vector field V corresponding to the 1-form B is parallel.
Again putting Y = V in (24) and using the fact that a, b are constants, we obtain

(∇WA)(X) = 0. (30)

This means that the vector field U corresponding to the 1-form A is parallel.
Thus we are in a position to state the following:

Theorem 4.1. In a Ricci symmetric M(QE)4, the associated generators U and V are parallel.

On the other hand, in view of (30), (∇WA)(Y) = 1(∇WU,Y) = 0 for all Y, W. That is, ∇WU = 0 and hence
∇UU = 0.
Thus the integral curves of the vector field U are geodesics.

Similarly, in view of (29), (∇WB)(Y) = 1(∇WV,Y) = 0 for all Y, W. That is, ∇WV = 0 and hence ∇VV = 0.
Hence the integral curves of the vector field V are geodesics. Hence we have

Theorem 4.2. In a Ricci symmetric M(QE)4, the integral curves of the vector fields U and V are geodesics.

Remark 4.3. The vector field U is the velocity of a particle moving along the geodesic. If a particle moves in a force
free field then the particle is always along the geodesic and the tangent vector can be identified as the velocity of the
particle.

By virtue of Theorem 4.1, the Riemannian curvature tensor satisfies

R(X,Y)U = ∇X∇YU − ∇Y∇XU − ∇[X,Y]U = 0, (31)

for all X, Y. Contracting (31), we have S(Y,U) = 0 for all Y.
Now we consider the matter distribution in perfect fluid whose velocity vector field is the vector field U
corresponding to the 1-form A of the spacetime, that is, 1(U,U) = −1. Therefore the energy momentum
tensor T of type (0, 2) is of the form ([18]):

T(X,Y) = p1(X,Y) + (σ + p)A(X)A(Y), (32)

where σ and p are the energy density and the isotropic pressure respectively.
Hence from the Einstein’s field equation we get

S(X,Y) −
r
2
1(X,Y) = κ[p1(X,Y) + (σ + p)A(X)A(Y)]. (33)

Substituting Y = U in (33) we have

−
r
2

A(X) = −κσA(X). (34)

By hypothesis the spacetime is Ricci symmetric and hence r is constant, therefore σ is constant. Again
taking a frame field and contracting X and Y in (33) we have σ − 3p = − r

k = constant. Thus p is a constant.
Thus in view of the above we can state the following:

Theorem 4.4. In a Ricci symmetric perfect fluid M(QE)4 spacetime obeying Einstein’s field equation without cos-
mological constant the energy density and the isotropic pressure are constants.
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Further we have the energy and force equations for a perfect fluid [18], as follows:

Uσ = 1(1radσ,U) = −(σ + p)divU (35)

and

(σ + p)(∇UU) = −1rad⊥p = −1radp − 1(1radp,U)U
= −1radp − (Up)U, (36)

where the spatial pressure gradient 1rad⊥p is the component of 1radp orthogonal to U. From the above
theorem we get a Ricci symmetric perfect fluid M(QE)4 spacetime satisfying Einstein’s field equation without
cosmological constant, both σ and p constants. Then from (35) and (36), we have

Uσ = −(σ + p)divU = 0 and (σ + p)(∇UU) = 0. (37)

Since σ + p = r
k =, 0, we have

divU = 0 and ∇UU = 0. (38)

Remark 4.5. In cosmology we know that such a choice σ + p = 0 leads to rapid expansion of the spacetime which is
now termed as inflation.

It is known that divU represents the expansion scalar and ∇UU represents the acceleration vector. Thus in
view of (38), both of them vanish. This leads to following result:

Theorem 4.6. In a Ricci symmetric perfect fluid M(QE)4 spacetime obeying Einstein’s field equation without cos-
mological constant the expansion scalar and the acceleration vector vanish.

By the hypothesis the spacetime under consideration is Ricci symmetric, that is, ∇S = 0. Hence the scalar
curvature r is constant, that is, dr(X) = 0, for all X. It is known from [9] that

(divC)(X,Y)W =
1
2

[{(∇XS)(Y,W) − (∇YS)(X,W)} (39)

−
1
6
{dr(X)1(Y,W) − dr(Y)1(X,W)}],

where C is the Weyl conformal curvature tensor. Hence from ∇S = 0 and dr(X) = 0 we get divC = 0. The
conditions divC = 0 and dr(X) = 0 are equivalent to have a “Yang Pure Space” (see ref. [8], Eq. 2). In [8],
Theorem 4.1 the authors proved that a 4-dimensional perfect fluid spacetime with σ + p , 0 is a Yang Pure
space if and only if it is a Robertson-Walker spacetime. Thus we can state the following:

Theorem 4.7. A Ricci symmetric M(QE)4 spacetime is a Robertson-Walker spacetime.

It is known from [18] that the curl of a vector field U is given by

(curlU)(X,Y) = 1(∇XU,Y) − 1(∇YU,X). (40)

If we denote the projection tensor h, then h(X) = X + A(X)U. Since the vorticity tensor ω is the projection of
curl of U, from (40) we get

ω(X,Y) = 1(∇hXU, hY) − 1(∇hYU, hX) = 0, (41)

by Theorem 4.6. Thus the space-time under consideration is vorticity-free.
Again it is known from [6] that the shear tensor σ is given by

σ =
1
2

[1(∇hXU, hY) − 1(∇hYU, hX)] −
1
3

(divU)1(hX,Y)

= 0, (42)

by Theorem 4.6. Thus the spacetime under consideration is also shear-free.
Also such a spacetime the four-velocity vector U is constant over the spacelike hypersurface orthogonal to
U.
But, as described and classified by Barnes [1], perfect fluid spacetimes that are vorticity free and shear-free
are of type I, D or O (conformally flat). Thus we can conclude the following theorem:
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Theorem 4.8. The local cosmological structure of a Ricci symmetric M(QE)4 perfect fluid spacetime can be identified
as Petrov type I, D or O.

5. The generators U and V as concurrent vector fields

In a recent paper Mallick and De [10] proved that if the associated vector fields of a M(QE)n are
concurrent vector fields and the associated scalars are constants, then the manifold reduces to a quasi-
Einstein manifold. Hence the mixed quasi-Einstein spacetime under the above conditions reduces to a
quasi-Einstein spacetime. For the completeness we give the proof here.

A vector field ξ is said to be concurrent if [20]

∇Xξ = ρX, (43)

where ρ is a non-zero constant. If ρ = 0, the vector field reduces to a parallel vector field.

Example 5.1. [3] Let M be a real vector space of dimension n and choose a basis E1,E2, ...,En for M. A vector v ∈M
can be expressed uniquely as

v =

n∑
i=1

xi(v)Ei,

and the standard chart (x1, x2, ..., xn) defines a manifold structure on M which is independent of the particular basis
chosen. The vector field

∑n
i=1 xi ∂

∂xi is independent of the chosen basis and we call it the radial vector field on M. The
conditions

∇ ∂
∂xi

∂

∂x j = 0, i, j = 1, 2, ...,n.

determine a complete linear connection on M which we call the standard connection on M. The radial vector field is
concurrent with respect to the standard connection.

In this section we consider the vector fields U and V corresponding to the associated 1-forms A and B
respectively are concurrent. Then

(∇XA)(Y) = α1(X,Y) (44)

and

(∇XB)(Y) = β1(X,Y), (45)

where α and β are non-zero constants and assume that α , β.
Now using (43) and (44) in (22) we get

(∇WS)(X,Y) = b[α1(X,W)B(Y) + β1(Y,W)A(X)
+β1(X,W)A(Y) + α1(Y,W)B(X)]. (46)

Taking a frame field and after contraction over X, Y in (46), we obtain

dr(W) = 2b[αB(W) + βA(W)], (47)

where r is the scalar curvature of the spacetime.
Now taking a frame field and after contraction over X, Y in (4) over X and Y we obtain that r = an. Since
a ∈ R, we obtain that dr(X) = 0, for all X.
Thus, equation (47) yields

αB(W) + βA(W) = 0. (48)
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Since α and β are non-zero constants, using (48) in (4), we finally obtain

S(X,Y) = a1(X,Y) −
2bβ
α

A(X)A(Y). (49)

Thus the spacetime under consideration reduces to a quasi-Einstein spacetime.
Applying Ricci identity to (44) we get

R(X,Y)U = 0, (50)

which implies

S(X,U) = 0, (51)

for all vector field X. Similarly we can obtain S(X,V) = 0, for all vector field X. This implies

0 = S(X,U) = (a +
2bβ
α

)A(X). (52)

Since A , 0, it follows that

(a +
2bβ
α

) = 0. (53)

Now we consider perfect fluid (QE)4 spacetime. Therefore we have

S(X,Y) −
r
2
1(X,Y) = κ[p1(X,Y) + (σ + p)A(X)A(Y)]. (54)

This implies

S(X,Y) = (κp +
r
2

)1(X,Y) + κ(σ + p)A(X)A(Y). (55)

Thus

a = κp +
r
2
, b = κ(σ + p). (56)

Taking a frame field and after contraction over X, Y in (55) we have

r = k(σ − 3p). (57)

Using (56), (57) in (53) we get

p =
α + 2β

2(α − β)
σ. (58)

In view of the above discussions we can state the following:

Theorem 5.2. If the associated vector fields of a M(QE)4 spacetime are concurrent vector fields and the associated
scalars are constants, then the M(QE)4 spacetime reduces to a quasi-Einstein spacetime and a perfect fluid M(QE)4
spacetime obeying Einstein’s field equation without cosmological constant is isentropic.

Also from the Einstein’s field Equation (7) and (49) we have

T(X,Y) =
1
k

(a −
r
2

)1(X,Y) −
2bβ
kα

A(X)A(Y). (59)

Thus, this spacetime can be considered as a model of perfect fluid spacetime, in general relativity.
Moreover, taking a frame field and after contraction over X, Y in (49), we have

r = 4a +
2bβ
α

(60)
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Again putting Y = U in (54) we have

S(X,U) −
r
2

A(X) = −kσA(X). (61)

Also from (49) we have

S(X,U) = (a +
2bβ
α

)A(X). (62)

Therefore from (61) and (62) we have

a +
2bβ
α
−

r
2

= −kσ, (63)

from which it follows that

σ =
1
k

(−
r
2

+ 3a). (64)

Also (60) and (62) yields

S(X,U) = (r − 3a)A(X). (65)

From (65) it follows that (r− 3a) is an eigen value of the Ricci tensor and U is an eigen vector corresponding
to this eigenvalue.
Let V be another eigenvector of S different from U. Then V must be orthogonal to U.
Putting Y = V in (54) we have

S(X,V) −
r
2
1(X,V) = pκ1(X,V). (66)

It follows that from (66)

S(X,V) = (
r
2

+ pκ)1(X,V). (67)

Therefore from (56) and (67) we have

S(X,V) = a1(X,V). (68)

From (68) it follows that a is another eigenvalue of S and V is an eigenvector corresponding to this eigenvalue.
Since for a given eigenvector there is only one eigenvalue and r − 3a and a are different, it follows that the
Ricci tensor has only two district eigenvalues, namely, r − 3a and a.
Let the multiplicity of r − 3a be m. Then the multiplicity of a must be 4 − m, because the dimension of the
spacetime is 4.
Hence

m(r − 3a) + (4 −m)a = r. (69)

From this we get m = 1, because r−4a =
2bβ
α , 0. Therefore the multiplicity of r−3a be 1 and the multiplicity

of a must be 3. Hence the Segré characteristic of S is [(1, 1, 1), 1] as given in [19]. Therefore under the
conditions stated in the Theorem 5.1 we conclude the following:

Theorem 5.3. A perfect fluid M(QE)4 spacetime of non zero scalar curvature with the basic vector field of quasi-
Einstein spacetime as velocity vector field of the fluid is of Segré characteristic [(1, 1, 1), 1].

On the other hand putting Y = V in (55) and making use of S(X,V) = 0 for all X, we get

r = −2κp. (70)

Since κ , 0. In view of (57) and (70) we have

p = σ. (71)

Thus under the conditions stated in the Theorem 5.1 we are in a position to state the following:

Theorem 5.4. A perfect fluid M(QE)4 spacetime obeying Einstein’s field equation without cosmological constant
represents stiff matter.



Y. J. Suh et al. / Filomat 32:8 (2018), 2707–2719 2717

6. Heat Flux in a M(QE)4 spacetime

If in a M(QE)4 spacetime the matter distribution is a fluid with the basic vector field as the velocity
vector field, can this distribution be described by the following form of the energy-momentum tensor?

T(X,Y) = p1(X,Y) + (σ + p)A(X)A(Y) + A(X)B(Y) + A(Y)B(X), (72)

where 1(X,V) = B(X) for all X and V is the heat flux vector field.
Therefore from the Einstein’s field equation we have

S(X,Y) −
r
2
1(X,Y) = k[p1(X,Y) + (σ + p)A(X)A(Y)

+A(X)B(Y) + A(Y)B(X)], (73)

where B(X) = 1(X,V), A(X) = 1(X,U) and V is the heat flux vector. Therefore from (72) we have

S(X,Y) = (
r
2

+ kp)1(X,Y) + k(σ + p)A(X)A(Y)

+kA(X)B(Y) + kA(Y)B(X). (74)

This implies

a1(X,Y) + b[A(X)B(Y) + A(Y)B(X)] = (
r
2

+ kp)1(X,Y)

+k(σ + p)A(X)A(Y) + kA(X)B(Y) + kA(Y)B(X). (75)

Putting Y = U in (75) we have

aA(X) − bB(X) = (
r
2

+ kp)A(X) − k(σ + p)A(X) − kB(X). (76)

It follows that

{a + kσ −
r
2
}A(X) = (b − k)B(X), (77)

for all X. Remove X from the above equation we have

{a + kσ −
r
2
}U = (b − k)V, (78)

Taking inner product in (78) by U yields

a + kσ −
r
2

= 0. (79)

Using (79) in (77) we get B = 0 provided b , k.
In view of the above we can state the following:

Theorem 6.1. A M(QE)4 spacetime can not admit heat flux provided the smooth function b is not equal to the
cosmological constant k.

Remark 6.2. This means that such a spacetime describe a Universe which has already attained thermal equilibrium.

7. Example of a M(QE)4 spacetime

In this section we prove the existence of a M(QE)4 spacetime by constructing a non-trivial concrete
example.

We consider a Lorentzian manifold (M4, 1) endowed with the Lorentzian metric 1 given by

ds2 = 1i jdxidx j = (dx1)2 + (x1)2(dx2)2 + (x2)2(dx3)2
− (dx4)2, (80)
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where i, j = 1, 2, 3, 4 and x1, x2 are non zero.
The only non-vanishing components of the Christoffel symbols, the curvature tensor and the Ricci tensor
are

Γ1
22 = −x1, Γ2

33 = −
x2

(x1)2 , Γ2
12 =

1
x1 , Γ3

23 =
1
x2 ,

R1332 = −
x2

x1 , S12 = −
1

x1x2 .

We shall now show that this M4 is a M(QE)4 spacetime i.e., it satisfies the defining relation (4).
We take the associated scalars as follows:

a =
1

x1(x2)2 , b = −
2

(x1)2x2 .

We choose the 1-forms as follows:

Ai(x) =

{
x1, for i=2
0, for i=1,3,4

and

Bi(x) =


1
2 , for i=1
31/2x2

2 , for i=3
0, for i=2,4

at any point x ∈ M. In our (M4, 1), (4) reduces with these associated scalars and 1-forms to the following
equation:

S12 = a112 + b[A1B2 + A2B1] (81)

It can be easily proved that the equation (81) is true.
We shall now show that the 1-forms are unit and orthogonal.
Here,

1i jAiA j = 1, 1i jBiB j = 1, 1i jAiB j = 0.

So, the manifold under consideration is a M(QE)4.
Thus we can state the following:

Theorem 7.1. Let (R4, 1) be a 4-dimensional Lorentzian manifold with the Lorentzian metric 1 given by

ds2 = 1i jdxidx j = (dx1)2 + (x1)2(dx2)2 + (x2)2(dx3)2
− (dx4)2,

where i, j = 1, 2, 3, 4 and x1, x2 are non zero. Then (R4, 1) is a M(QE)4 spacetime.
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towards the improvement of the paper.

References

[1] A. Barnes, On shear-free normal flows of a perfect fluid, Gen. Relativ. Gravit. 4(1973), 105-129.
[2] J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, Marcel Dekker, New York, 1981.
[3] F. Brickell and K. Yano, Concurrent vector fields and Minkowski structure, Kodai Math. Ser. Rep., 26(1974), 22-28.
[4] M. C. Chaki and R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57(2000), 297-306.
[5] M. C. Chaki and S. Ray, Spacetimes with covariant constant energymomentum tensor, Int. J. Theo. Phys., 35(1996), 1027-1032.
[6] A. K. Ray Chaudhuri, Theoretical Cosmology, Oxford Sci. Publ. 1979, 80-92.
[7] C. J. S. Clarke, Singularities: Global and local aspects in Topological Properties and Global structure of spacetime, Edited by P.

G. Bergmann and V. de Sabbata, Plenum Press, New York.
[8] B. S. Guilfoyle and B. C. Nolan, Yang’s gravitational theory, Gen. Relativ. Gravitation, 30(3)(1998), 473-495.
[9] L. P. Eisenhart., Riemannian Geometry, Princeton University Press, 1949.



Y. J. Suh et al. / Filomat 32:8 (2018), 2707–2719 2719

[10] S. Mallick, A. Yildiz, U. C De, Characterizations of mixed quasi-Einstein manifolds, Int. J. Geom. Methods Mod. Phys, 14(2017),
1750096 (14 pages).

[11] B. P. Geroch, Spacetime structure from a global view point, Academic Press, New York, 1971.
[12] S. W. Hawking and G. F. R. Ellis, The large-scale structure of spacetime, Cambridge Monographs on Mathematical Physics,

Cambridge Univ. Press, 1973.
[13] P. S. Joshi, Global aspects in gravitation and cosmology, Oxford Science Publications, 1993.
[14] S. Mallick and U. C. De, On mixed quasi-Einstein manifolds, Ann. Univ. Sci. Budapest, 57(2014), 59-73.
[15] C. A. Mantica and L. G. Molinari, Weakly Z symmetric manifolds, Acta Math. Hunger., 135(2012), 80-96.
[16] C. A. Mantica and Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods

Mod. Phys., 9/1, 1250004(2012).
[17] H. G. Nagaraja, On N(k)-mixed quasi-Einstein manifolds, Eur. J. Pure Appl. Math., 3(2010), 16-25.
[18] B. O’Neill, Semi-Riemannian Geometry, Academic Press, Inc. NY 1983.
[19] A. Z. Petrov, Einstein Spaces, Pergamon Press, Oxford, 1949.
[20] J. A. Schouten, Ricci-Calculus, Springer, Berlin, 1954.
[21] H. Stephani, General Relativity-An Introduction to the Theory of Gravitational Field, Cambridge Univ. Press, Cambridge , 1982.
[22] L. Verstraelen, Comments on pseudosymmetry in the sense of Ryszard Deszcz, In: Geometry and Topology of submanifolds, VI.

River Edge, NJ: World Sci. Publishing, 1994, 199 − 209.


