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Abstract. Our purpose in this paper is to present a fixed point result for multivalued mappings satisfying
nonlinear quasi-contractive condition only on related points. Moreover, we provide a qualitative study
of well-posedness, limit shadowing property and Ulam-Hyers stability of our fixed point problem. As
application, we discuss the existence of a unique solution for a class of differential inclusions.

Introduction

The study of existence of fixed points for multivalued mappings is of increasing interest, and has
numerous applications in optimal control, mathematical economics, mechanical systems. For instance, the
seeking of optimal strategies, equilibrium costs or points of rest of dynamical systems may be derived from
studying the existence of fixed points for some integral or differential inclusions (see, e.g., [1, 2]). In 1969,
Nadler [3] established one of the most useful theorems in multivalued fixed point analysis. Because of its
importance, Nadler’s result has been developed in various directions and in more general spaces (see, e.g.,
[4–9]).

We intend in this paper to develop Nadler’s result in the context of b-metric spaces of Czerwik [10].
More precisely, we present some sufficient conditions under which a multivalued mapping has fixed points,
by using a nonlinear contractive condition of Ćirić-type [11], where the nonlinearity is controlled by an
appropriate class of Matkowski functions [12], and the contraction is satisfied only on related points.
Some results in the existing literature are obtained as special cases of our result. Moreover, we provide a
qualitative study of well-posedness, limit shadowing property and Ulam-Hyers stability of our fixed point
problem. For more details on this topics we refer the reader to [13–21]. Finally, as application, we discuss
the existence of a unique solution for a class of first-order differential inclusions.

This paper is divided into four sections. Section 1, introduces the notations used throughout this paper
and gather together some known results on b-metric spaces. In Section 2, we present the fixed point result
followed by its consequences. Results on well-posedness, limit shadowing properties and Ulam-Hyers
stability are presented in Section 3. Finally, Section 4 is devoted to discuss the existence of solutions for
some differential inclusions.
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1. Preliminaries

Throughout this paper, we denote by N the set of all positive integers, R the set of all real numbers,
R+ the set of all nonnegative real numbers and N0 = N ∪ {0}. Further, we denote by P(X) (resp. P(X))
the family of all subsets (resp. nonempty subsets) of a nonempty set X. A fixed point of a multivalued
mapping T : X→ P(X) is an x∗ ∈ X satisfying the fixed point inclusion, that is,

x∗ ∈ Tx∗. (1)

The fixed points set containing all solutions of the fixed point problem (1) is denoted by Fix(T) =
{

x ∈ X :

x ∈ Tx
}
. Next, let us recall some definitions and properties on b-metric spaces.

Definition 1.1. Let X be a non empty set and let the real b ≥ 1. A function db is called a b-metric when it belongs to
the class of functions d : X × X→ R+ satisfying:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ b d(x, z) + b d(z, y) for all x, y, z ∈ X.

The pair (X, db) is called a b-metric space.

Definition 1.2 (See [22]). Let X be a topological space.

(1) A subset U of X is called sequentially open if each sequence {xn} in X converging to a point x in U is eventually
in U, that is, there exists n0 such that xn ∈ U for all n ≥ n0.

(2) A subset F of X is called sequentially closed if no sequence in F converges to a point not in F.

(3) X is called a sequential space if each sequentially open subset of X is open, equivalently, each sequentially closed
subset of X is closed.

Definition 1.3 (See [22]). Let (X, db) be a b-metric space and
{
xn

}
n∈N0

be a sequence in X. Then

(1)
{
xn

}
n∈N0

is called convergent to an element x ∈ X if and only if for all ε > 0 there exists nε ∈ N0 such that for
all n ≥ nε we have db(xn, x) < ε.

(2)
{
xn

}
n∈N0

is called Cauchy if and only if for all ε > 0 there exists nε ∈ N0 such that for each n,m ≥ nε we have
db(xn, xm) < ε.

(3) (X, db) is called complete if every Cauchy sequence in (X, db) is a convergent sequence.

Definition 1.4 (See [22]). Let (X, db) be a b-metric space. A subset A of X is called open if for a ∈ A, there exists
ε > 0 such that B(a, r) ⊂ A, where

B(a, r) =
{
y ∈ X : db(x, y) < r

}
.

Hence, the family of all open subset in X denoted by Tdb form a topology on X.

Remark 1.5 ([22, Proposition 3.3]). Every open (resp. closed) is an open (resp. closed) subset of Tdb .

Definition 1.6. The set of closed, compact, and compact convex subsets of X are denoted by Pcl(X), Pcp(X) and
Pcp,cv(X), that is, Pcl(X) =

{
Y ∈ P(X) : Y is closed

}
, Pcp(X) =

{
Y ∈ P(X) : Y is compact

}
and Pcp,cv(X) =

{
Y ∈

Pcp(X) : Y is convex
}
.
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Let (X, db) be a b-metric space. The gap functional will be denoted by Db : P(X)×P(X)→ R∪ {+∞}, and
it is given by

Db(A,B) =


inf

{
db(a, b) : a ∈ A, b ∈ B

}
, if A,B ∈ P(X)

0, if A = B = ∅
+∞, otherwise

In particular, if x0 ∈ X, the notation Db(x0,A) will be used to represent Db({x0},A). The generalized diameter
functional will be denoted by δb : P(X) × P(X)→ R ∪ {+∞}, and it is given by

δb(A,B) =


sup

{
db(a, b) : a ∈ A, b ∈ B

}
, if A,B ∈ P(X)

0, if A = B = ∅
+∞, otherwise

The notation δb(A) will be used to represent δb(A,A), and for any x0 ∈ X the notation δb(x0,B) will be used
to represent δb({x0},B). Let’s recall also the result of Czerwik [5].

Proposition 1.7 ([5]). Let (X, db) be a b-metric space and A ∈ P(X). Then,

(1) δb(x,A) ≤ b db(x, y) + b δb(y,A), for all x, y ∈ X;

(2) Db(x,A) ≤ b db(x, y) + b Db(y,A), for all x, y ∈ X and A ⊂ X.

(3) Db(x,A) = 0 if and only if x ∈ A, where A is the closure of A.

In the sequel, a binary relation R on a nonempty set X will mean a subset of X ×X. We say that a points
x, y ∈ X are R-related if the pair (x, y) ∈ R or (y, x) ∈ R. A partial order (resp. an equivalence relation) is a
reflexive, transitive binary relation which is antisymmetric (resp. symmetric) on a set X. Next, we define a
binary relation on P(X).

Definition 1.8. Let X be a non empty set endowed with a binary relation R. We define a binary relation SR on P(X)
by

(A,B) ∈ SR ⇐⇒ for all x ∈ A, there exists y ∈ B such that (x, y) ∈ R.

Remark 1.9. It is worthwhile noting that if R is transitive (resp. reflexive) then SR is transitive (resp. reflexive).
However, SR is not necessarily symmetric (resp. anti-symmetric) if R is symmetric (resp. anti-symmetric).

Remark 1.10. Let X be a non empty set and S be an arbitrary binary relation defined on P(X). For every x0 ∈ X,
the notations (A, x0) ∈ S and (x0,B) ∈ S will be used to represent

(
A,

{
x0

})
∈ S and

({
x0

}
,B

)
∈ S, respectively.

Next, we introduce two classes of multivalued mappings.

Definition 1.11. Let X be a non empty set, R be a binary relation on X and SR be a binary relation on P(X). We say
that a multivalued mapping T : X→ P(X) is SR-preserving if

x, y ∈ X : (x, y) ∈ R =⇒ (Tx,Ty) ∈ SR.

We say that T is SR-preserving from x0 ∈ X if T is SR-preserving and (x0,Tx0) ∈ SR.

Definition 1.12. Let X be a non empty set and S be an arbitrary binary relation onP(X). We say that a multivalued
mapping T : X→ P(X) is S-proper if

(x,Tx) ∈ S, for all x ∈ X.
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Definition 1.13. Let X be a non empty set, R be a binary relation and T : X → P(X) be a multivalued mapping.
For x0 ∈ X, the set of all sequences

{
xi

}
i∈N0

satisfying xi+1 ∈ Txi with (xi, xi+1) ∈ R for all i ∈ N0 will be denoted

by T (x0,R). Let ξ =
{
xi

}
i∈N0

be an element in T (x0,R). For every m,n ∈ N0 with m ≤ n, the set Om,n(ξ) :=
{
xm,

xm+1, xm+2, · · · , xn

}
is called the ξ−orbit from m to n, and the setOm,∞(ξ) :=

{
xm, xm+1, xm+2, · · ·

}
is called the ξ−orbit

from m.

Definition 1.14. Let X be a non empty set, R be a binary relation and T : X→ P(X) be a multivalued mapping. A
b-metric space (X, db) is called T-orbitally complete if and only if for all x0 ∈ X and ξ ∈ T (x0,R) we have: if ξ is a
Cauchy sequence, then ξ converges in X.

Definition 1.15. Let X be a non empty set and R be a binary relation on X. We say that (X, db) is R-regular if
for every convergent sequence

{
xi

}
to some point x∗ ∈ X such that xi and xi+1 are R-related for all i ∈ N0, we have

(xi, x∗) ∈ R for all i ∈N0.

The set of simulation functions as well as the nonlinear contraction are defined below.

Definition 1.16. Let r be a positive real number. The set of simulation functions is denoted by Φr and contains all
increasing functions ϕ : R+

→ R+ satisfying the following conditions:

(i) lim
t→+∞

(t − rϕ(t)) = +∞;

(ii) lim
n→+∞

ϕn(t) = 0, for all t > 0;

(iii) rϕ(t) < t, for all t > 0.

Remark 1.17. Note that condition (ii) implies that ϕ(t) < t for all t > 0.

Remark 1.18. Observe that if r = 1, then (ii) implies (iii), and if r > 1, then (iii) implies (ii). Moreover, if r1 ≤ r2,
then Φr2 ⊆ Φr1 (see [23] for further discussion on simulation functions).

Definition 1.19. Let (X, db) be a b-metric space and R be a binary relation on X. We say that T : X → P(X) is a
multivalued ϕ-quasi-contractive on R-related points if there exists ϕ ∈ Φb such that

δb(Tx,Ty) ≤ ϕ(Mb(x, y)), for all (x, y) ∈ R, where

Mb(x, y) = max
{
db(x, y),Db(x,Tx),Db(y,Ty),Db(x,Ty),Db(y,Tx)

}
. (2)

2. Multivalued fixed point theorems

In this section, we state and prove our multivalued fixed point theorems.

Theorem 2.1. Let (X, db) be a b-metric space, R be a transitive binary relation on X and T : X → Pcl(X) be a
multivalued mapping such that:

(T1) X is R-regular and T-orbitally complete;

(T2) T is either SR-preserving from some x0 ∈ X or T is SR-proper;

(T3) T is a multivalued ϕ-quasi-contractive on R-related points.

Then T has at least one fixed point x∗ in X.

Before proving the theorem, we need to establish three lemmas which will be presented only for the
case of T is SR-preserving from some x0 ∈ X. However, if T is SR-proper, the proof is similar, and hence
omitted.
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Lemma 2.2. LetR be a binary relation on a non empty set X, and T : X→ P(X) be a multivalued mapping. Suppose
that (T1) and (T2) hold, then T (x0,R) is nonempty.

Proof. To show that T (x0,R) is not empty, we have to prove the existence of some sequences
{
xi

}
i∈N0

satisfying xi+1 ∈ Txi and (xi, xi+1) ∈ R for all i ∈N0. We construct such sequence by induction on i. The basis
step is obtained immediately from (T1). Indeed, (x0,Tx0) ∈ SR, so by definition of SR there exists x1 ∈ Tx0
such that (x0, x1) ∈ R. Now for the induction step, suppose that we have xi ∈ Txi−1 and (xi−1, xi) ∈ R for
some i ∈N, hence using the fact that T is SR-preserving, it follows that (Txi−1,Txi) ∈ SR, then by definition
of SR, there exists xi+1 ∈ Txi such that (xi, xi+1) ∈ R and this achieves the proof.

Lemma 2.3. Under hypotheses of Theorem 2.1. For every m,n ∈ N0 with m < n, and for every ξ =
{
xi

}
i∈N0
∈

T (x0,R) there exists an integer k satisfying m < k ≤ n such that

db(xm, xk) = δb(Om,n(ξ)).

Moreover, every sequence ξ =
{
xi

}
i∈N0
∈ T (x0,R) is bounded.

Proof. From Lemma 2.2, it follows that T (x0,R) is nonempty.
Let ξ =

{
xi

}
i∈N0

be a sequence in T (x0,R) and m,n ∈N0 with m < n, then we have

xi+1 ∈ Txi and (xi, xi+1) ∈ R.

As R is transitive, then for all i, j ∈Nwith i < j, we deduce

(xi−1, x j−1) ∈ R.

So, by condition (T2) it follows that

δb(Txi−1,Tx j−1) ≤ ϕ(Mb(xi−1, x j−1)). (3)

Now, from Remark 1.17, we obtain

ϕ(Mb(xi−1, x j−1)) < Mb(xi−1, x j−1). (4)

Observe now that xi ∈ Txi−1 and x j ∈ Tx j−1, so we have

db(xi, x j) ≤ δb(Txi−1,Tx j−1) (5)

and

Mb(xi−1, x j−1) ≤ δb(Om,n(ξ)), (6)

where m < i < j ≤ n. Therefore, combining 3, 4, 5 and 6, we deduce that,

db(xi, x j) < δb(Om,n(ξ)),

which implies the existence of some integer k satisfying m < k ≤ n such that

db(xm, xk) = δb(Om,n(ξ)),

and this prove the first assertion of the lemma. We shall next show that the sequence ξ is bounded. Observe
first that

O0,1(ξ) ⊆ O0,2(ξ) ⊆ · · ·
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which implies that

δb(O0,1(ξ)) ≤ δb(O0,2(ξ)) ≤ · · ·

So, the sequence
{
δb(O0,n(ξ))

}
n∈N0

is increasing. To prove our result, it suffice to show that
{
δb(O0,n(ξ))

}
n∈N0

is bounded. From the first assertion of this lemma there is a k ∈ N satisfying k ≤ n such that db(x0, xk) =
δ(O0,n(ξ)). If k = 1 for all n ≥ 1, then δb(O0,n(ξ)) = db(x0, x1) for all n. Otherwise, there exist N > 0 such that
k , 1 for all n ≥ N. Thus, by property (iii) of the b-metric db, we have

db(x0, xk) ≤ b db(x0, x1) + b db(x1, xk),

and since x1 ∈ Tx0 and xk ∈ Txk−1, it follows

db(x0, xk) ≤ b db(x0, x1) + b δb(Tx0,Txk−1).

Since (x0, xi) ∈ R for all i ∈N, then we have

δb(Tx0,Txk−1) ≤ ϕ(Mb(x0, xk−1)).

From other hand observe that Mb(x0, xk−1) ≤ δb(O0,n(ξ)), which implies ϕ(Mb(x0, xk−1)) ≤ ϕ(δb(O0,n(ξ)), and
hence we deduce

db(x0, xk) ≤ b db(x0, x1) + bϕ(δb(O0,n(ξ))),

that is,

δb(O0,n(ξ)) − bϕ(δb(O0,n(ξ))) ≤ b db(x0, x1),

and this show that δb(O0,n(ξ)) − bϕ(δb(O0,n(ξ))) is bounded.
If

{
δb(O0,n(ξ))

}
n∈N0

is unbounded, then we have lim
n→+∞

δb(O0,n(ξ)) = +∞, so it follows from Definition 1.16-(i)
that,

lim
n→∞

δb(O0,n(ξ)) − bϕ(δb(O0,n(ξ))) = +∞,

which yields a contradiction. Consequently,
{
δb(O0,n(ξ))

}
n∈N0

is bounded.

Lemma 2.4. Under hypotheses of Theorem 2.1, every ξ =
{
xi

}
∈ T (x0,R) converges to some x∗ ∈ X.

Proof. Let ξ =
{
xi

}
i∈N0

in T (x0,R), then we have

(xm, xn) ∈ R, for all m < n.

So, it follows from Lemma 2.3 that there exists an integer k satisfying m < k ≤ n such that db(xm, xk) =
δb(Om,n(ξ)). Hence, we deduce from (T3) that

db(xm+1, xn+1) ≤ δb(Txm,Txn) ≤ ϕ(δb(Om,n(ξ))) = ϕ(db(xm, xk)). (7)

Again, as (xm, xk) ∈ R for m < k, it follows

db(xm, xk) ≤ δb(Txm−1,Txk−1) ≤ ϕ(δb(Om−1,k−1(ξ))) ≤ ϕ(δb(Om−1,n(ξ))). (8)

Combining now (7) and (8), we get

db(xm+1, xn+1) ≤ ϕ2(δb(Om−1,n(ξ))).
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Consequently, an induction yields

db(xm+1, xn+1) ≤ ϕm+1(δb(O0,n(ξ))).

From other hand, we know from Lemma 2.3 that O0,n(ξ) is bounded, so there exists a real constant C > 0
such that δb(O0,n(ξ)) ≤ C for all n ∈N. Therefore, we obtain

lim
n,m→∞

db(xn+1, xm+1) ≤ lim
m→∞

ϕm+1(C) = 0.

Now, since (X, d) is T-orbitally complete, we deduce that the sequence ξ =
{
xi

}
i∈N0

is Cauchy, and hence
there exists an x∗ ∈ X such that lim

n→∞
db(xn, x∗) = 0.

Proof of Theorem 2.1. Let ξ =
{
xi

}
i∈N0

inT (x0,R), then by Lemma 2.4 the sequence ξ converge to some element
x∗ ∈ X. Next, we shall prove that x∗ is a fixed point of T. Observe first that

Db(xn+1,Tx∗) ≤ δb(Txn,Tx∗),

then using Proposition 1.7, it follows

Db(x∗,Tx∗) ≤ b db(x∗, xn+1) + b Db(xn+1,Tx∗) ≤ b db(x∗, xn+1) + b δb(Txn,Tx∗).

As (xi, xi+1) ∈ R for all i ∈ N0 and ξ is convergent (by Lemma 2.4), then from the R-regularity of (X, db), we
deduce

(xn, x∗) ∈ R, for all n ∈N0. (9)

Consequently, by using condition (T2), we have

Db(x∗,Tx∗) ≤ b db(x∗, xn+1) + bϕ(Mb(xn, x∗)). (10)

Now, observe that

max
{
db(xn, x∗),Db(xn,Txn),Db(x∗,Txn)

}
≤ b db(xn, x∗) + b db(x∗, xn+1).

As ξ converges to x∗, we have lim
n→∞

db(xn, x∗) = lim
n→∞

db(x∗, xn+1) = 0, then

lim
n→∞

max
{
db(xn, x∗),Db(xn,Txn),Db(x∗,Txn)

}
= 0.

Assume now that Db(x∗,Tx∗) , 0. Let n0 be a positive integer such that for all n > n0, we have

max
{
db(xn, x∗),Db(xn,Txn),Db(x∗,Txn)

}
< Db(x∗,Tx∗).

Hence, for all n > n0, we have

Mb(xn, x∗) = Db(x∗,Tx∗) or Mb(xn, x∗) = Db(xn,Tx∗).

First, assume that there exists an infinite subsequence (nk)k≥0 such that nk > n0 and Mb(xnk , x∗) = Db(x∗,Tx∗).
By (10), we deduce

Db(x∗,Tx∗) ≤ b db(x∗, xnk ) + bϕ(Mb(xnk , x∗)),

that is,

Db(x∗,Tx∗) − bϕ(Db(x∗,Tx∗)) ≤ b db(x∗, xnk ).
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As consequence of lim
n→∞

db(xn, x∗) = 0, we obtain that Db(x∗,Tx∗) − bϕ(Db(x∗,Tx∗)) = 0, which contradict
Definition 1.16-(iii). Hence, there exist N > 0 such that Mb(xn, x∗) = Db(xn,Tx∗) for all n > N. So, by (9) and
Remark 1.17, we deduce that for all k > 0,

Db(x∗,Tx∗) ≤ Db(xN+k,Tx∗) ≤ δb(TxN+k−1,Tx∗) ≤ ϕ(Mb(xN+k−1, x∗))
≤ ϕ(Db(xN+k−1,Tx∗))

...

≤ ϕk(Db(xN,Tx∗)).

As lim
k→∞

ϕk(Db(xN,Tx∗)) = 0 ≥ Db(x∗,Tx∗) , 0, we obtain a contradiction.

Consequently, Db(x∗,Tx∗) = 0 and the results follows from Proposition 1.7.

Theorem 2.5. Under hypotheses of Theorem 2.1. If Fix(T) × Fix(T) ⊆ R, then Fix(T) is a singleton.

Proof. Let (x∗, y∗) ∈ Fix(T) × Fix(T), then (x∗, y∗) ∈ R. By applying the contraction, it follows

δb(Tx∗,Ty∗) ≤ ϕ(Mb(x∗, y∗)).

So, by observing that Db(x∗,Tx∗) = Db(y∗,Ty∗) = 0, and that max
{
Db(x∗,Ty∗),Db(y∗,Tx∗)

}
≤ db(x∗, y∗), we

obtain

db(x∗, y∗) ≤ δb(Tx∗,Ty∗) ≤ ϕ(db(x∗, y∗)) < db(x∗, y∗),

which is a contradiction whenever x∗ and y∗ are different.

Definition 2.6. Let X be a non empty set and R be a binary relation on X. We say that A ∈ P(X) is R-directed, if
for all x, y ∈ A there exists z ∈ X such that (x, z) ∈ R and (y, z) ∈ R.

Theorem 2.7. In addition to the hypotheses of Theorem 2.1, suppose that R is an equivalence relation and Fix(T) is
R-directed, then T has a unique fixed point.

Proof. Let x∗, y∗ ∈ Fix(T). The set Fix(T) is supposed R-directed, then there exists z ∈ X such that (x∗, z) ∈ R
and (y∗, z) ∈ R. Using the symmetry and the transitivity of R, it follows that (x∗, y∗) ∈ R, and this proves
that Fix(T) × Fix(T) ⊆ R, so the result follows immediately from Theorem 2.5.

Next, we derive some corollaries for both multivalued and single valued mappings.

Corollary 2.8. Let (X, db) be a complete b-metric space and T : X → Pcl(X) be a multivalued mapping. Suppose
there exists ϕ ∈ Φb, such that

δb(Tx,Ty) ≤ ϕ(Mb(x, y)), for all x, y ∈ X.

Then T has a unique fixed point..

Proof. By choosing R = X × X, we deduce that all hypotheses of Theorem 2.1 are satisfied, and hence T
has a fixed point x∗ in X. Moreover, since Fix(T) × Fix(T) ⊆ R, then we deduce the uniqueness of the fixed
point.

Consider now a binary relation onP(X) induced by a partial ordered ≤ on X, then by taking ≤ as the binary
relation R in Theorem 2.1, we obtain the following result.

Corollary 2.9. Let ≤ be a partially order on X andS≤ be a binary relation onP(X). Let (X, db) be a complete b-metric
space and ≤-regular. Suppose that the multivalued mapping T : X→ P(X) satisfies the following conditions:

(1) T is either S≤-preserving from some x0 ∈ Tx0 or T is S≤–proper;
(2) there exists ϕ ∈ Φb such that δb(Tx,Ty) ≤ ϕ(Mb(x, y)) for all x ≤ y.
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Then, there exists x∗ ∈ Tx∗. In addition, if we suppose that every two fixed points of Fix(T) are comparable w.r.t. the
partial order, then T has a unique fixed point.

Corollary 2.10. Let R be a transitive binary relation on a nonempty set X. Let f : X → X be a single-valued
mapping and such that (X, db) is a b-metric space, R-regular and f -orbitally complete. Suppose that f satisfies the
following conditions:

(1) f is RR-preserving from some x0 ∈ X;
(2) there exists ϕ ∈ Φb such that

db( f x, f y) ≤ ϕ
(
max

{
db(x, y), db(x, f x), db(y, f y), db(x, f y), db(y, f x)

})
, for all (x, y) ∈ R.

Then, f has at least one fixed point x∗ in X. In addition, if Fix( f ) × Fix( f ) ⊆ R, then x∗ is the unique fixed point of f .

Proof. Since every singleton set
{
x
}

is closed, then we can define a closed multivalued mapping T : X →

Pcl(X) by putting Tx =
{

f x
}

for all x ∈ X. Let x, y ∈ X such that (x, y) ∈ R, then we have

δb(Tx,Ty) = db( f x, f y) ≤ ϕ
(
Mb(x, y)

)
.

Hence, T is ϕ-quasi-contractive on R-related points. It is not difficult to see that all conditions of Theorem
2.1 are satisfied and hence T has a fixed point x∗, that is, x∗ ∈ Tx∗ =

{
f x∗

}
, which implies that x∗ = f x∗. In

addition, if Fix( f )× Fix( f ) ⊆ R, then all the conditions of Theorem 2.5 are satisfied, and thus x∗ becomes the
unique fixed point of T and therefore the unique fixed point of f .

Corollary 2.11. Let (X, d) be a complete metric space and f : X→ X be a mapping. Suppose that there exists ϕ ∈ Φ1
such that for all x, y ∈ X, we have

d( f x, f y) ≤ ϕ
(
max

{
d(x, y), d(x, f x), d(y, f y), d(x, f y), d(y, f x)

})
.

Then f has a unique fixed point x∗ in X.

Proof. The result follows from Corollary 2.10 by using the binary relation R = X × X.

Remark 2.12. From Corollary 2.11, we can derive a similar result to [11, Theorem 1.(a)] for a different class of
multivalued mappings, and this by taking ϕ(t) = qt for all t > 0. However, we can derive [24, Corollary 4] from our
Corollary 2.11 for a different class of simulation functions.

Remark 2.13. More consequences may be derived by specifying various binary relations.

3. Well-posedness, limit shadowing property and Ulam-Hyers stability

In the previous section, some sufficient conditions for existence and uniqueness of fixed points have been
established. In the current section, we present a qualitative study of our fixed point inclusion (1) such as
the well-posedness, the limit shadowing properties and the Ulam-Hyers stability. The well-posedness is a
concept introduced by De Blasi and Myjak [27] in order to show whether every sequence will be convergent
to the unique fixed point. However, the limit shadowing property has been introduced by Eirola et al. [26]
and used to study the existence of trajectory approaches the real trajectory of certain dynamical system.
The Ulam-Hyers stability was originated by Ulam when he asked about the existence of a linear mapping
near an approximately additive mapping, which has been affirmatively answered by Hyers in [25].

Definition 3.1. Let (X, db) be a b-metric space and T : X → Pcl(X) be a multivalued mappings. We say that the
fixed point inclusion (1) is well-posed w.r.t. δb if T has a unique fixed point x∗ and every sequence

{
xn

}
satisfying

lim
n→∞

δb(xn,Txn) = 0 converges to x∗.

Theorem 3.2. Let (X, db) be a b-metric space and R be a binary relation on X. Suppose there exists ϕ ∈ Φb such that
T : X→ Pcl(X) is a multivalued ϕ-quasi-contractive on R-related points and satisfies:
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(W1) T has a unique fixed point x∗;

(W2) for every sequence
{
xn

}
n∈N0

satisfying lim
n→∞

δb(xn,Txn) = 0, there exists n0 ∈ N0 such that (xn, x∗) ∈ R for all
n ≥ n0.

Then, the fixed point inclusion (1) is well posed w.r.t. δb.

In order to prove this theorem, we need the following lemma:

Lemma 3.3. In addition to the hypotheses of Theorem 3.2, suppose there exists a subsequence
{
xn(k)

}
k∈N0

such that
Mb(xn(k), x∗) = Db(xn(k),Txn(k)). Let ε > 0, so if there exists N ∈ N0 such that Db(xn,Txn) < ε for all n ≥ N, then
there exists N1 ≥ N such that db(xn, x∗) < ε for all n ≥ N1.

Proof. We proceed by induction. Let ε > 0 and k0 ∈N0 such that n(k0) ≥ max{N,n0}, then we have

db(xn(k0)+1, x∗) ≤ δb(Txn(k0),Tx∗) ≤ ϕ(Mb(xn(k0), x∗)) = ϕ(Db(xn(k0),Txn(k0))) < ε.

Suppose next that db(xn(k0)+p, x∗) < ε and prove that db(xn(k0)+p+1, x∗) < ε. We have,

db(xn(k0)+p+1, x∗) ≤ δb(Txn(k0)+p,Tx∗) ≤ ϕ
(
Mb(xn(k0)+p, x∗)

)
.

Observe that Db(Txn(k0)+p, x∗) ≤ db(xn(k0)+p+1, x∗), so if Mb(xn(k0)+p, x∗) = Db(Txn(k0)+p, x∗), we obtain

db(xn(k0)+p+1, x∗) ≤ δb(Txn(k0)+p,Tx∗)

≤ ϕ
(
Mb(xn(k0)+p, x∗)

)
= ϕ

(
Db(Txn(k0)+p, x∗)

)
≤ ϕ

(
db(xn(k0)+p+1, x∗)

)
< db(xn(k0)+p+1, x∗),

which is a contradiction. Next, observe that Db(x∗,Tx∗) = 0 and that Db(xn(k0)+p,Tx∗) ≤ db(xn(k0)+p, x∗). Hence,
we have

Mb(xn(k0)+p, x∗) = max
{
db(xn(k0)+p, x∗),Db(Txn(k0)+p, xn(k0)+p)

}
.

Therefore,

db(xn(k0)+p+1, x∗) ≤ ϕ
(
Mb(xn(k0)+p, x∗)

)
< max

{
db(xn(k0)+p, x∗),Db(Txn(k0)+p, xn(k0)+p)

}
,

which implies that for all n ≥ n(k0) + 1 = N1, we have d(xn, x∗) < ε.

Proof of Theorem 3.2. Assume that Fix(T) =
{
x∗

}
and let

{
xn

}
n∈N0

be a sequence satisfying

lim
n→∞

δb(xn,Txn) = 0. (11)

Then from (W2), there exists n0 ∈N0 such that

(xn, x∗) ∈ R, for all n ≥ n0. (12)

In order to prove that T is well posed w.r.t. δb, we shall show that lim
n→∞

db(xn, x∗) = 0.
Using T is ϕ-quasi-contractive on R-related points together with (12), then for all n ≥ n0 and every zn ∈ Txn,
we have

db(xn, x∗) ≤ b db(xn, zn) + b db(zn, x∗)
≤ b δb(xn,Txn) + b δb(Txn,Tx∗)
≤ b δb(xn,Txn) + bϕ (Mb(xn, x∗)) .
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Now, since Db(x∗,Txn) ≤ db(x∗, xn+1), then if Mb(xn, x∗) = Db(x∗,Txn), we obtain

db(xn+1, x∗) ≤ δb(Txn,Tx∗) ≤ ϕ(Mb(xn, x∗)) ≤ ϕ(db(xn+1, x∗)) < db(xn+1, x∗),

which is absurd. Next, from (W1) observe that Db(x∗,Tx∗) = 0 and Db(xn,Tx∗) ≤ db(xn, x∗), so Mb(xn, x∗) =

max
{
db(xn, x∗),Db(xn,Txn)

}
. Suppose now that there exists a subsequence

{
n(k)

}
k∈N0

such that Mb(xn(k), x∗) =

Db(xn(k),Txn(k)). Then, by (11) and Lemma 3.3, we obtain lim
n→∞

db(xn, x∗) = 0. Otherwise, if such a subsequence

does not exist, then there exists m0 such that Mb(xn, x∗) = db(xn, x∗) for all n ≥ m0 ≥ n0 and this implies

db(xm0+k, x∗) ≤ ϕk (db(xm0 , x∗)
)
, for all k ≥ 0.

Therefore, we have always db(xn, x∗) tends to 0 when n tends to infinity.

Remark 3.4. Under hypotheses of Corollary 2.8, the fixed point inclusion (1) is well-posed.

Next, we introduce an appropriate limit shadowing property corresponding to the fixed point inclusion
(1).

Definition 3.5. We say that the fixed point inclusion (1) has the limit shadowing property for a multivalued mapping
T : X → Pcl(X) if for any sequence {xn} in X satisfying lim

n→∞
δb(xn,Txn) = 0, there exists z0 ∈ X and a sequence

ζ =
{
zn

}
n∈N0

in T (z0,R) such that lim
n→∞

db(xn, zn) = 0.

Theorem 3.6. If the fixed point inclusion (1) is well posed (in the sense of Theorem 3.2), then (1) possess the limit
shadowing property.

Proof. From theorems 2.1 and 2.5, we have that for any z0 in X, every sequence ζ := {zn}n∈N0 in T (z0,R)
satisfies

lim
n→∞

db(zn, x∗) = 0. (13)

Let {xn}n∈N0 be a sequence such that lim
n→∞

δb(xn,Txn) = 0. Since we have the following inequality

db(xn, zn) ≤ b db(xn, x∗) + b db(x∗, zn). (14)

Using the fact that the fixed inclusion is well-posed w.r.t δb, then we deduce that

lim
n→∞

db(xn, x∗) = 0. (15)

Consequently, combining (13), (14) and (15), we obtain lim
n→∞

db(xn, zn) = 0.

We study next, the Ulam-Hyers stability of the fixed point inclusion (1).

Definition 3.7 (see [28]). Let (X, db) be a b-metric space and T : X → P(X) be a multivalued operator. The fixed
point inclusion (1) is called generalized Ulam-Hyers stable if and only if there existsψ : R+

→ R+ which is increasing
and continuous at 0 and ψ(0) = 0, such that for every ε > 0 and for each y∗ ∈ X solution of the inequality

δb(y,Ty) ≤ ε, (16)

there exists an x∗ ∈ Fix(T) such that

db(y∗, x∗) ≤ ψ(ε).

Remark 3.8. If ψ(t) = c t where c is a positive constant and t ≥ 0, then the fixed point inclusion (1) is said to be
Ulam-Hyers stable.
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Theorem 3.9. In addition to the hypotheses of Theorem 2.1, suppose that T : X→ Pcl(X) satisfies
(U1) for any y∗ ∈ X satisfying (16) and x∗ ∈ Fix(T), we have (x∗, y∗) ∈ R;
(U2) the function β : R+

→ R+ given by β(t) := t − b2 ϕ(t) is increasing, bijective and continuous.
Then, the fixed point inclusion (1) is generalized Ulam-Hyers stable.

Proof. Let ε > 0, x∗ ∈ Fix(T) and y∗ ∈ X satisfying (16). From condition (U1), we have (x∗, y∗) ∈ R, so from
(T1) we deduce that (Tx∗,Ty∗) ∈ SR. Therefore, for any z∗ ∈ Ty∗, we have

db(y∗, x∗) ≤ b db(y∗, z∗) + b db(z∗, x∗)
≤ b δb(y∗,Ty∗) + b δb(Ty∗,Tx∗)
≤ b ε + bϕ(Mb(y∗, x∗)).

Observe now that Db(x∗,Tx∗) = 0, Db(y∗,Ty∗) ≤ ε and that Db(y∗,Tx∗) ≤ db(y∗, x∗), then we obtain

db(y∗, x∗) ≤ b ε + ϕ(b db(y∗, x∗) + b ε)

or equivalently

b db(y∗, x∗) ≤ b2 ε + b2 ϕ(b db(y∗, x∗) + b ε).

Now, using (U2), it follows

β(b db(y∗, x∗) + b ε) ≤ b (b + 1) ε,

and this yields,

db(y∗, x∗) ≤ b−1β−1(b (b + 1) ε),

which proves that (1) is generalized Ulam-Hyers stable, where ψ(t) = b−1β−1(b (b + 1) t) for all t > 0.

4. Application

This section is devoted to the study of the Cauchy differential inclusion:{
y′(t) ∈ F(t, y(t)), a.e. t ∈ J := [t0, t1]
y(t0) = y0

, (17)

with y0 ∈ E and F : J × E → Pcp,cv(E) is a multivalued mapping, where E is a separable Banach space
endowed with a norm ‖ · ‖. We intend here to prove that (17) has a unique solution in C(J,E). Consider the
Banach space X = C(J,E) endowed with a norm ‖ · ‖∗, and equipped with the distance:

d2(x, y) = sup
t∈J

∥∥∥x(t) − y(t)
∥∥∥2
.

It is well known that (X, d2) is a complete b-metric where b = 2.
Let TF : C(J,E)→ P(C(J,E)) be the multivalued Carathéodory operator associated to F:

TF(y) =

{
h ∈ C(J,E) : ∃ 1 ∈ SF(y) such that h(t) = y0 +

∫ t

t0

1(r) dr, ∀t ∈ J
}
,

with SF : C(J,E)→ P(L1(J,E)) be the Niemytzki operator associated to F:

SF(y) =
{
1 ∈ L1(J,E) : 1(r) ∈ F(r, y(r)), for a.e. r ∈ J

}
,

where L1(J,E) is the Bochner space of integrable functions on J with values in the Banach space E. Consider
now the following assumptions:
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(A1) t 7→ F(t, y) is measurable for each y ∈ C(J,E);

(A2) y 7→ F(t, y) is continuous for a.e t ∈ J;

(A3) for all ρ > 0, ther exists hρ ∈ L1(J) such that∣∣∣F(t, y)
∣∣∣ := sup

{∥∥∥v
∥∥∥
∗

: v ∈ F(t, y)
}
≤ hρ(t) a.e. t ∈ J and for all y ∈ B(0, ρ);

(A4) there exists λ ∈ (0, 1) and a positive function ` ∈ L1(J ×R+) and ϕ ∈ Φ2 such that∫ t1

t0

`(t, r) dt ≤
√
ϕ(r) for all r ≥ 0 with

δ2

(
F(t,u(t)),F(t, v(t))

)
≤ `

(
t, M2(u, v)

)
, for all t ∈ J, u, v ∈ C(J,E),

where M2(u, v) = max
{
d2(u, v), d2(u,T(u)), d2(v,T(v)), d2(u,T(v)), d2(v,T(u))

}
.

Theorem 4.1. Suppose that the assumptions (A1) to (A4) are satisfied. Then the problem (17) has a unique solution
in C(J,E).

First, we need the following lemma to prove the theorem.

Lemma 4.2 (See [29, Lemma 2.3]). Let F : J × E → Pcp,cv(E) be a multivalued mapping satisfying (A1) to (A3),
then TF(y) is nonempty and closed for all y ∈ E.

Proof of Theorem 4.1. From Lemma 4.2 we have that T(y) ∈ Pcl(C(J,E)) for each y ∈ C(J,E). It remains to
prove that T is multivalued ϕ-quasi-contractive for some ϕ ∈ Φ2. Let y1, y2 ∈ C(J,E), then it follows from
(A4) that,

δ2(F(t, y1(t)),F(t, y2(t))) ≤ `
(
t,M2(y1, y2)

)
, for all t ∈ J. (18)

Now, let hi ∈ T(yi) for i = 1, 2, then there exists 1i ∈ SF(yi), such that

hi(t) = y0 +

∫ t

t0

1i(r)dr, for i = 1, 2 and t ∈ J.

Since 11(r) ∈ F(r, y1(r)) and 12(r) ∈ F(r, y2(r)) for all r ∈ J, then it follows from (18) that,

d2(11(r), 12(r)) ≤ `
(
t, M2(y1, y2)

)
, for all r ∈ J,

which implies,∥∥∥11(r) − 12(r)
∥∥∥ ≤ `(t, M2(y1, y2)

) 1
2 .

Hence, we have

d2(h1(t), h2(t)) =
∥∥∥h1(t) − h2(t)

∥∥∥2

=

∥∥∥∥∥∥
∫ t

t0

11(r) − 12(r)dr

∥∥∥∥∥∥2

≤

(∫ t

t0

∥∥∥11(r) − 12(r)
∥∥∥dr

)2

≤

(∫ t

t0

`(t,
(
M2(y1, y2)

) 1
2 dr

)2

≤ ϕ(M2(y1, y2)),
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which implies,

d2(h1, h2) ≤ ϕ(M2(y1, y2)).

Now, since h1 and h2 are arbitrary in T(y1) and T(y2), respectively, it follows,

δ2(T(y1),T(y2)) ≤ ϕ(M2(y1, y2)), for all y1, y2 ∈ C(J,E).

Consequently, the theorem follows from Corollary 2.8.
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[27] F. Blasi and J. Myjak, Sur la porosité de l’ensemble des contractions sans point fixe, Comptes Rendus de l’Académie des

Sciences-Series I-Mathematics, 308 (1989) 51–54.
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