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Abstract. In this paper, the concepts soft union AG-groupoids, soft union left (right, two-sided) ideals,
(generalized) bi-ideals, interior and quasi-ideals in AG-groupoids are introduced with many illustrating
examples and their properties and interrelations are given. Moreover, regular, intra-regular, completely
regular, weakly regular and quasi-regular AG-groupoids are characterized by the properties of these soft
union ideals.

1. Introduction

In 1999, Molodtsov [1] proposed an approach for modeling vagueness and uncertainty, called soft set
theory. Since its inception, works on soft set theory has been progressing rapidly with a wide range-
applications especially in the mean of algebraic structures and it has provided a naturel framework for
generalizing several basic notions of algebra such as groups [2, 3], semirings [4], rings [5], BCK/BCI-algebras
[6–8], BL-algebras [9], near-rings [10] and soft substructures and union soft substructures [11, 12].

The structures of soft sets, operations of soft sets and some related concepts have been studied since
1999. Maji et al. [13] presented some definitions on soft sets and based on the analysis of several operations
on soft sets Ali et al. [14] introduced several operations of soft sets and Sezgin and Atagün [15] and Ali et
al. [16] studied on soft set operations as well.

Moreover, the theory of soft set continues to experience tremendous growth and diversification such as
computer science and soft decision making as in the following studies:[17–19, 21–23] and some other fields
as [24–26].

In [27, 28], Sezer studied soft LA-semigroups with the concept of soft intersection ideals. However in
this paper, a new approach to the AG-groupoid theory via soft set theory with the concept of soft union
AG-groupoids and soft union ideals of AG-groupoids are made. First, some basic definitions about soft
sets, AG-groupoids, soft union product and soft characteristic function are reminded. Then, soft union
AG-groupoids, soft union left (right, two-sided) ideals, (generalized) bi-ideals, interior ideals, quasi-ideals
in AG-groupoid are introduced and studied with respect to soft set operations and soft union product. In
the following sections, regular, intra-regular, completely regular, weakly regular and quasi-regular AG-
groupoids are characterized by the properties of these soft union ideals.
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2. Preliminaries

The idea of generalization of a commutative semigroup (which we call the left almost semigroup) was
introduced by M.A. Kazim and M. Naseeruddin in 1972 [29]. They introduced braces on the left of the
tenrary commutative law abc = cba to get a new pseudo associative law, that is

(ab)c = (cb)a for all a, b, c.

It is since then called the left invertive law. A groupoid satisfying the left invertive law is called a left almost
semigroup and is abbreviated by LA-semigroup. P. Holgate call it simple invertive groupoid [30]. It is also
known as Abel-Grassmann’s groupoid [31]. It is a mid structure between a groupoid and a commutative
semigroup, having many applications in the theory of flocks [32]. From now on, S denotes an AG-groupoid.
There can be a unique left identity in an AG-groupoid [33]. For further information about AG-groupoids,
fuzzy AG-groupoids, we invite the reader to [34–39]. From now on, U refers to an initial universe, E is a
set of parameters, P(U) is the power set of U and A,B,C ⊆ E.

Definition 2.1. ([1, 18]) A soft set fA over U is a set defined by

fA : E→ P(U) such that fA(x) = ∅ if x < A.

Here fA is also called an approximate function. A soft set over U can be represented by the set of ordered pairs

fA = {(x, fA(x)) : x ∈ E, fA(x) ∈ P(U)}.

Note that throughout this paper, the set of all soft sets over U will be denoted by S(U).

Definition 2.2. [18] Let fA, fB ∈ S(U). Then, fA is called a soft subset of fB and denoted by fA⊆̃ fB, if fA(x) ⊆ fB(x)
for all x ∈ E.

Definition 2.3. [18] Let fA, fB ∈ S(U). Then, union of fA and fB, denoted by fA∪̃ fB, is defined as fA∪̃ fB = fA∪̃B,
where fA∪̃B(x) = fA(x)∪ fB(x) for all x ∈ E. Intersection of fA and fB, denoted by fA∩̃ fB, is defined as fA∩̃ fB = fA∩̃B,
where fA∩̃B(x) = fA(x) ∩ fB(x) for all x ∈ E.

Definition 2.4. [18] Let fA, fB ∈ S(U). Then,∧-product of fA and fB, denoted by fA∧ fB, is defined as fA∧ fB = fA∧B,
where fA∧B(x, y) = fA(x) ∩ fB(y) for all (x, y) ∈ E × E.

Definition 2.5. [40] Let fA and fB be soft sets over the common universe U and Ψ be a function from A to B. Then,
soft anti image of fA under Ψ, denoted by Ψ?( fA), is a soft set over U by

(Ψ?( fA))(b) =

{ ⋂
{ fA(a) | a ∈ A and Ψ(a) = b}, if Ψ−1(b) , ∅,
∅, otherwise

for all b ∈ B. And soft pre-image (or soft inverse image) of fB under Ψ, denoted by Ψ−1( fB), is a soft set over U by
(Ψ−1( fB))(a) = fB(Ψ(a)) for all a ∈ A.

Definition 2.6. [41] Let fA be a soft set over U and α ⊆ U. Then, lower α-inclusion of fA, denoted by L( fA;α), is
defined as

L( fA : α) = {x ∈ A | fA(x) ⊆ α}.

3. Soft union product and soft characteristic function

In this section, soft union product and soft characteristic function is defined and their properties are
studied. From now on, the soft sets the parameter set of which are restricted to S will be denoted by S(S).
In [42], Sezgin defined soft union product for soft sets the parameter set of which is a semigroup. Now, soft
union product is defined for soft sets the parameter set of which is an AG-groupoid.
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Definition 3.1. Let fS and 1S be soft sets over the common universe U. Then, soft union product fS ∗ 1S is defined by

( fS ∗ 1S)(x) =

{ ⋂
x=yz{ fS(y) ∪ 1S(z)}, if ∃y, z ∈ S such that x = yz,

U, otherwise

for all x ∈ S.

Note that soft union product is abbreviated by soft uni-product in what follows.

Example 3.2. Consider the AG-groupoid S = {a, b, c, d} defined by the following table:

. a b c d
a d a b c
b c d a b
c b c d a
d a b c d

Let U = D3 = {< x, y >: x2 = y2 = e, xy = yx} = {e, x, y, yx} be the universal set. Let fS and 1S be soft sets over
U such that fS(a) = {e, x, yx}, fS(b) = {e, x, y}, fS(c) = {e, y, yx}, fS(d) = {e, y} and 1S(a) = {e, x, y, yx}, 1S(b) =
{x, y, yx}, 1S(c) = {e, x}, 1S(d) = {x, y}. Since d = aa = bb = cc = dd, then

( fS ∗ 1S)(d) = { fS(a) ∪ 1S(a)} ∩ { fS(b) ∪ 1S(b)} ∩ { fS(c) ∪ 1S(c)} ∩ { fS(d) ∪ 1S(d)} = {e, x, y}.

Similarly, ( fS ∗ 1S)(a) = {e, x, y}, ( fS ∗ 1S)(b) = {e, x}, ( fS ∗ 1S)(c) = {e, x, y}.

The proof of the following theorem is similar to those in [42].

Theorem 3.3. Let fS, 1S, hS ∈ S(U). Then,
i) ( fS ∗ 1S) ∗ hS = fS ∗ (1S ∗ hS).

ii) fS ∗ 1S , 1S ∗ fS, generally.
iii) fS ∗ (1S∪̃hS) = ( fS ∗ 1S)∪̃( fS ∗ hS) and ( fS∪̃1S) ∗ hS = ( fS ∗ hS)∪̃(1S ∗ hS).
iv) fS ∗ (1S∪̃hS) = ( fS ∗ 1S)∪̃( fS ∗ hS) and ( fS∪̃1S) ∗ hS = ( fS ∗ hS)∪̃(1S ∗ hS).
v) If fS⊆̃1S, then fS ∗ hS⊆̃1S ∗ hS and hS ∗ fS⊆̃hS ∗ 1S.

vi) If tS, lS ∈ S(U) such that tS⊆̃ fS and lS⊆̃1S, then tS ∗ lS⊆̃ fS ∗ 1S.

Proposition 3.4. Let S be an AG-groupoid. Then, the set ((S(S), ∗) is an AG-groupoid.

Proof. Obviously, S(S) is closed. Let fS, 1S, hS ∈ S(S). Let x be any element of S such that it is not expressible
as the product of two elements in S. Then, we have

(( fS ∗ 1S) ∗ hS)(x) = ((hS ∗ 1S) ∗ fS)(x) = U

Let s be the element that can be written as s = yz. Then, we have

(( fS ∗ 1S) ∗ hS)(s) =
⋂
s=yz

{( fS ∗ 1S)(y) ∪ hS(z)}

=
⋂
s=yz

{

⋂
y=pq

{ fS(p) ∪ 1S(q)} ∪ hS(z)}

=
⋂

s=(pq)z

{ fS(p) ∪ 1S(q) ∪ hS(z)}

=
⋂

s=(zq)p

{hS(z) ∪ 1S(q) ∪ fS(p)}

=
⋂
s=wp

{

⋂
w=zq

{hS(z) ∪ 1S(q)} ∪ fS(p)}

=
⋂
s=wp

{(hS ∗ 1S)(w) ∪ fS(p)}

= ((hS ∗ 1S) ∗ fS)(s)
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Hence, (S(S), ∗) is an AG-groupoid.

Proposition 3.5. Let S be an AG-groupoid. Then, the medial law holds in S(S).

Proof. Let fS, 1S, hS, kS be any elements of S(S). Then, applying the left invertive law,

( fS ∗ 1S) ∗ (hS ∗ kS) = ((hS ∗ kS) ∗ 1S) ∗ fS = ((1S ∗ kS) ∗ hS) ∗ fS = ( fS ∗ hS) ∗ (1S ∗ kS)

Theorem 3.6. Let S be an AG-groupoid with left identity and fS, 1S, hS be any elements of S(S). Then, the following
properties hold in S(S):

i) fS ∗ (1S ∗ hS) = 1S ∗ ( fS ∗ hS).

ii) ( fS ∗ 1S) ∗ (hS ∗ kS) = (kS ∗ hS) ∗ (1S ∗ fS).

Proof. i) Let s ∈ S. If s is not expressible as a product of two elements in S, then

( fS ∗ (1S ∗ hS))(s) = (1S ∗ ( fS ∗ hS))(s) = U.

Otherwise, let there exist y, z ∈ S such that s = yz. Then;

( fS ∗ (1S ∗ hS))(s) =
⋂
s=yz

{ fS(y) ∪ (1S ∗ hS)(z)}

=
⋂
s=yz

{ fS(y) ∪
⋂
z=pq

{1S(p) ∪ hS(q)}}

=
⋂

s=y(pq)

{ fS(y) ∪ 1S(p) ∪ hS(q)}

=
⋂

s=p(yq)

{1S(p) ∪ fS(y) ∪ hS(q)}

=
⋂
s=pw

{1S(p) ∪
⋂

w=yq

{ fS(y) ∪ hS(q)}}

=
⋂
s=pw

{1S(p) ∪ ( fS ∗ hS)(w)}

= (1S ∗ ( fS ∗ hS))(s)

Thus, ( fS ∗ (1S ∗ hS)) = (1S ∗ ( fS ∗ hS)). If s is not expressible as product of two elements in S, then
( fS ∗ (1S ∗ hS))(s) = (1S ∗ ( fS ∗ hS))(s) = U. Hence, ( fS ∗ (1S ∗ hS))(s) = (1S ∗ ( fS ∗ hS))(s) for all s ∈ S.

ii) If any element of s of S is not expressible as product of two elements, then (( fS ∗ 1S)) ∗ (hS ∗ kS))(s) =
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((kS ∗ hS)) ∗ (1S ∗ fS))(s) = U. Let there exist elements y, z ∈ S such that s = yz. Then,

(( fS ∗ 1S)) ∗ (hS ∗ kS))(s) =
⋂
s=yz

{( fS ∗ 1S)(y) ∪ (hS ∗ kS)(z)}

=
⋂
s=yz

{

⋂
y=pq

{ fS(p) ∪ 1S(p)} ∪
⋂
z=uv

{hS(u) ∪ kS(v)}}

=
⋂

s=(pq)(uv)

{ fS(p) ∪ 1S(q) ∪ hS(u) ∪ kS(v)}

=
⋂

s=(vu)(qp)

{kS(p) ∪ hS(q) ∪ 1S(u) ∪ fS(v)}

=
⋂

s=mn

{

⋂
m=vu

{kS(p) ∪ hS(u)} ∪
⋂
n=qp

{1S(q) ∪ fS(p)}}

=
⋂

s=mn

{(kS ∗ hS)(m) ∪ (1S ∗ fS)(n)}

= ((kS ∗ hS)) ∗ (1S ∗ fS))(s)

Proposition 3.7. An AG-groupoid S with S(S) = (S(S))2 is a commutative semigroup if and only if ( fS ∗ 1S) ∗ hS =
fS ∗ (hS ∗ 1S) holds for all soft sets fS, 1S and hS.

Proof. Let an AG-groupoid S be commutative. For any soft sets fS, 1S and hS, we have

( fS ∗ 1S) ∗ hS = (hS ∗ 1S) ∗ fS = fS ∗ (hS ∗ 1S).

Conversely, let ( fS ∗ 1S) ∗ hS = fS ∗ (hS ∗ 1S) for all soft sets fS, 1S and hS. We show that an AG-groupoid S(S)
is commutative semigroup. Since S(S) = (S(S))2, there exist hS, kS such that fS = hS ∗ kS. Now

fS ∗ 1S = (hS ∗ kS) ∗ 1S = (1S ∗ kS) ∗ hS = 1S ∗ (hS ∗ kS) = 1S ∗ hS.

Thus, commutative law holds in S(S). Moreover, ( fS ∗ 1S) ∗ kS = (kS ∗ 1S) ∗ fS = fS ∗ (kS ∗ 1S) = fS ∗ (1S ∗ kS).

Theorem 3.8. Let S be an AG-groupoid. Then, ϑ = { fS : fS ∈ S(S), fS ∗hS = fS where hS = hS ∗hS} is a commutative
semigroup.

Proof. Since hS ∗ hS = hS, ∅ , ϑ ⊆ S(S). Let fS, 1S ∈ ϑ. Then, fS ∗ hS = fS and 1S ∗ hS = 1S. Thus

fS ∗ 1S = ( fS ∗ hS) ∗ (1S ∗ hS) = ( fS ∗ 1S) ∗ (hS ∗ hS) = ( fS ∗ 1S) ∗ hS

implying that ϑ is closed.
Moreover, fS ∗ 1S = ( fS ∗ hS) ∗ 1S = (1S ∗ hS) ∗ fS = 1S ∗ fS implying that commutative law holds in ϑ.

Associative law holds from Theorem 3.3. This completes the proof.

In [42], Sezgin defined soft characteristic function of the complement X which is a subset of a semigroup.
Now, soft characteristic function of the complement X which is a subset of an AG-groupoid is given.

Definition 3.9. Let X be a subset of S. We denote by SXc the soft characteristic function of the complement X and
define as

SXc (x) =

{
∅, if x ∈ X,
U, if x ∈ S \ X

The proof of the following theorem is similar to those in [42].

Theorem 3.10. Let X and Y be nonempty subsets of an AG-groupoid S. Then, the following properties hold:
i) If Y ⊆ X, then SXc⊆̃SYc .

ii) SXc∩̃SYc = SXc∩Yc , SXc∪̃SYc = SXc∪Yc .
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4. Soft union AG-groupoid

In this section, soft union AG-groupoids are defined, their basic properties with respect to soft operations
and soft uni-product are studied.

Definition 4.1. Let S be an AG-groupoid and fS be a soft set over U. Then, fS is called a soft union AG-groupoid of
S, if

fS(xy) ⊆ fS(x) ∪ fS(y)

for all x, y ∈ S.

For the sake of brevity, soft union AG-groupoid is abbreviated by SU-AG-groupoid in what follows.

Example 4.2. Let S = {a, b, c, d} be the AG-groupoid in Example 3.2 and fS be a soft set over U = Z. If we construct
a soft set such that

fS(a) = {0, 2, 4, 6, 8}, fS(b) = {0, 2, 4, 6}, fS(c) = {0, 2, 4, 6, 8}, fS(d) = {0, 2, 4}

then, one can easily show that fS is an SU-AG-groupoid over U.

Now, let U =

{[
x 0
x 0

]
| x ∈ Z4

}
, 2× 2 matrices withZ4 terms, be the universal set. We construct a soft set 1S

over U by

1S(a) =

{[
0 0
0 0

]
,

[
1 0
1 0

]}
,

1S(b) =

{[
0 0
0 0

]}
,

1S(c) =

{[
0 0
0 0

]
,

[
3 0
3 0

]}
,

1S(d) =

{[
0 0
0 0

]
,

[
2 0
2 0

]}
.

Then, since
1S(bb) = 1S(d) * 1S(b) ∪ 1S(b),

1S is not an SU-AG-groupoid over U.

note 4.3. It is easy to see that if fS(x) = ∅ for all x ∈ S, then fS is an SU-AG-groupoid over U. We denote such a
kind of SU-AG-groupoid by θ̃. Namely, θ̃(x) = ∅ for all x ∈ S.

Proposition 4.4. Let fS be any SU-AG-groupoid over U. Then, we have the followings:

i) θ̃ ∗ θ̃⊇̃θ̃.
ii) fS ∗ θ̃⊇̃θ̃ and θ̃ ∗ fS⊇̃θ̃.

iii) fS∩̃θ̃ = θ̃ and fS∪̃θ̃ = fS.

Proposition 4.5. Let S(S) be an AG-groupoid with left identity. Then,

θ̃ ∗ θ̃ = θ̃.

Proof. Since every element x ∈ S can be written as x = ex, where e is the left identity in S, we have

(θ̃ ∗ θ̃)(x) =
⋂
x=yz

(θ̃(y) ∪ θ̃(z))

⊆ {θ̃(e) ∪ θ̃(x)}

= θ̃(x)

and since θ̃ ∗ θ̃⊇̃θ̃ always hold, θ̃ ∗ θ̃ = θ̃.
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Theorem 4.6. Let fS be a soft set over U. Then, fS is an SU-AG-groupoid over U if and only if

fS ∗ fS⊇̃ fS

Proof. Assume that fS is an SU-AG-groupoid over U. Let a ∈ S. If ( fS ∗ fS)(a) = U, then it is obvious that

( fS ∗ fS)(a) ⊇ fS(a), thus fS ∗ fS⊇̃ fS.

Otherwise, there exist elements x, y ∈ S such that a = xy. Then, since fS is an SU-AG-groupoid over U, we
have:

( fS ∗ fS)(a) =
⋂
a=xy

( fS(x) ∪ fS(y))

⊇

⋂
a=xy

fS(xy)

=
⋂
a=xy

fS(a)

= fS(a)

Thus, fS ∗ fS⊇̃ fS.
Conversely, assume that fS ∗ fS⊇̃ fS. Let x, y ∈ S and a = xy. Then, we have:

fS(xy) = fS(a)
⊆ ( fS ∗ fS)(a)

=
⋂
a=xy

( fS(x) ∪ fS(y))

⊆ fS(x) ∪ fS(y)

Hence, fS is an SU-AG-groupoid over U. This completes the proof.

Theorem 4.7. A non-empty subset A of an AG-groupoid of S is an AG-subgroupoid of S if and only if the soft subset
fS defined by

fS(x) =

{
α, if x ∈ S \ A,
β, if x ∈ A

is an SU-AG-groupoid, where α, β ⊆ U such that α ⊇ β.

Proof. Suppose A is an AG-subgroupoid of S and x, y ∈ S. If x, y ∈ A, then xy ∈ A. Hence, fS(xy) = fS(x) =
fS(y) = β and so, fS(xy) ⊆ fS(x)∪ fS(y). If x, y < A, then xy ∈ A or xy < A. In any case, fS(xy) ⊆ fS(x)∪ fS(y) = α.
Thus, fS is an SU-semigroup.

Conversely assume that fS is an SU-AG-groupoid of S. Let x, y ∈ A. Then, fS(xy) ⊆ fS(x) ∪ fS(y) = β.
This implies that fS(xy) = β. Hence, xy ∈ A and so A is an AG-subgroupoid of S.

Theorem 4.8. Let X be a nonempty subset of an AG-groupoid S. Then, X is an AG-subgroupoid of S if and only if
SXc is an SU-AG-groupoid of S.

Proof. Since

SXc (x) =

{
U, if x ∈ S \ X,
∅, if x ∈ X

and U ⊇ ∅, the rest of the proof follows from Theorem 4.7.

Proposition 4.9. Let fS and fT be SU-AG-groupoid over U. Then, fS ∨ fT is an SU-AG-groupoid over U.
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Proof. Let (x1, y1), (x2, y2) ∈ S × T. Then,

fS∨T((x1, y1)(x2, y2)) = fS∨T(x1x2, y1y2)
= fS(x1x2) ∪ fT(y1y2)
⊆ ( fS(x1) ∪ fS(x2)) ∪ ( fT(y1) ∪ fT(y2))
= ( fS(x1) ∪ fT(y1)) ∪ ( fS(x2) ∪ fT(y2))
= fS∨T(x1, y1) ∪ fS∨T(x2, y2)

Therefore, fS ∨ fT is an SU-AG-groupoid over U.

Proposition 4.10. If fS and hS are SU-AG-groupoids over U, then so is fS∪̃hS over U.

Proof. Let x, y ∈ S, then

( fS∪̃hS)(xy) = fS(xy) ∪ hS(xy)
⊆ ( fS(x) ∪ fS(y)) ∪ (hS(x) ∪ hS(y))
= ( fS(x) ∪ hS(x)) ∪ ( fS(y) ∪ hS(y))

= ( fS∪̃hS)(x) ∪ ( fS∪̃hS)(y)

Therefore, fS∪̃hS is an SU-AG-groupoid over U.

Proposition 4.11. Let fS be a soft set over U and α be a subset of U such that α ∈ Im( fS), where Im( fS) = {α ⊆ U :
fS(x) = α, f or x ∈ S}. If fS is an SU-AG-groupoid over U, then L( fS;α) is an AG-subgroupoid of S.

Proof. Since fS(x) = α for some x ∈ S, then ∅ , L( fS;α) ⊆ S. Let x, y ∈ L( fS;α), then fS(x) ⊆ α and fS(y) ⊆ α.
We need to show that xy ∈ L( fS;α) for all x, y ∈ L( fS;α). Since fS is an SU-AG-groupoid over U, it follows
that

fS(xy) ⊆ fS(x) ∪ fS(y) ⊆ α ∪ α = α

implying that xy ∈ L( fS;α). Thus, the proof is completed.

Definition 4.12. Let fS be an SU-AG-groupoid over U. Then, the AG-subgroupoids L( fS;α) are called lower
α-AG-subgroupoids of fS.

Proposition 4.13. Let fS be a soft set over U, L( fS;α) be lower α-AG-subgroupoids of fS for each α ⊆ U and Im( fS)
be an ordered set by inclusion. Then, fS is an SU-AG-groupoid over U.

Proof. Let x, y ∈ S and fS(x) = α1 and fS(y) = α2. Suppose that α1 ⊆ α2. It is obvious that x ∈ L( fS;α1) and
y ∈ L( fS;α2). Since α1 ⊆ α2, x, y ∈ L( fS;α1) and since L( fS;α) is an AG-subgroupoid of S for all α ⊆ U, it
follows that xy ∈ L( fS;α1). Hence, fS(xy) ⊆ α1 = α1 ∪ α2 = fS(x) ∪ fS(y). Thus, fS is an SU-AG-groupoid
over U.

Proposition 4.14. Let fS and fT be soft sets over U and Ψ be an AG-groupoid isomorphism from S to T. If fS is an
SU-AG-groupoid over U, then so is Ψ?( fS).

Proof. Let t1, t2 ∈ T. Since Ψ is surjective, then there exist s1, s2 ∈ S such that Ψ(s1) = t1 and Ψ(s2) = t2. Then,

(Ψ?( fS))(t1t2)
=
⋂
{ fS(s) : s ∈ S,Ψ(s) = t1t2}

=
⋂
{ fS(s) : s ∈ S, s = Ψ−1(t1t2)}

=
⋂
{ fS(s) : s ∈ S, s = Ψ−1(Ψ(s1s2)) = s1s2}

=
⋂
{ fS(s1s2) : si ∈ S,Ψ(si) = ti, i = 1, 2}

⊆
⋂
{ fS(s1) ∪ fS(s2) : si ∈ S,Ψ(si) = ti, i = 1, 2}

= (
⋂
{ fS(s1) : s1 ∈ S,Ψ(s1) = t1}) ∪ (

⋂
{ fS(s2) : s2 ∈ S,Ψ(s2) = t2})

= (Ψ?( fS))(t1) ∪ (Ψ?( fS))(t2)

Hence, Ψ?( fS) is an SU-AG-groupoid over U.
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Proposition 4.15. Let fS and fT be soft sets over U and Ψ be an AG-groupoid homomorphism from S to T. If fT is
an SU-AG-groupoid over U, then so is Ψ−1( fT).

Proof. Let s1, s2 ∈ S. Then,

(Ψ−1( fT))(s1s2) = fT(Ψ(s1s2))
= fT(Ψ(s1)Ψ(s2))
⊆ fT(Ψ(s1)) ∪ fT(Ψ(s2))
= (Ψ−1( fT))(s1) ∪ (Ψ−1( fT))(s2)

Hence, Ψ−1( fT) is an SU-AG-groupoid over U.

5. Soft union left (right, two-sided) ideals of AG-groupoids

In this section, soft union left (right, two-sided) ideals of AG-groupoids are defined and their basic
properties related with soft set operations and soft uni-products are obtained.

Definition 5.1. A soft set over U is called a soft union left (right) ideal of S over U if

fS(ab) ⊆ fS(b) ( fS(ab) ⊆ fS(a))

for all a, b ∈ S. A soft set over U is called a soft union two-sided ideal (soft union ideal) of S if it is both soft union left
and soft union right ideal of S over U.

For the sake of brevity, soft union left (right) ideal is abbreviated by SU-left (right) ideal in what follows.

Example 5.2. Consider the AG-groupoid S = {1, 2, 3} defined by the following table:

. 1 2 3
1 1 1 1
2 3 3 3
3 1 1 1

Let fS be a soft set over S such that fS(1) = {1, 2}, fS(2) = {1, 2, 3}, fS(3) = {1, 2}.Then, one can easily show that fS is an
SU-ideal of S over U. However if we define a soft set hS over S such that hS(1) = {1, 2, 3}, hS(2) = {1, 2}, hS(3) = {1, 2},
then, hS(3 · 1) = hS(1) * hS(3). Thus, hS is not an SU-right ideal of S over S.

Theorem 5.3. Let fS be a soft set over U. Then, fS is an SU-left ideal of S over U if and only if

θ̃ ∗ fS⊇̃ fS.

Proof. First assume that fS is an SU-left ideal of S over U. Let s ∈ S. If

(θ̃ ∗ fS)(s) = U,

then it is clear that θ̃ ∗ fS⊇̃ fS. Otherwise, there exist elements x, y ∈ S such that s = xy. Then, since fS is an
SU-left ideal of S over U, we have:

(θ̃ ∗ fS)(s) =
⋂
s=xy

(θ̃(x) ∪ fS(y))

⊇

⋂
s=xy

(∅ ∪ fS(xy))

=
⋂
s=xy

(∅ ∪ fS(s))

= fS(s)
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Thus, we have θ̃ ∗ fS⊇̃ fS.
Conversely, assume that θ̃ ∗ fS⊇̃ fS. Let x, y ∈ S and s = xy. Then, we have:

fS(xy) = fS(s)

⊆ (θ̃ ∗ fS)(s)

=
⋂

s=mn

(θ̃(m) ∪ fS(n))

⊆ θ̃(x) ∪ fS(y)
= ∅ ∪ fS(y)
= fS(y)

Hence, fS is an SU-left ideal over U. This completes the proof.

Theorem 5.4. Let fS be a soft set over U. Then, fS is an SU-right ideal of S over U if and only if

fS ∗ θ̃⊇̃ fS

Proof. Similar to the proof of Theorem 5.3.

Theorem 5.5. Let fS be a soft set over U. Then, fS is an SU-ideal of S over U if and only if

fS ∗ θ̃⊇̃ fS and θ̃ ∗ fS⊇̃ fS

Corollary 5.6. θ̃ is both SU-right and SU-left ideal of S.

Proof. Follows from Lemma 4.4-(i).

Proposition 5.7. In an AG-groupoid S with left identity, for every SU-left ideal fS of S, θ̃ ∗ fS = fS.

Proof. It suffices to show that θ̃ ∗ fS⊆̃ fS. Since every element x ∈ S can be written as x = ex, where e is the
left identity in S, we have

(θ̃ ∗ fS)(x) =
⋂
x=yz

(θ̃(y) ∪ fS(z))

⊆ {θ̃(e) ∪ fS(x)}
= fS(x)

Hence, θ̃ ∗ fS = fS.

Proposition 5.8. In an AG-groupoid S with left identity, for every SU-right ideal 1S of S, 1S ∗ θ̃ = 1S.

Proof. It suffices to show that 1S ∗ θ̃⊆̃1S. Since every element a ∈ S can be written as a = ea = (ee)a = (ae)e,
where e is the left identity in S, we have

(1S ∗ θ̃)(a) =
⋂

a=(ae)e

(1S(ae) ∪ θ̃(e))

⊆ {1S(ae) ∪ θ̃(e)}

⊆ {1S(a) ∪ θ̃(e)}
= 1S(a)

Hence, the proof is completed.
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Corollary 5.9. In an AG-groupoid S with left identity, θ̃ ∗ θ̃ = θ̃.

Proposition 5.10. Let S be an AG-groupoid with left identity, fS be any soft set and kS be SU-left ideal of S. Then,
for any soft set hS and SU-left ideal 1S of S, fS ∗ 1S = hS ∗ kS implies that 1S ∗ fS = kS ∗ hS.

Proof. Since 1S and kS are SU-left ideals of S, by Proposition 5.7, θ̃ ∗ 1S = 1S and θ̃ ∗ kS = kS. Then,

1S ∗ fS = (θ̃ ∗ 1S) ∗ fS = ( fS ∗ 1S) ∗ θ̃ = (hS ∗ kS) ∗ θ̃ = (θ̃ ∗ kS) ∗ hS = kS ∗ hS.

Proposition 5.11. Every idempotent SU-left ideal of an AG-groupoid S is an SU-ideal of S.

Proof. Let fS be an SU-left ideal of S which is idempotent. Then,

fS ∗ θ̃ = ( fS ∗ fS) ∗ θ̃ = (θ̃ ∗ fS) ∗ fS⊇̃ fS ∗ fS = fS.

Hence, fS is a SU-right ideal of S and so SU-ideal of S.

Proposition 5.12. Let fS be an idempotent element in an AG-groupoid S with left identity. Then, θ̃ ∗ fS is an
idempotent element.

Proof. Let fS be an idempotent element in an AG-groupoid S with left identity. Then, by using medial law,

(θ̃ ∗ fS) ∗ (θ̃ ∗ fS) = (θ̃ ∗ θ̃) ∗ ( fS ∗ fS) = θ̃ ∗ fS.

Proposition 5.13. Let fS be an idempotent element in an AG-groupoid S with left identity. Then, every SU-left ideal
1S of S commutes with fS.

Proof. Let fS be an idempotent element in an AG-groupoid S with left identity. Then,

fS ∗ 1S = ( fS ∗ fS) ∗ 1S = (1S ∗ fS) ∗ fS⊇̃(1S ∗ θ̃) ∗ fS⊇̃1S ∗ fS.

Also,

1S ∗ fS = 1S ∗ ( fS ∗ fS) = fS ∗ (1S ∗ fS)⊇̃ fS ∗ (1S ∗ θ̃)⊇̃ fS ∗ 1S.

Theorem 5.14. Let S be an AG-groupoid with left identity, then the collection of all SU-left ideals of S, which are
idempotent forms a commutative monoid.

Proof. Let H̃ denote the all SU-left ideals which are idempotent in S. Since θ̃ ∗ θ̃ = θ̃, H̃ , ∅. Now we show
that commutative law holds in H̃. Let fS, 1S ∈ H̃. Then, by using medial law,

( fS ∗ 1S) ∗ ( fS ∗ 1S) = ( fS ∗ fS) ∗ (1S ∗ 1S) = fS ∗ 1S

similarly, (1S ∗ fS) ∗ (1S ∗ fS) = 1S ∗ fS. Also, by using Theorem 3.6,

fS ∗ 1S = ( fS ∗ 1S) ∗ ( fS ∗ 1S) = (1S ∗ fS) ∗ (1S ∗ 1S) = 1S ∗ fS.

Now, for any fS, 1S, hS ∈ H̃, we have

( fS ∗ 1S) ∗ hS = (hS ∗ 1S) ∗ fS = fS ∗ (hS ∗ 1S) = fS ∗ (1S ∗ hS).

Finally, since θ̃ ∗ fS = fS for every SU-left ideal of S and by commutativity θ̃ ∗ fS = fS ∗ θ̃ = fS, which implies
that θ̃ is identity in H̃. This completes the proof.
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Proposition 5.15. Let S be an AG-groupoid with left identity. Then, every SU-right ideal of S is an SU-ideal of S.

Proof. Let fS be an SU-right ideal of S. Then fS ∗ θ̃⊇̃ fS. Thus,

θ̃ ∗ fS = (θ̃ ∗ θ̃) ∗ fS = ( fS ∗ θ̃) ∗ θ̃⊇̃ fS ∗ θ̃⊇̃ fS.

So, fS is an SU-left ideal, hence an SU-ideal of S.

Proposition 5.16. If fS is an SU-left ideal of an AG-groupoid S with left identity, then

fS∩̃( fS ∗ θ̃)

is an SU-ideal of S over U.

Proof. Assume that fS is an SU-left ideal of S. Then,

( fS∩̃( fS ∗ θ̃)) ∗ θ̃ = ( fS ∗ θ̃)∩̃(( fS ∗ θ̃) ∗ θ̃) = ( fS ∗ θ̃)∩̃((θ̃ ∗ θ̃) ∗ fS) = ( fS ∗ θ̃)∩̃(θ̃ ∗ fS) = ( fS ∗ θ̃)∩̃ fS = fS∩̃( fS ∗ θ̃).

Hence, fS∩̃( fS ∗ θ̃) is an SU-right ideal of S and by Proposition 8.5, it is an SU-ideal of S.

Proposition 5.17. If fS is an SU-right ideal of an AG-groupoid S with left identity, then

fS∩̃(θ̃ ∗ fS)

is an SU-ideal of S over U.

Proof. Assume that fS is an SU-right ideal of S. Then,

( fS∩̃(θ̃ ∗ fS)) ∗ θ̃ = ( fS ∗ θ̃)∩̃((θ̃ ∗ fS) ∗ θ̃)⊇̃ fS∩̃((θ̃ ∗ fS) ∗ (θ̃ ∗ θ̃)) = fS∩̃((θ̃ ∗ θ̃) ∗ ( fS ∗ θ̃)) = fS∩̃(θ̃ ∗ ( fS ∗ θ̃)) =

fS∩̃( fS ∗ (θ̃ ∗ θ̃)) = fS∩̃( fS ∗ θ̃)⊇̃ fS⊇̃ fS∩̃(θ̃ ∗ fS).

Also,

θ̃ ∗ ( fS∩̃(θ̃ ∗ fS)) = (θ̃ ∗ fS)∩̃(θ̃ ∗ (θ̃ ∗ fS)) = (θ̃ ∗ fS)∩̃((θ̃ ∗ θ̃) ∗ (θ̃ ∗ fS)) =

(θ̃ ∗ fS)∩̃((θ̃ ∗ fS) ∗ (θ̃ ∗ θ̃))⊇̃(θ̃ ∗ fS)∩̃( fS ∗ (θ̃ ∗ θ̃)) = (θ̃ ∗ fS)∩̃( fS ∗ θ̃)⊇̃(θ̃ ∗ fS)∩̃ fS = fS∩̃(θ̃ ∗ fS).

Hence, fS∩̃(θ̃ ∗ fS) is an SU-ideal of S.

Theorem 5.18. In an AG-groupoid with left identity, the following conditions are equivalent:

1) If fS and 1S are SU-ideals of S, then ( fS)2
⊇̃1S implies that fS⊇̃1S.

2) If fS is an SU-right ideal of S and 1S is an SU-ideal of S, then ( fS)2
⊇̃1S implies that fS⊇̃1S.

3) If fS is an SU-left ideal of S and 1S is an SU-ideal of S, then ( fS)2
⊇̃1S implies that fS⊇̃1S.

Proof. Let (1) hold and fS be an SU-left ideal of S and 1S be an SU-ideal of S. Then, as shown above,
fS∩̃( fS ∗ θ̃) is an SU-ideal of S. Thus, by assumption, ( fS∩̃( fS ∗ θ̃))2

⊇̃1S implies that ( fS∩̃( fS ∗ θ̃))⊇̃1S, which
further implies that fS⊇̃1S. (3) implies (2) and (2) implies (1) is obvious.

Theorem 5.19. A non-empty subset L of an AG-groupoid of S is a left (right) ideal of S if and only if the soft subset
fS defined by

fS(x) =

{
α, if x ∈ S \ L,
β, if x ∈ L

is an SU-left (right) ideal of S, where α, β ⊆ U such that α ⊇ β.

Proof. Suppose L is a left ideal of S and x, y ∈ S. If y ∈ L, then xy ∈ L. Hence, fS(xy) = fS(y) = β. If y < L,
then xy ∈ L or xy < L. In any case, fS(xy) ⊆ fS(y) = α. Thus, fS is an SU-left ideal of S.

Conversely assume that fS is an SU-left ideal of S. Let y ∈ L and x ∈ S. Then, fS(xy) ⊆ fS(y) = β. This
implies that fS(xy) = β. Hence, xy ∈ L and so L is a left ideal of S.
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Theorem 5.20. Let X be a nonempty subset of an AG-groupoid S. Then, X is a left (right, two-sided) ideal of S if
and only if SXc is an SU-left (right, two-sided) ideal of S over U.

Proof. It follows from Theorem 5.19.

Proposition 5.21. Let fS be a soft set over U. Then, fS is an SU-ideal of S over U if and only if

fS(xy) ⊆ fS(x) ∩ fS(y)

for all x, y ∈ S.

Proof. Let fS be an SU-ideal of S over U. Then,

fS(xy) ⊆ fS(x) and fS(xy) ⊆ fS(y)

for all x, y ∈ S. Thus, fS(xy) ⊆ fS(x) ∩ fS(y). Conversely suppose that fS(xy) ⊆ fS(x) ∩ fS(y) for all x, y ∈ S. It
follows that

fS(xy) ⊆ fS(x) ∩ fS(y) ⊆ fS(x) and fS(xy) ⊆ fS(x) ∩ fS(y) ⊆ fS(y)

so fS is an SU-ideal of S over U.

Theorem 5.22. Let fS be a soft set over U. Then, if fS is an SU-left (right, two-sided) ideal of S over U, fS is an
SU-AG-groupoid over U.

Proof. We give the proof for SU-left ideals. Let fS be an SU-left ideal of S over U. Then, fS(xy) ⊆ fS(y) for
all x, y ∈ S. Thus, fS(xy) ⊆ fS(y) ⊆ fS(x) ∪ fS(y), so fS is an SU-AG-groupoid over U.

Theorem 5.23. Let fS be an SU-right ideal of S over U and 1S be an SU-left ideal of S over U. Then

fS ∗ 1S⊇̃ fS∪̃1S

Proof. Let fS and 1S be SU-right and SU-left ideal of S over U, respectively. Then, since fS, 1S⊇̃θ̃ always
holds, we have:

fS ∗ 1S⊇̃ fS ∗ θ̃⊇̃ fS and fS ∗ 1S⊇̃θ̃ ∗ 1S⊇̃1S.

It follows that fS ∗ 1S⊇̃ fS∪̃1S.

Now, we show that if fS is an SU-right ideal of S over U and 1S is an SU-left ideal of S over U, then

fS ∗ 1S*̃ fS∩̃1S

with the following example:

Example 5.24. Consider the AG-groupoid S and SU-ideal fS in Example 5.2. Let 1S be a soft set over S such that
1S(1) = {2}, 1S(2) = {1, 2}, 1S(3) = {2}. One can easily show that 1S is an SU-ideal of S over U. However,

( fS ∗ 1S)(3) =
⋂
3=ab

( fS(a) ∪ 1S(b)) = {1, 2, 3} * ( fS∩̃1S)(3) = {2}.

Proposition 5.25. Let fS, 1S be SU-left (right, two-sided) ideals of S, where S is an AG-groupoid with left identity.
Then, fS ∗ 1S is an SU-left (right, two-sided) ideal of S over U.

Proof. Let fS, 1S be SU-left ideals of a AG-groupoid S with identity. Then, θ̃ ∗ fS⊇̃ fS and θ̃ ∗ 1S⊇̃1S. Thus,

θ̃ ∗ ( fS ∗ 1S) = fS ∗ (θ̃ ∗ 1S)⊇̃ fS ∗ 1S.

Also,
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( fS ∗ 1S) ∗ θ̃ = ( fS ∗ 1S) ∗ (θ̃ ∗ θ̃) = ( fS ∗ θ̃) ∗ (1S ∗ θ̃)⊇̃ fS ∗ 1S.

This completes the proof.

Proposition 5.26. Let fS be an SU-left (right, two-sided) ideals of S, where S is an AG-groupoid with left identity.
Then, fS ∗ fS is an SU-ideal of S over U.

Proof. Let fS be an SU-left ideal of a AG-groupoid S with identity. Then,

θ̃ ∗ ( fS ∗ fS) = (θ̃ ∗ θ̃) ∗ ( fS ∗ fS) = (θ̃ ∗ fS) ∗ (θ̃ ∗ fS)⊇̃ fS ∗ fS.

Also,

( fS ∗ fS) ∗ θ̃ = (θ̃ ∗ fS) ∗ fS⊇̃ fS ∗ fS.

This completes the proof.

Definition 5.27. An SU-ideal fS of an AG-groupoid S is said to be strongly irreducible if and only if for every
SU-ideals 1S and hS of S, 1S∪̃hS⊇̃ fS implies that 1S⊇̃ fS or hS⊇̃ fS.

Definition 5.28. An SU-ideal hS of an AG-groupoid S is said to be soft prime ideal if for any SU-ideals fS and 1S of
S, fS ∗ 1S⊇̃hS implies that fS⊇̃hS or 1S⊇̃hS. An AG-groupoid S is called fully soft prime if every SU-ideal is soft prime
in S.

Definition 5.29. An SU-left ideal is called SU-quasi-prime ideal if for any two SU-left ideals fS and 1S of S, fS∗1S⊇̃hS

implies that fS⊇̃hS or 1S⊇̃hS. An AG-groupoid S is called fully soft quasi-prime if every SU-left ideal is quasi-prime
in S.

Definition 5.30. An SU-left ideal fS of an AG-groupoid is called SU-semiprime left ideal of S if for any SU-left ideal
1S of S, (1S)2

⊇̃ fS implies that 1S⊇̃ fS.

Definition 5.31. The set of SU-ideals of an AG-groupoid is called totally ordered under inclusion if for any SU-ideals
fS and 1S of S, either fS⊇̃1S or 1S⊇̃ fS.

Theorem 5.32. An AG-groupoid S with left identity is fully soft prime if and only if every SU-ideal is idempotent
and SU-ideals are totally ordered by inclusion.

Proof. Let S be fully soft prime and fS be an SU-ideal of S. Then, it is obvious that fS ∗ fS⊇̃ fS, since every SU-
ideal is SU-AG-subgroupoid. Now, we show that fS ∗ fS⊇̃ fS. Since fS ∗ fS is an SU-ideal of S by Proposition
8.5 and so by hypothesis fS ∗ fS is a soft prime ideal, fS ∗ fS⊇̃ fS ∗ fS implies that fS⊇̃ fS ∗ fS or fS⊇̃ fS ∗ fS. Thus,
fS⊇̃ fS ∗ fS. Hence fS ∗ fS = fS. Now, we show that S is totally ordered by inclusion. We have

fS ∗ 1S⊇̃ fS ∗ θ̃⊇̃ fS and fS ∗ 1S⊇̃θ̃ ∗ 1S⊇̃1S, and so, fS ∗ 1S⊇̃ fS∪̃1S,

where fS∪̃1S is an SU-ideal. By hypothesis, fS⊇̃ fS∪̃1S or 1S⊇̃ fS∪̃1S, which implies that fS⊇̃1S or 1S⊇̃ fS.
Conversely, let every SU-ideal is idempotent and SU-ideals are totally ordered by inclusion. Let fS be an

SU-ideal of S such that 1S ∗ hS⊇̃ fS where 1S are hS are SU-ideals of S. Since the SU-ideals are totally ordered
by inclusion, so for 1S and hS, either 1S⊇̃hS or hS⊇̃1S. Let 1S⊇̃hS. Since 1S is idempotent, 1S = 1S∗1S⊇̃1S∗hS⊇̃ fS.
Similarly, if hS⊇̃1S, then we have hS⊇̃ fS. Thus, S is fully soft prime.

Proposition 5.33. Let S be an AG-groupoid with left identity. If S is fully soft quasi-prime, then every SU-left ideal
is idempotent.

Proof. Let fS be an SU-left ideal of an AG-groupoid S with left identity. Then, fS is an SU-AG-subgroupoid
and so, fS ∗ fS⊇̃ fS. Now, since fS ∗ fS is an SU-left ideal of S by Proposition 8.5 and so by hypothesis fS ∗ fS is a
soft quasi-prime ideal, fS ∗ fS⊇̃ fS ∗ fS implies that fS⊇̃ fS ∗ fS or fS⊇̃ fS ∗ fS. Thus, fS⊇̃ fS ∗ fS. Hence fS ∗ fS = fS.
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Proposition 5.34. Let S be an AG-groupoid with left identity. If S is fully soft quasi-prime, then for every SU-left
ideals fS and 1S of S, fS ∗ 1S = fS∪̃1S.

Proof. Let fS and 1S be SU-left ideals of an AG-groupoid S with left identity, where S is fully soft quasi-prime.
Then,

1S ∗ fS⊇̃θ̃ ∗ fS⊇̃ fS
and

fS ∗ 1S⊇̃θ̃ ∗ 1S⊇̃1S,

thus, 1S ∗ fS⊇̃ fS and fS ∗ 1S⊇̃1S. Moreover, by Proposition 5.33,

1S ∗ fS = (1S ∗ 1S) ∗ ( fS ∗ fS) = ( fS ∗ fS) ∗ (1S ∗ 1S) = fS ∗ 1S,

which implies that fS ∗ 1S⊇̃ fS and fS ∗ 1S⊇̃1S, and so

fS ∗ 1S⊇̃ fS∪̃1S.

Since fS∪̃1S⊇̃ fS and fS∪̃1S⊇̃1S,
( fS∪̃1S) ∗ ( fS∪̃1S)⊇̃ fS ∗ 1S.

Since fS∪̃1S is an SU-left ideal of S, and so idempotent by Proposition 5.33,

fS∪̃1S⊆̃ fS ∗ 1S.

Thus, fS∪̃1S = fS ∗ 1S.

Corollary 5.35. The set of all soft quasi-prime ideals of an AG-groupoid with identity forms a semilattice structure.

Theorem 5.36. Let S be an AG-groupoid with left identity, then the followings are equivalent:

i) Each SU-left ideal of S is idempotent.
ii) For each SU-left ideals fS and 1S of S, fS ∗ 1S = fS∪̃1S.

iii) Each SU-left ideal of S is soft union semiprime SU-left ideal.

Proof. (i) implies (ii) follows from Proposition 5.33 and Proposition 5.34. Let (ii) hold and fS be an SU-left
ideal of S. Then,

fS ∗ fS = fS∪̃ fS = fS,

hence ( fS)2 = fS⊇̃ fS implies that fS⊇̃ fS, and so fS is a soft union semiprime SU-left ideal. Now, let (iii) hold
and fS be an SU-left ideal of S. Then,

θ̃ ∗ ( fS ∗ fS) = fS ∗ (θ̃ ∗ fS) = fS ∗ fS.

Hence, fS ∗ fS is an SU-left ideal of S, and so soft union semiprime by hypothesis. Thus, fS ∗ fS⊇̃ fS ∗ fS implies
that fS⊇̃ fS ∗ fS. Moreover, since fS is an SU-left ideal of S, fS ∗ fS⊇̃ fS. Thus, fS ∗ fS = fS. This completes the
proof.

6. Soft union bi-ideals of AG-groupoids

In this section, soft union bi-ideals are defined and their properties as regards soft set operations and
soft uni-product are studied.

Definition 6.1. An SU-AG-groupoid fS over U is called a soft union bi-ideal of S over U if

fS((xy)z) ⊆ fS(x) ∪ fS(z)

for all x, y, z ∈ S.
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For the sake of brevity, soft union bi-ideal is abbreviated by SU-bi-ideal in what follows.

Example 6.2. Let S = {a, b, c} be the AG-groupoid with the operation table given below.

. a b c
a a a a
b a a c
c a a a

Define the soft set fS over U = S3, symmetric group such that fS(a) = {(1), (12)}, fS(b) = {(1), (12), (13)}, fS(c) =
{(1), (12), (23)}. Then, one can easily show that fS is an SU bi-ideal of S over U. However if we define a soft set hS
over S3 such that hS(a) = {(1), (12), (13), (123)}, hS(b) = {(1), (123)}, hS(c) = {(1), (12), (123)},

then since fS((cb)c) = fS(a) * fS(c) ∪ fS(c), fS is not an SU-bi-ideal of S over U.

Theorem 6.3. Let fS be a soft set over U. Then, fS is an SU-bi-ideal of S over U if and only if

fS ∗ fS⊇̃ fS and ( fS ∗ θ̃) ∗ fS⊇̃ fS

Proof. First assume that fS is an SU-bi-ideal of S over U. Since fS is an SU-AG-groupoid over U, we have

fS ∗ fS⊇̃ fS.

Let s ∈ S. In the case, when (( fS ∗ θ̃) ∗ fS)(s) = U, then it is clear that ( fS ∗ θ̃) ∗ fS⊇̃ fS, Otherwise, let a be any
element of S. If there exist elements x, y ∈ S such that

a = xy

then, we have

(( fS ∗ θ̃) ∗ fS)(a) =
⋂
a=xy

[( fS ∗ θ̃)(x) ∪ fS(y)]

=
⋂
a=xy

[(
⋂
x=pq

( fS(p) ∪ θ̃(q)) ∪ fS(y)]

=
⋂

s=(pq)y

( fS(p) ∪ fS(y))

⊇

⋂
s=(pq)y

fS((pq)y)

= fS(a)

Hence, ( fS ∗ θ̃) ∗ fS⊇̃ fS.
Conversely, assume that fS ∗ fS⊇̃ fS. By Theorem 4.6, fS is an SU-AG-groupoid of S. Let x, y, z ∈ S. Then,

since ( fS ∗ θ̃) ∗ fS⊇̃ fS, we have

fS((xy)z) ⊆ (( fS ∗ θ̃) ∗ fS)((xy)z)

=
⋂

((xy)z)=ab

[( fS ∗ θ̃)(a) ∪ fS(b)]

= [
⋂

((xy)z)=ab

[
⋂
a=pq

{( fS(p) ∪ θ̃(q)] ∪ fS(b)}

=
⋂

((xy)z)=(pq)b

{( fS(p) ∪ fS(b)}

⊆ fS(x) ∪ fS(z)
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Thus, for all x, y, z ∈ S, fS((xy)z) ⊆ fS(x) ∪ fS(z). Hence, fS is an SU-bi-ideal of S over U. This completes the
proof.

Theorem 6.4. A non-empty subset B of an AG-groupoid of S is a bi-ideal of S if and only if the soft subset fS defined
by

fS(x) =

{
α, if x ∈ S \ B,
β, if x ∈ B

is an SU-bi-ideal of S, where α, β ⊆ U such that α ⊇ β.

Proof. Similar to Theorem 4.7.

Theorem 6.5. Let X be a nonempty subset of an AG-groupoid S. Then, X is a bi-ideal of S if and only if SXc is an
SU-bi-ideal of S over U.

Proof. It follows from Theorem 6.4.

Theorem 6.6. Every SU-left (two sided) ideal of an AG-groupoid S over U is an SU-bi-ideal of S over U.

Proof. Let fS be an SU-left (two sided) ideal of S over U and x, y, z ∈ S. Then, fS is as SU-AG-groupoid by
Theorem 5.22. Moreover,

fS((xy)z) ⊆ fS(z) ⊆ fS(x) ∪ fS(z)

Thus, fS is an SU-bi-ideal of S.

Theorem 6.7. Let fS and 1S be any SU-right ideal of an AG-groupoid S with identity. Then, the soft uni-products
fS ∗ 1S and 1S ∗ fS are SU-bi-ideals of S over U.

Proof. We show the proof for fS ∗ 1S. To see that fS ∗ 1S is an SU-bi-ideal of S over U, first we need to show
that fS ∗ 1S is an SU-AG-groupoid over U. Thus,

( fS ∗ 1S) ∗ ( fS ∗ 1S) = ( fS ∗ fS) ∗ (1S ∗ 1S)⊇̃ fS ∗ 1S

Hence, by Theorem 4.6, fS ∗ 1S is an SU-AG-groupoid over U. Moreover we have:

(( fS ∗ 1S) ∗ θ̃) ∗ ( fS ∗ 1S) = (( fS ∗ 1S) ∗ (θ̃ ∗ θ̃)) ∗ ( fS ∗ 1S)

= (( fS ∗ θ̃) ∗ (1S ∗ θ̃)) ∗ ( fS ∗ 1S)

⊇̃ ( fS ∗ 1S) ∗ ( fS ∗ 1S)

⊇̃ fS ∗ 1S

Thus, it follows that fS ∗ 1S is an SU-bi-ideal of S over U. It can be seen in a similar way that 1S ∗ fS is an
SU-bi-ideal of S over U. This completes the proof.

Theorem 6.8. Let fS be any SU-left ideal of an AG-groupoid S with identity. Then, the soft uni-product fS ∗ fS is an
SU-bi-ideals of S over U.

Proof. Since every SU-ideal of S is an SU-bi-ideal of S, the rest of the proof follows from Proposition 8.5.
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7. Soft union interior ideals of AG-groupoids

In this section, soft union interior ideals of AG-groupoids are defined and their basic properties with
respect to soft operations and soft uni-product are studied.

Definition 7.1. Let fS be an SU-AG-groupoid over U. Then, fS is called a soft union interior ideal of S, if

fS((xa)y) ⊆ fS(a)

for all x, y, a ∈ S.

For the sake of brevity, soft union interior ideal is abbreviated by SU-interior ideal in what follows.

Example 7.2. Consider the AG-groupoid S = {a, b, c} with the following operation table:

. a b c
a c c b
b b b b
c b b b

Let U = D3 = {< x, y >: x3 = y2 = e, xy = yx2
} = {e, x, x2, y, yx, yx2

} be the universal set and fS be soft set over U
such that

fS(a) = {e, x, y, yx2
}, fS(b) = {e, yx2

}, fS(c) = {e, x, yx2
}.

Then, one can easily show that fS is an SU-interior ideal over U.
Now, let U = S2 be the symmetric group. If we construct a soft set 1S over U such that

1S(a) = {(1), (12)}, 1S(b) = {(1), (12)}, 1S(c) = {(1)},

then, since
1S((bc)c) = 1S(b) * 1S(c),

1S is not an SU-interior ideal over U.

note 7.3. It is easy to see that if fS(x) = ∅ for all x ∈ S, then fS is an SU-interior ideal over U. We denote such a kind
of SU-interior ideal by θ̃, that is, θ̃(x) = ∅ for all x ∈ S.

Theorem 7.4. Let fS be a soft set over U. Then, fS is an SU-interior ideal over U if and only if

(θ̃ ∗ fS) ∗ θ̃⊇̃ fS

Proof. Assume that fS is an SU-interior ideal over U. Let a ∈ S. If ((θ̃ ∗ fS) ∗ θ̃)(a) = U, then it is obvious that

((θ̃ ∗ fS) ∗ θ̃)(a) ⊇ fS(a), thus (θ̃ ∗ fS) ∗ θ̃⊇̃ fS.

Otherwise, if there exist elements y, z,u and v of S such that x = yz and y = uv, then, since fS is an SU-interior
ideal of S, we have

fS(x) = fS(yz) = fS((uv)z) ⊆ fS(v).

Thus,

((θ̃ ∗ fS) ∗ θ̃)(x) = {

⋂
x=yz

(θ̃ ∗ fS)(y) ∪ θ̃(z)}

=
⋂
x=yz

{(
⋂
y=uv

(θ̃(u) ∪ fS(v))) ∪ θ̃(z)}

=
⋂
x=yz

{(
⋂
y=uv

(∅ ∪ fS(v))) ∪ ∅}

⊇

⋂
x=yz

{(
⋂
y=uv

(∅ ∪ fS((uv)z))) ∪ ∅}

= fS(x)
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Thus, (θ̃ ∗ fS) ∗ θ̃⊇̃ fS. Note that if y , uv, then (θ̃ ∗ fS)(y) = U, and so ((θ̃ ∗ fS) ∗ θ̃)(x) = U ⊇ fS(x).
Conversely, assume that (θ̃ ∗ fS) ∗ θ̃⊇̃ fS. Let x, a, y be any element of S. Then, we have:

fS((xa)y) ⊆ ((θ̃ ∗ fS) ∗ θ̃)((xa)y)

=
⋂

(xa)y=pq

{(θ̃ ∗ fS)(p) ∪ θ̃(q)}

⊆ (θ̃ ∗ fS)(xa) ∪ θ̃(y)

= (θ̃ ∗ fS)(xa) ∪ ∅

=
⋂

xa=mn

{θ̃(m) ∪ fS(n)}

⊆ θ̃(x) ∪ fS(a)
= fS(a)

Hence, fS is an SU-interior ideal over U. This completes the proof.

Theorem 7.5. A non-empty subset I of an AG-groupoid of S is an interior ideal of S if and only if the soft subset fS
defined by

fS(x) =

{
α, if x ∈ S \ I,
β, if x ∈ I

is an SU-interior ideal, where α, β ⊆ U such that α ⊇ β.

Proof. Suppose I is an interior ideal of S and x, a, y ∈ S. If a ∈ I, then xay ∈ I. Hence, fS(xay) = fS(a) = β. If
a < I, then xay ∈ I or xay < I. In any case, fS(xay) ⊆ fS(a) = α. Thus, fS is an SU-interior ideal of S.

Conversely assume that fS is an SU-interior ideal of S. Let a ∈ I and x, y ∈ S. Then, fS(xay) ⊆ fS(a) = β.
This implies that fS(xay) = β. Hence, xay ∈ I and so I is an interior ideal of S.

Theorem 7.6. Let X be a nonempty subset of an AG-groupoid S. Then, X is an interior ideal of S if and only if SXc

is an SU-interior ideal of S.

It is obvious that every two-sided ideal of S is an interior ideal of S. Moreover, we have the following:

Proposition 7.7. Let fS be a soft set over U. Then, if fS is an SU-ideal of S over U, fS is an SU-interior ideal of S
over U.

Proof. Let fS be an SU-ideal of S over U and x, y ∈ S. Then,

fS((xy)z) ⊆ fS(xy) ⊆ fS(y).

Hence, fS is an SU-interior ideal of S over U.

The following example shows that the converse of this property does not hold in general:

Example 7.8. Consider the SU-interior ideal fS in Example 7.2. Since

fS(ab) = fS(c) * fS(b)

fS is not an SU-left ideal of S, that is, it is not an SU-ideal of S.

Proposition 7.9. Every soft set fS of an AG-groupoid S with left identity is an SU-right ideal if and only if it is an
SU-interior ideal.
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Proof. Let every soft set fS of S be an SU-right ideal of S. For x, a, y ∈ S, consider

fS((xa)y) ⊆ fS(xa) ⊆ fS((ex)a) = fS((ax)e) ⊆ fS(ax) ⊆ fS(a)

which implies that fS is an SU-interior ideal of S.
Conversely, for any x, y ∈ S, we have

fS(xy) = fS((ex)y) = fS(x).

It is known that an AG-groupoid S is called left (right) simple if it contains no proper left (right) ideal of S
and is called simple if it contains no proper ideal.

Definition 7.10. An AG-groupoid S is called soft union left (right) simple if every SU-left (right) ideal of S is a
constant function and is called soft union simple if every SU-ideal of S is a constant function.

Theorem 7.11. For a semigroup S, the following conditions are equivalent:

1) S is left (right) simple.
2) S is soft union left (right) simple.

Proof. First assume that S is left simple. Let fS be any SU-left ideal of S and a and b be any element of S.
Then, it follows that there exist elements x, y ∈ S such that b = xa and a = yb. Hence, since S is an SU-left
ideal of S,

fS(a) = fS(yb) ⊆ fS(b) = fS(xa) ⊆ fS(a)

and so fS(a) = fS(b). Since a and b be any elements of S, this means that fS is a constant function. Thus, we
obtain that S is soft union left simple and (1) implies (2).

Conversely, assume that (2) holds. Let A be any left ideal of S. Then, SAc is an SU-left ideal of S. By
assumption, SAc is a constant function. Let x be any element of S. Then, since A , ∅,

SAc (x) = ∅

and so x ∈ A. This implies that S ⊆ A, and so S = A. Hence, S is left simple and (2) implies (1). In the case,
when S is soft union right simple, the proof follows similarly.

Theorem 7.12. For an AG-groupoid with left identity S, the following conditions are equivalent:

1) S is simple.
2) S is soft union right simple.
3) Every SU-interior ideal of S is constant function.

Proof. The equivalence of (1) and (2) follows from Theorem 7.11. Assume that (2) holds. Let fS be any
SU-interior ideal of S and a and b be any element of S. Then, since S is simple, that there exist elements x
and y in S such that

a = (xb)y.

Then, since fS is an SU-interior ideal of S, we have

fS(a) = fS((xb)y) ⊆ fS(b).

One can similarly show that fS(b) ⊆ fS(a). Thus, fS(a) = fS(b). Since a and b be any elements of S, fS is a
constant function and so (2) implies (3). Since every SU-interior ideal of S is an SU-ideal of S since S is an
AG-groupoid with left identity, (3) implies (2).
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Definition 7.13. A soft set fS over U is called soft semiprime? if for all a ∈ S,

fS(a) ⊆ fS(a2).

Proposition 7.14. Let fS be a soft semiprime? SU-interior ideal of an AG-groupoid S. Then, fS(an) ⊆ fS(an+1) for
all positive integers n.

Proof. Let n be any positive integer. Then,

fS(an) ⊆ fS(a2n) ⊆ fS(a4n) = fS((a3n−2an+1)a) ⊆ fS(an+1).

Definition 7.15. An AG-groupoid S is called archimedean if for all a, b ∈ S, there exists a positive integer n such
that an

∈ (Sb)S.

Proposition 7.16. Let S be an archimedean AG-groupoid. Then, every soft semiprime? SU-interior ideal of S is a
constant function.

Proof. Let fS be any soft semiprime? SU-interior ideal of S and a, b any element of S. Since S is archimedean,
there exist elements x, y ∈ S such that

an = (xb)y.

Thus, we have fS(a) ⊆ fS(an) = fS((xb)y) ⊆ fS(b). Similarly, we have fS(b) ⊆ fS(a) and so fS(a) = fS(b). Since a
and b be any elements of S, fS is a constant function.

8. Soft union quasi-ideals of AG-groupoids

In this section, soft union quasi-ideals are studied and their properties as regards soft set operations,
soft union product and certain kinds of soft union ideals are studied.

Definition 8.1. A soft set over U is called a soft union quasi-ideal of S over U if

( fS ∗ θ̃)∪̃(θ̃ ∗ fS)⊇̃ fS.

For the sake of brevity, soft union quasi-ideal is abbreviated by SU-quasi-ideal in what follows.

Proposition 8.2. Every SU-quasi ideal of S is an SU-AG-groupoid of S.

Proof. Let fS be any SU-quasi-ideal of S. Then, since fS⊇̃θ̃,

fS ∗ fS⊇̃θ̃ ∗ fS and fS ∗ fS⊇̃ fS ∗ θ̃.

Hence,
fS ∗ fS⊇̃(θ̃ ∗ fS)∪̃( fS ∗ θ̃)⊇̃ fS

as fS is an SU-quasi-ideal of S. That is, fS is an SU-AG-groupoid over U.

Proposition 8.3. Each one-sided SU-ideal of S is an SU-quasi-ideal of S.

Proof. Let fS be an SU-left ideal of S. Then, since θ̃ ∗ fS⊇̃ fS, we have

(θ̃ ∗ fS)∪̃( fS ∗ θ̃)⊇̃θ̃ ∗ fS⊇̃ fS.

Thus, fS is an SU-quasi-ideal of S.

The converse of Proposition 8.3 does not hold in general as shown in the following example:
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Example 8.4. Consider the AG-groupoid S = {1, 2, 3, 4} with the following operation table:

. 1 2 3 4
1 1 2 3 4
2 4 3 3 3
3 3 3 3 3
4 2 3 3 3

Let U = D2 = {< x, y >: x2 = y2 = e, xy = yx} = {e, x, y, yx} be the universal set and fS be the soft set over U such
that

fS(1) = {e, x, yx, yx2
}, fS(2) = {e, x, yx2

}, fS(3) = {x}, fS(4) = {e, x}.

Then, one can easily show that fS is an SU-quasi-ideal of S, but since

fS(4 · 1) = fS(2) * fS(4)

fS is not an SU-right ideal of S and so it is not an SU-ideal of S.

Proposition 8.5. In an AG-groupoid S, every idempotent SU-quasi-ideal of S is an SU-bi-ideal of S.

Proof. Let fS be an SU-quasi-ideal of S. Then, fS is an SU-AG-groupoid by Proposition 8.2. Moreover,

( fS ∗ θ̃) ∗ fS⊇̃(θ̃ ∗ θ̃) ∗ fS⊇̃θ̃ ∗ fS and ( fS ∗ θ̃) ∗ fS = ( fS ∗ θ̃) ∗ ( fS ∗ fS) = ( fS ∗ fS) ∗ (θ̃ ∗ fS)⊇̃ fS ∗ θ̃

and so ( fS ∗ θ̃) ∗ fS⊇̃(θ̃ ∗ fS)∪̃( fS ∗ θ̃)⊇̃ fS, as fS is an SU-quasi-ideal of S. Hence,

( fS ∗ θ̃) ∗ fS⊇̃ fS.

Thus, fS is an SU-bi-ideal of S.

Theorem 8.6. Let X be a nonempty subset of an AG-groupoid S. Then, X is a quasi-ideal of S if and only if SXc is
an SU-quasi-ideal of S over U.

Theorem 8.7. Let fS and 1S be any idempotent SU-quasi-ideals of S over U, where S is an AG-groupoid with left
identity. Then, the soft union product fS ∗ 1S is an SU-bi-ideal of S over U.

Proof. Let fS and 1S be any idempotent SU-quasi-ideals of S. Then,

( fS ∗ 1S) ∗ ( fS ∗ 1S) = ( fS ∗ fS) ∗ (1S ∗ 1S) = fS ∗ 1S

and

(( fS ∗ 1S) ∗ θ̃) ∗ ( fS ∗ 1S) = ((θ̃ ∗ 1S) ∗ fS) ∗ ( fS ∗ 1S)⊇̃((θ̃ ∗ θ̃) ∗ fS) ∗ ( fS ∗ 1S)⊇̃(θ̃ ∗ fS) ∗ ( fS ∗ 1S)⊇̃(1S ∗ fS) ∗ ( fS ∗ θ̃) =

(( fS ∗ θ̃) ∗ fS) ∗ 1S⊇̃ fS ∗ 1S.

since fS is an SU-bi-ideal of S by Proposition 8.5. Thus, it follows that fS ∗ 1S is an SU-bi-ideal of S over
U.

Proposition 8.8. Let fS be any SU-right ideal of S and 1S be any SU-left ideal of S. Then, fS∪̃1S is an SU-quasi-ideal
of S.

Proof. Let fS be any SU-right ideal of S and 1S be any SU-left ideal of S. Then,

(( fS∪̃1S) ∗ θ̃)∪̃(θ̃ ∗ ( fS∪̃1S))⊇̃( fS ∗ θ̃)∪̃(θ̃ ∗ 1S)⊇̃ fS∪̃1S.
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Proposition 8.9. Let fS and 1S be any SU-quasi-ideals of S. Then, fS∪̃1S is an SU-quasi-ideal of S.

Proof. Let fS and 1S be any SU-quasi-ideals of S. Then,

(( fS∪̃1S) ∗ θ̃)∪̃(θ̃ ∗ ( fS∪̃1S))⊇̃( fS ∗ θ̃)∪̃(θ̃ ∗ fS)⊇̃ fS

and
(( fS∪̃1S) ∗ θ̃)∪̃(θ̃ ∗ ( fS∪̃1S))⊇̃(1S ∗ θ̃)∪̃(θ̃ ∗ 1S)⊇̃1S.

Thus,
(( fS∪̃1S) ∗ θ̃)∪̃(θ̃ ∗ ( fS∪̃1S))⊇̃ fS∪̃1S.

Proposition 8.10. Let fS be a soft set over U and α be a subset of U such that α ∈ Im( fS). If fS is an SU-quasi-ideal
of S over U, then L( fS;α) is a quasi-ideal of S.

Proof. Since fS(x) = α for some x ∈ S, then ∅ , L( fS;α) ⊆ S. Let a ∈ (S · L( fS;α) ∪ L( fS;α) · S). Then, there
exist x, y ∈ L( fS;α) and s, r ∈ S such that

a = sx = yr.

Thus, fS(x) ⊆ α and fS(y) ⊆ α. Since

(θ̃ ∗ fS)(a) = {

⋂
a=cd

{θ̃(c) ∪ fS(d)}

⊆ θ̃(s) ∪ fS(x)
= fS(x)
⊆ α

and

( fS ∗ θ̃)(a) = {

⋂
a=nm

{ fS(n) ∗ θ̃(m)}

⊆ fS(y) ∪ θ̃(r)
= fS(y)
⊆ α

Since fS is an SU-quasi-ideal of S, we have

fS(a) ⊆ (θ̃ ∗ fS)(a) ∪ ( fS ∗ θ̃)(a) ⊆ α,

thus a ∈ L( fS;α). This shows that L( fS;α) is a quasi-ideal of S.

Definition 8.11. Let fS be an SU-quasi-ideal of S over U. Then, the quasi-ideals L( fS;α) are called lower α-quasi-
ideals of fS.

Proposition 8.12. Let fS be any SU-quasi-ideal of a commutative AG-groupoid S and a be any element of A. Then,

fS(an) ⊆ fS(an+1)

for every positive integer n.
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Proof. For any positive integer n, we have

( fS ∗ θ̃)(an+1) =
⋂

an+1=xy

( fS(x) ∪ θ̃(y))

⊆ fS(an) ∪ θ̃(a)
= fS(an).

Similarly,
(θ̃ ∗ fS)(an+1) ⊆ fS(an).

Thus, since fS is an SU-quasi-ideal of S

fS(an+1) ⊆ (( fS ∗ θ̃)∪̃(θ̃ ∗ fS))(an+1)

= ( fS ∗ θ̃)(an+1) ∪ (θ̃ ∗ fS))(an+1)
⊆ fS(an) ∪ fS(an)
= fS(an)

This completes the proof.

9. Soft union generalized bi-ideals of AG-groupoids

In this section, soft union generalized bi-ideals are defined and their properties with regard to soft set
operations and soft union product are studied.

Definition 9.1. A soft set over U is called a soft union generalized bi-ideal of S over U if

fS((xy)z) ⊆ fS(x) ∪ fS(z)

for all x, y, z ∈ S.

For the sake of brevity, soft union generalized bi-ideal is abbreviated by SU-generalized bi-ideal in what
follows.

It is clear that every SU-bi-ideal of S is an SU-generalized bi-ideal of S, but the converse of this statement
does not hold in general. This is shown by the following example:

Example 9.2. Consider the AG-groupoid S = {a, b, c} in Example 7.2. Let fS be a soft set over S such that
fS(a) = {a, c}, fS(b) = {c}, fS(c) = {a, b, c}. Then, one can easily show that fS is an SU-generalized bi-ideal of S over
U. However, since hS(a · a) = hS(c) * hS(a). Thus, hS is not an SU-bi-ideal of S.

Theorem 9.3. Let fS be a soft set over U. Then, fS is an SU-generalized bi-ideal of S over U if and only if

( fS ∗ θ̃) ∗ fS⊇̃ fS

Theorem 9.4. Let X be a nonempty subset of an AG-groupoid S. Then, X is a generalized bi-ideal of S if and only if
SX is an SU-generalized bi-ideal of S over U.

Theorem 9.5. Every SU-left (two-sided) ideal of an AG-groupoid S over U is an SU-generalized bi-ideal of S over
U.

Theorem 9.6. Let fS and 1S be any SU-right ideal of an AG-groupoid S with identity. Then, the soft uni-products
fS ∗ 1S and 1S ∗ fS are SU-generalized bi-ideals of S over U.

Theorem 9.7. Let fS be any SU-left ideal of an AG-groupoid S with identity. Then, the soft uni-product fS ∗ fS is an
SU-generalized bi-ideals of S over U.



A. Sezgin / Filomat 32:8 (2018), 2995–3030 3019

Proposition 9.8. If S is AG-groupoid S, then fS∪̃1S⊇̃( fS ∗ 1S) ∗ fS for every SU-generalized bi-ideal fS of S and
SU-interior ideal 1S of S over U.

The following propositions are similar to those in Section 4.

Proposition 9.9. Let fS and fT be SU-left (right, two-sided, bi, generalized bi-ideal, interior) ideals over U. Then,
fS ∨ fT is an SU-left (right, two-sided, bi, generalized bi-ideal, interior) of S × T over U.

Proposition 9.10. If fS and hS are two SU-left (right, two-sided, bi, generalized bi-ideal, interior) of S over U, then
so is fS∪̃hS of S over U.

Proposition 9.11. Let fS be a soft set over U and α be a subset of U such that α ∈ Im( fS). If fS is an SU-left
(right, two-sided, bi, generalized bi-ideal, interior) of S over U, thenL( fS;α) is a left (right, two-sided, bi, generalized
bi-ideal, interior) ideal of S.

Definition 9.12. If fS is an SU-left (right, two-sided, bi, generalized bi-ideal, interior) of S over U, then left (right,
two-sided, bi, generalized bi-ideal, interior) ideals L( fS;α) are called lower α-left (right, two-sided, bi, generalized
bi-ideal, interior) ideals of fS.

Proposition 9.13. Let fS be a soft set over U, L( fS;α) be upper α-left (right, two-sided, bi, generalized bi-ideal,
interior) of fS for each α ⊆ U and Im( fS) be an ordered set by inclusion. Then, fS is an SU-left (right, two-sided, bi,
generalized bi-ideal, interior) ideal of S over U.

Proposition 9.14. Let fS and fT be soft sets over U and Ψ be an AG-groupoid isomorphism from S to T. If fS is an
SU-left (right, two-sided, bi, generalized bi-ideal, interior) ideal of S over U, then so is Ψ?( fS) of T over U.

Proposition 9.15. Let fS and fT be soft sets over U and Ψ be an AG-groupoid homomorphism from S to T. If fT is
an SU-left (right, two-sided, bi, generalized bi-ideal, interior) ideal of T over U, then so is Ψ−1( fT) of S over U.

10. Regular AG-groupoids

In this section, we characterize a regular AG-groupoid in terms of SU-ideals.
An AG-groupoid S is called regular if for every element a of S there exists an element x in S such that

a = (ax)a.

Example 10.1. [37] Consider the AG-groupoid S = {1, 2, 3, 4, 5, 6, 7} defined by the following table:

. 1 2 3 4 5 6 7
1 7 2 4 6 1 3 5
2 3 5 7 2 4 6 1
3 6 1 3 5 7 2 4
4 2 4 6 1 3 5 7
5 5 7 2 4 6 1 3
6 1 3 5 7 2 4 6
7 4 6 1 3 5 7 2

Clearly, S is an AG-groupoid also (1 ·4 ·6) , (1 · (4 ·6), so S is non-associative and S is regular, since 1 = (1 ·4) ·1, 2 =
(2 ·7) ·2, 3 = (3 ·3) ·3, 4 = (4 ·6) ·4, 5 = (5 ·2) ·5, 6 = (6 ·2) ·6 and 7 = (7 ·1) ·1. Note that in a regular AG-groupoid,
S2 = S.

Theorem 10.2. Let S be an AG-groupoid. If S is regular, then fS ∗ 1S = fS∪̃1S for every SU-right ideal fS of S over
U and SU-left ideal 1S of S over U.
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Proof. Let S be a regular AG-groupoid and fS be an SU-right ideal of S and 1S be an SU-left ideal of S over
U. Then,

fS ∗ 1S⊇̃ fS ∗ θ̃⊇̃ fS and fS ∗ 1S⊇̃θ̃ ∗ 1S⊇̃1S,

thus,
fS ∗ 1S⊇̃ fS∪̃1S

for every SU-right ideal fS of S and SU-left ideal 1S of S over U. Therefore, it suffices to show that
fS∪̃1S⊇̃ fS ∗ 1S. Let s be any element of S. Then, since S is regular, there exists an element x in S such that
s = (sx)s. Thus, we have

( fS ∗ 1S)(s) =
⋂
s=ab

( fS(a) ∪ 1S(b))

⊆ fS(sx) ∪ 1S(s)
⊆ fS(s) ∪ 1S(s)

= ( fS∪̃1S)(s)

Thus, fS ∗ 1S = fS∪̃1S.

Corollary 10.3. Let S be an AG-groupoid. If S is regular, then fS ∗ 1S = fS∪̃1S for every SU-ideals fS and 1S of S
over U.

Corollary 10.4. Let S be an AG-groupoid. If S is regular, then fS ∗ 1S = 1S ∗ fS for every SU-ideals fS and 1S of S
over U.

Proposition 10.5. Every SU-right ideal of a regular AG-groupoid is idempotent.

Proof. Let hS be an SU-right ideal of S. Then,

hS ∗ hS⊇̃hS ∗ θ̃⊇̃hS.

Now, we show that hS⊇̃hS ∗ hS. Since S is regular, there exists an element x ∈ S such that a = (ax)a for all
a ∈ S. So, we have;

(hS ∗ hS)(a) =
⋂

a=(ax)a

(hS(ax) ∪ hS(a))

⊆ hS(a) ∪ hS(a)
= hS(a)

Hence, hS⊇̃hS ∗ hS and so (hS)2 = hS ∗ hS = hS.

Corollary 10.6. Every SU-ideal of a regular AG-groupoid is idempotent.

Corollary 10.7. Every SU-ideal of a regular AG-groupoid is soft union semiprime.

Corollary 10.8. The set of all SU-ideals of a regular AG-groupoid S forms a semilattice under the soft uni-product.

Proposition 10.9. Let S be a regular AG-groupoid. Then every SU-right ideal of S is SU-left ideal of S.

Proof. Let fS be an SU-right ideal of S. Since S is regular, for any x ∈ S, there exist n ∈ S such that x = (xn)x.
Thus,

fS(xy) = fS((xn)x)y) = fS((yx)(xn)) ⊆ fS(yx) ⊆ fS(y)

Thus, fS is an SU-left ideal of S.
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Proposition 10.10. Let the set of all SU-ideals of S be a regular AG-groupoid of S under the soft uni-product. Then,
every SU-ideal of S has the form fS = ( fS ∗ θ̃) ∗ fS.

Proof. Let fS be an SU-ideal of S. Then, by assumption, there exists an SU-ideal 1S of S such that

fS = ( fS ∗ 1S) ∗ fS.

Thus, we have
fS = ( fS ∗ 1S) ∗ fS⊇̃( fS ∗ θ̃) ∗ fS⊇̃( fS ∗ θ̃)∪̃(θ̃ ∗ fS)⊇̃ fS∪̃ fS = fS,

since
( fS ∗ θ̃) ∗ fS⊇̃( fS ∗ θ̃) ∗ θ̃⊇̃ fS ∗ θ̃

and
( fS ∗ θ̃) ∗ fS⊇̃(θ̃ ∗ θ̃) ∗ fS⊇̃θ̃ ∗ fS.

Hence, fS = ( fS ∗ θ̃) ∗ fS.

Proposition 10.11. In a regular AG-groupoid S, an SU-right ideal is soft strongly irreducible if and only if it is soft
prime.

Proof. It follows from Corollary 10.3, Definition 5.27 and Definition 5.28.

Proposition 10.12. Every SU-ideal of a regular AG-groupoid S is soft prime if and only if the set of SU-ideals of S
is totally ordered under inclusion.

Proof. It follows from Corollary 10.3, Definition 5.28 and Definition 5.31.

Proposition 10.13. If fS is an SU-interior ideal of S, where S is a regular AG-goupoid, then fS is an SU-right ideal
of S over U.

Proof. Let a be any elements of S. Then, since S is regular, there exist elements x in S such that

a = (ax)a.

Then, since fS is an SU-interior ideal of S, we have

fS(ab) = fS((ax)a)b) ⊆ fS(a),

This means that fS is an Su-right ideal of S.

Proposition 10.14. Let S be a regular AG-groupoid, fS be any SU-right ideal of S and 1S be any SU-left ideal of S.
Then, fS ∗ 1S is an SU-quasi-ideal of S.

Proof. Let S be a regular AG-groupoid and fS be an SU-right ideal of S and 1S be an SU-left ideal of S. It
follows by Proposition 8.8 that fS∪̃1S is an SU-quasi-ideal of S. Since S is regular, fS ∗1S = fS∪̃1S by Theorem
10.2. Thus, fS ∗ 1S is an SU-quasi-ideal of S.

Theorem 10.15. Let S be an AG-groupoid. If S is regular, then fS = ( fS ∗ θ̃) ∗ fS for every SU-bi-ideal (generalized
bi-ideal) fS of S over U.
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Proof. Let fS be any SU-bi-ideal fS of S over U and s be any element of S. Then, since S is regular, there
exists an element x ∈ S such that s = (sx)s. Thus, we have;

(( fS ∗ θ̃) ∗ fS)(s) =
⋂
s=ab

[( fS ∗ θ̃)(a) ∪ fS(b)]

⊆ ( fS ∗ θ̃)(sx) ∪ fS(s)

=
⋂

sx=mn

{( fS(m) ∪ θ̃(n)} ∪ fS(s)

⊆ ( fS(s) ∪ θ̃(x)) ∪ fS(s)
= ( fS(s) ∪ ∅) ∪ fS(s)
= fS(s)

and so, we have fS ∗ θ̃ ∗ fS⊇̃ fS. Since fS is an SU-bi-ideal of S, ( fS ∗ θ̃) ∗ fS⊇̃ fS. Thus, ( fS ∗ θ̃) ∗ fS = fS.

11. Intra-regular AG-groupoids

In this section, we characterize an intra-regular AG-groupoid in terms of SU-ideals. An AG-groupoid S
is called intra-regular if for every element a of S there exist elements x and y in S such that

a = (xa2)y

Example 11.1. [35] Consider the AG-groupoid S = {1, 2, 3, 4, 5, 6, 7} defined by the following table:

. 1 2 3 4 5
1 5 1 2 3 4
2 4 5 1 2 3
3 3 4 5 1 2
4 2 3 4 5 1
5 1 2 3 4 5

Clearly, S is an intra-regular AG-groupoid, since 1 = (2·12)·4, 2 = (3·22)·4, 3 = (5·32)·3, 4 = (5·42)·4, 5 = (2·52)·3.

Proposition 11.2. A soft set fS of an intra-regular AG-groupoid S is an SU-right ideal if and only if it is an SU-left
ideal.

Proof. Assume that fS is an SU-right ideal of S. Since S is intra-regular, so for each a ∈ S, there exist x, y ∈ S
such that a = (xa2)y. So, by using left invertive law,

fS(ab) = fS((xa2)y)b) = fS((by)(xa2)) ⊆ fS(by) ⊆ fS(b).

Thus, fS is an SU-left ideal of S. Conversely, assume that fS is an SU-left ideal of S. Then, by using left
invertive law,

fS(ab) = fS(((xa2)y)b) = fS((by)(xa2)) ⊆ fS(xa2) ⊆ fS(a2) ⊆ fS(a).

Thus, fS is an SU-right ideal of S.

Proposition 11.3. Every SU-two-sided ideal of an intra-regular AG-groupoid S with left identity is idempotent.

Proof. Assume that fS is an SU-two-sided ideal of S, then

fS ∗ fS⊇̃ fS ∗ θ̃⊇̃ f.

Since S is intra-regular, so for each a ∈ S, there exist x, y ∈ S such that a = (xa2)y. So,
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a = (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a.

Thus, we have

( fS ∗ fS)(a) =
⋂

a=(y(xa))a

{ fS(y(xa)) ∪ fS(a)}

⊆ fS(y(xa)) ∪ fS(a)
⊆ fS(a) ∪ fS(a)
= fS(a)

Hence, fS ∗ fS = fS.

Corollary 11.4. Every SU-left ideal of an intra-regular AG-groupoid S with left identity is idempotent.

Proposition 11.5. Let S be an intra-regular AG-groupoid with left identity. If S is intra-regular, then fS = (θ̃ ∗ fS)2

for any SU-left ideal fS of S.

Proof. Let fS be any SU-left ideal of an intra-regular AG-groupoid S with left identity S. Then, θ̃ ∗ fS⊇̃ fS and
since θ̃ ∗ fS is an SU-left ideal of S, it is idempotent. Thus, (θ̃ ∗ fS)2 = θ̃ ∗ fS⊇̃ fS. Moreover, fS = fS ∗ fS⊇̃θ̃ ∗ fS =

(θ̃ ∗ fS)2, which implies that fS = (θ̃ ∗ fS)2.

Theorem 11.6. For an AG-groupoid S with left identity, the following conditions are equivalent:

1) fS is an SU-ideal of S.
2) fS is an SU-bi-ideal of S.

Proof. (1) implies (2) follows from Theorem 9.5. Let fS be an SU-bi-ideal of S. Since S is intra-regular, so for
each a, b ∈ S, there exist x, y and u, v ∈ S such that a = (xa2)y and b = (ub2)v. So,

fS(ab) = fS(((xa2)y)b) = fS((by)(xa2)) = fS((a2x)(yb)) = fS(((yb)x)a2)
= fS(((yb)x)(aa)) = fS((aa)(x(yb))) = fS(((x(yb))a)a)
= fS(((x(yb))((xa2)y))a) = fS(((xa2)((x(yb))y))a)
= fS(((y(x(yb)))(a2x))a) = fS((a2((y(x(yb)))x))a)
= fS(((aa)((y(x(yb)))x))a) = fS(((x(y(x(yb))))(aa))a)
= fS((a((x(y(x(yb))))a))a)
⊆ fS(a) ∪ fS(a)
= fS(a)

and

fS(ab) = fS(a((ub2)v)) = fS((ub2)(av)) = fS((va)(b2u))
= fS(b2((va)u)) = fS((bb)((va)u)) = fS((((va)u)b)b)
= fS([((va)u)((ub2)v)]b) = fS([(ub2)(((va)u)v)]b)
= fS([(v((va)u))(b2u)]b) = fS([b2((v((va)u))u)]b)
= fS(((bb)((v((va)u))u))b) = fS(((u(v((va)u)))(bb))b)
= fS((b((u(v((va)u)))b))b)
⊆ fS(b) ∪ fS(b)
= fS(b)

Corollary 11.7. An SU-right ideal of an AG-groupoid S with left identity is an SU-bi-ideal of S.
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Proposition 11.8. For a soft set fS of an intra-regular LA-semigroup S with left identity, the following conditions
are equivalent:

1) fS is an SU-ideal of S.
2) fS is an SU-interior ideal of S.

Proof. (1) implies (2) is clear. Assume that (2) holds. Let a and b be any elements of S. Then, since S
is intra-regular, there exist elements x, y,u and v in S such that a = (xa2)y and b = (ub2)v. Since fS is an
SU-interior ideal of S, we have

fS(ab) = fS(((xa2)y)b) = fS(((by)(xa2)) = fS((by)(x(aa))) = fS((by)(a(xa))) = fS((ba)(y(xa))) ⊆ fS(a)

and

fS(ab) = fS(a((ub2)v)) = fS((ub2)(av)) = fS((b(ub))(av)) = fS((va)((ub)b)) = fS((ub)((va)b)) ⊆ fS(b)

Hence, fS is an SU-ideal of S.

Proposition 11.9. For a soft set fS of an intra-regular AG-groupoid S with left identity, the following conditions are
equivalent:

1) fS is an SU-bi-ideal of S.
2) fS is an SU-generalized bi-ideal of S.

Proof. (1) implies (2) is clear. Assume that (2) holds. Let a be any element of S. Then, since S is intra-regular,
there exist elements x, y in S such that a = (xa2)y. Thus, we have

fS(ab) = fS(((xa2)y)b = fS(((xa2)(ey)b) = fS(((ye)(a2x))b) = fS((a2((ye)x))b) = fS(((aa)((ye)x))b) =
fS(((x(ye))(aa))b) = fS((a((ye))a))b) ⊆ fS(a) ∪ fS(b).

Hence, fS is an SU-bi-ideal of S.

Proposition 11.10. For a soft set fS of an intra-regular AG-groupoid S with left identity, the following conditions
are equivalent:

1) fS is an SU-ideal of S.
2) fS is an SU-quasi-ideal of S.

Proof. (1) implies (2) is clear. Assume that (2) holds. Let a be any element of S. Then, since S is intra-regular,
there exist elements x, y in S such that a = (xa2)y. Thus, we have

a = (xa2)y = (xa2)(ey) = (xe)(a2y) = a2((xe)y) = ((aa)((xe)y) = (ya)((xe)a) = (y(xe))(aa) = a((y((xe))a).

Also,

θ̃ ∗ fS = (θ̃ ∗ θ̃) ∗ fS = ( fS ∗ θ̃) ∗ θ̃.

Therefore,

(θ̃ ∗ fS)(a) = (( fS ∗ θ̃) ∗ θ̃)(a)

=
⋂

a=a((y(xe))a)

{( fS ∗ θ̃)(a) ∪ θ̃((y(xe))a)}

⊆ ( fS ∗ θ̃)(a)

Therefore,
fS ∗ θ̃⊆̃( fS ∗ θ̃)∪̃(θ̃ ∗ fS)⊆̃ fS.

Hence, fS is an SU-right ideal of S. And by Proposition 11.2, fS is an SU-left ideal of S. Hence, fS is an
SU-ideal of S.
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Theorem 11.11. For a soft set fS of an intra-regular AG-groupoid S with left identity, the following conditions are
equivalent:

1) fS is an SU-right ideal of S.
2) fS is an SU-left ideal of S.
3) fS is an SU-ideal of S.
4) fS is an SU-bi-ideal of S.
5) fS is an SU-generalized bi-ideal of S.
6) fS is an SU-interior ideal of S.
7) fS is an SU-quasi-ideal of S.

Definition 11.12. A soft set fS over U is called soft union semiprime? if for all a ∈ S,

fS(a) ⊆ fS(a2).

Theorem 11.13. For a nonempty A of S, the following conditions are equivalent:

1) A is semiprime.
2) The soft characteristic function SAc is soft union semiprime?.

Proof. First assume that (1) holds. Let a be any element of S. We need to show that SAc (a) ⊆ SAc (a2) for all
a ∈ S. If a2

∈ A, then since A is semiprime, a ∈ A. Thus,

SAc (a) = ∅ = SAc (a2)

If a2 < A, then
SAc (a) ⊆ U = SAc (a2)

In any case, SAc (a) ⊆ SAc (a2) for all a ∈ S. Thus, SAc is soft union semiprime?. Hence (1) implies (2).
Conversely assume that (2) holds. Let a2

∈ A and a < A. Since SAc is soft union semiprime?, we have

SAc (a) = U ⊆ SAc (a2) = ∅

But, this is a contradiction. Hence, a ∈ A and so A is semiprime. Thus, (2) implies (1).

Theorem 11.14. For any SU-AG-groupoid fS, the following conditions are equivalent:

1) fS is soft union semiprime?.
2) fS(a) = fS(a2) for all a ∈ S.

Proof. (2) implies (1) is clear. Assume that (1) holds. Let a be any element of S. Since fS is an SU-AG-
groupoid, we have;

fS(a) ⊆ fS(a2) = fS(aa) ⊆ fS(a) ∪ fS(a) = fS(a)

So, fS(a2) = fS(a) and (1) implies (2). This completes the proof.

Proposition 11.15. In an intra-regular LA-semigroup, every SI-interior ideal is soft semiprime?.

Proof. Let fS be any SI-interior ideal of S and a be any element of S. Since S is intra-regular, there exist
elements x, y in S such that a = (xa2)y. Thus, we have

fS(ab) = fS((xa2)y) ⊆ fS(a2).

Hence, fS is soft semiprime?.

Theorem 11.16. For an AG-groupoid S, the following conditions are equivalent:

1) S is intra-regular.
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2) Every SU-ideal of S is soft union semiprime?.
3) fS(a) = fS(a2) for all SU-ideal of S and for all a ∈ S.

Proof. First assume that (1) holds. Let fS be any SU-ideal of S and a any element of S. Since S is intra-regular,
there exist elements x and y in S such that a = (xa2)y. Thus,

fS(a) = fS((xa2)y) ⊆ fS(xa2) = fS(x(aa)) ⊆ fS(aa) ⊆ fS(a)

so, we have fS(a) = fS(a2). Hence, (1) implies (3).
Conversely, assume that (3) holds. It is known that J[a2] is an ideal of S. Thus, the soft characteristic

function S(J[a2)c] is an SU-ideal of S. Since a2
∈ J[a2], we have;

S(J[a2])c (a) = S(J[a2)c](a2) = ∅

Thus, a ∈ J[a2] = (S(aa))S. Here, one can easily show that S is intra-regular. Hence (3) implies (1).
It is obvious that (3) implies (2). Now, assume that (2) holds. Let fS be an SU-ideal of S. Since fS is a soft

union semiprime? ideal of S,
fS(a) ⊆ fS(a2) = fS(aa) ⊆ fS(a)

Thus, fS(a) = fS(a2). Hence (2) implies (3). This completes the proof.

Theorem 11.17. If S is an intra-regular AG-groupoid with left identity, then fS∪̃1S = fS ∗ 1S for every SU-left ideal
fS and every SU-right ideal 1S of S and the SU-right ideal 1S is soft union semiprime?.

Proof. Let fS and 1S be any SU-left ideal and SU-right ideal of S, respectively. Then, it is obvious that
fS ∗ 1S⊇̃ fS∪̃1S. Let a any element of S. Since S is intra-regular, there exist elements x and y in S such that
a = (xa2)y. Thus,

a = (xa2)y = (a(xa))y = (y(xa))a = (y(xa))(ea) = (ye)((xa)a) = (xa)((ye)a) = (xa)((ae)y).

Thus, we have

( fS ∗ 1S)(a) =
⋂

a=(xa)((ae)y)

{ fS(xa) ∪ fS((ae)y)}

⊆ fS(a) ∪ 1S(a)

= ( fS∪̃1S)(a)

Thus, fS ∗ 1S⊇̃ fS∪̃1S and so fS ∗ 1S = fS∪̃1S. Moreover,

1S(a) = 1S((xa2)y) = 1S((xa2)(ey)) = 1S((ye)(a2x)) = 1S(a2((ye)x))) ⊆ 1S(a2).

Hence, 1S is soft union semiprime?.

Corollary 11.18. Let S be an intra-regular AG-groupoid S with left identity. Then, fS∪̃1S = fS ∗ 1S for every
SU-ideals fS and 1S of S.

Theorem 11.19. The set of all SU-ideals of an intra-regular AG-groupoid S with left identity forms a semilattice
structure with identity θ̃.

Proof. Let IS be the set of all SU-ideals of an AG-groupoid S and fS1S, hS ∈ IS. It is obvious that IS is closed
by Proposition 5.25. Moreover, we have fS = ( fS)2 by Proposition 11.3 and by Corollary 11.18, fS ∗1S = fS∪̃1S,
where fS and 1S are SU-ideals. Obviously, fS ∗ 1S = 1S ∗ fS. Moreover, by using left invertive law,

( fS ∗ 1S) ∗ hS = (hS ∗ 1S) ∗ hS = fS ∗ (1S ∗ hS).

Also, by using left invertive law and Proposition 5.25,
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fS ∗ θ̃ = ( fS ∗ fS) ∗ θ̃ = (θ̃ ∗ fS) ∗ fS = fS ∗ fS = fS.

Theorem 11.20. If S is an intra-regular AG-groupoid with left identity, then fS∪̃1S⊇̃( fS ∗1S) ∗ fS for every SU-right
ideal fS and every SU-left (bi-) ideal 1S of S and SU-right ideal fS is soft union semiprime?.

Proof. Assume that S is intra-regular. Let fS and 1S be any SU-right and SU-bi-ideal of S, respectively. Then,
since S is intra-regular, for each a ∈ S, there exist x, y ∈ S such that a = (xa2)y. Thus,

a = (xa2)y = (a(xa))y = (y(xa))a = (y(x((xa2)y)))a = (y((xa2)(xy)))a = ((xa2)(y(xy)))a = ((x(aa))(y(xy)))a =
((a(xa))(y(xy)))a = (((y(xy))(xa))a)a = (((ax)((xy)y))a)a.

Thus, we have

(( fS ∗ 1S) ∗ fS)(a) =
⋂

a=(((ax)((xy)y))a)a

{ fS((ax)((xy)y)) ∪ 1S(a)) ∪ fS(a)}

⊆ fS((ax)((xy)y)) ∪ 1S(a) ∪ fS(a)
⊆ ( fS(a) ∪ 1S(a)) ∪ fS(a)

= ( fS∪̃1S)(a)

Thus, fS∪̃1S⊇̃( fS ∗ 1S) ∗ fS. Moreover,

fS(a) = fS((xa2)y) = fS((xa2)(ey)) = fS((ye)(a2x)) = fS(a2((ye)x)) ⊆ fS(a2).

Hence, fS is soft union semiprime?.

Proposition 11.21. In an intra-regular AG-groupoid S with left identity, an SU-ideal is soft strongly irreducible if
and only if it is soft prime.

Proof. It follows from Corollary 11.18, Definition 5.27 and Definition 5.28.

Proposition 11.22. Every SU-ideal of an intra-regular AG-groupoid S is soft prime if and only if the set of SU-ideals
of S is totally ordered under inclusion.

Proof. It follows from Corollary 11.18, Definition 5.28 and Definition 5.31.

12. Completely regular AG-groupoids

In this section, we characterize a completely regular AG-groupoids in terms of SU-ideals. An element a
of an AG-groupoid S is called left regular if there exists x ∈ S such that

a = xa2 = x(aa).

and S is called left regular if all elements of S are left regular. An element a of an AG-groupoid S is called
right regular if there exists x ∈ S such that

a = a2x = (aa)x.

and S is called right regular if all elements of S are right regular. An element a of an AG-groupoid S is called
completely regular if a is regular and left and right regular and S is called completely regular if all elements of
S are completely regular.

Theorem 12.1. For an AG-groupoid S, the following conditions are equivalent:

1) S is left regular.
2) For every SU-left ideal fS of S, fS(a) = fS(a2) for all a ∈ S.
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Proof. First assume that (1) holds. Let fS be any SU-left ideal of S and a be any element of S. Since S is left
regular, there exists an element x in S such that a = x(aa). Thus, we have

fS(a) = fS(x(aa)) ⊆ fS(aa) ⊆ fS(a)

implying that fS(a) = fS(a2). Hence (1) implies (2).
Conversely, assume that (2) holds. Let a be any element of S. Since L[a2] is a left ideal of S, the soft

characteristic function S(L[a2])c is an SU-left ideal of S. Since a2
∈ L[a2], we have

S(L[a2])c (a) = S(L[a2)]c (a2) = ∅

implying that a ∈ L[a2] = S(aa). This obviously means that S is left regular. So (2) implies (1). This completes
the proof.

Theorem 12.2. For an AG-groupoid S, the following conditions are equivalent:

1) S is right regular.
2) For every SU-right ideal fS of S, fS(a) = fS(a2) for all a ∈ S.

13. Weakly Regular AG-groupoids

In this section, we characterize a weakly regular AG-groupoid in terms of SU-ideals. An element a of an
AG-groupoid S is called weakly-regular if there exist x, y ∈ S such that a = (ax)(ay) and S is called weakly
regular if all elements of S are weakly regular.

Theorem 13.1. Let S be an AG-groupoid. If S is weakly regular, then fS∪̃1S⊇̃ fS ∗ 1S for every SU-right ideal fS of S
and for every SU-ideal 1S of S.

Proof. Let fS be an SU-right ideal of S, 1S be an SU-left ideal of S and x ∈ S. Then, since S is weakly regular,
x = (xs)(xt) for some s, t ∈ S. Hence,

( fS ∗ 1S)(x) =
⋂

x=(xs)(xt)

( fS(xs) ∪ 1S(xt))

⊆ fS(x) ∪ 1S(x)

= ( fS∪̃1S)(x)

Since fS∪̃1S⊇̃ fS ∗ 1S always holds for every SU-right ideal fS and SU-left ideal 1S of S, fS∪̃1S = fS ∗ 1S.

14. Quasi-regular AG-groupoids

An element a of an AG-groupoid S is called left (right) quasi-regular if there exist x, y ∈ S such that
a = (xa)(ya)(a = (ax)(ay)) and S is called left (right) quasi-regular if all elements of S are left (right) quasi-
regular.

Theorem 14.1. An AG-groupoid S is left (right) quasi-regular if and only if every SU-left (right) ideal is idempotent.

Proof. Assume that fS is an SU-left ideal. Then, there exist x, y ∈ S such that a = (xa)(ya). So, we have;

( fS ∗ fS)(a) =
⋂

a=(xa)(ya)

( fS(xa) ∪ fS(ya))

⊆ fS(xa) ∪ fS(ya)
⊆ fS(a) ∪ fS(a)
= fS(a)
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and so, fS ∗ fS⊇̃ fS. Thus, fS ∗ fS = fS and fS is idempotent.
Conversely, assume that every SU-left ideal of S is idempotent. Let a ∈ S. Then, since L[a] is a principal

left ideal of S, the soft characteristic function S(L[a])c is an SU-left ideal of S. It is known that a ∈ L[a] and so

S(L[a])c (a) = ∅

and let a < L[a]L[a]. Thus, there do not exist y, z ∈ L[a] such that a = yz. Then,

(S(L[a])c ∗ S(L[a])c )(a) =
⋂
a=yz

(SLc (y) ∪ SLc (z)) =
⋂
a=yz

(U ∪U) = U,

but this is a contradiction. So a ∈ L[a]L[a] = (Sa)(Sa). Hence, S is left quasi-regular. The case when S is right
quasi-regular can be similarly proved.

Proposition 14.2. If fS is an SU-right ideal of an left (right) quasi-regular AG-groupoid S, then fS is an SU-ideal of
S.

Proof. Let fS be an SU-right ideal of an left (right) quasi-regular AG-groupoid S. Then, since θ̃ itself is an
SU-right ideal of S, and by assumption θ̃ is idempotent, we have

θ̃ ∗ fS = (θ̃ ∗ θ̃) ∗ fS = ( fS ∗ θ̃) ∗ θ̃⊇̃ fS ∗ θ̃⊇̃ fS.

Theorem 14.3. Let fS be an AG-groupoid S. If fS = ( fS ∗ θ̃)2
∪̃(θ̃ ∗ fS)2 for every SU-ideal fS of S, then S is

quasi-regular.

Proof. Let fS be any SU-right ideal of S. Thus, we have

fS = ( fS ∗ θ̃)2
∪̃(θ̃ ∗ fS)2

⊇̃( fS ∗ θ̃)2
⊇̃ fS ∗ fS⊇̃ fS ∗ θ̃⊇̃ fS

and so fS = ( fS)2. It follows that S is right quasi-regular by Theorem 14.1. One can similarly show that S is
left quasi-regular. This completes proof.

15. Conclusion

In this paper, the concepts of soft union AG-groupoids and certain soft ideals of AG-groupoids are
introduced and studied. Furthermore important characterizations of regular, intra-regular, completely
regular, weakly regular and quasi-regular AG-groupoids are obtained by using the properties of these soft
union ideals.
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