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Abstract. Let G be a simple connected graph with n vertices and m edges, and sequence of vertex degrees
dy 2dy >--- 2d, > 0. If vertices i and j are adjacent, we write i ~ j. Denote by Iy, IT;, Q, and H, the
multiplicative Zagreb index, multiplicative sum Zagreb index, general first Zagreb index, and general sum-
connectivity index, respectively. These indices are defined as ITy = [TiL, a7, IT; = [1,.;(di +d;), Qo = L., df

and H, = Z,'N]v(di +d;)*. We establish upper and lower bounds for the differences H, — m(l‘[;)W and

Qu—n (Hl)%. In this way we generalize a number of results that were earlier reported in the literature.

1. Introduction

Let G be a simple connected graph with vertex set V = {1,2,...,n} and edge set E = {ey, ey, ..., en}.
Further, letdy > dy > - > d, > 0,d; = d(i), and d(e1) = d(e2) > -+ = d(en) be sequences of vertex and edge
degrees, respectively. Throughout the paper we will use the following (standard) notation: A = dy, A; = dy,
0=dy, 01 =dy, Ay =d(e1) +2, Ay, =d(e2) +2, 0¢ = dley) + 2,0, = d(em-1) + 2. If the vertices i and j are
adjacent, we write i ~ j. As usual, L(G) denotes a line graph of G.

Two vertex-degree based topological indices, the first and the second Zagreb index, M; and M,, are
defined as [19, 22, 23]

n
M, = My(G) = Zd? and M, = My(G) = Zd,-d]-.

i=1 i~j

For details and further references on these indices see [4, 5, 20, 37].
As shown in [37], the first Zagreb index can be also expressed as

My =) (@ +d)). (1)

i~

2010 Mathematics Subject Classification. Primary 05C12; Secondary 05C50

Keywords. Multiplicative Zagreb index; multiplicative sum Zagreb index; general first Zagreb index; general sum-connectivity
index.

Received: 20 July 2017; Accepted: 27 September 2017

Communicated by Dragan S. Djordjevié¢

Research supported by Serbian Ministry of Education, Science and Technological Development, Grant No TR-32009.

Email addresses: gutman@kg.ac.rs (Ivan Gutman), igor@elfak.ni.ac.rs (Igor Milovanovi¢), ema@elfak.ni.ac.rs (Emina
Milovanovic)



I. Gutman et al. / Filomat 32:8 (2018), 3031-3042 3032

Bearing in mind that for the edge e connecting the vertices 7 and j,
d(e)=d;+d; -2,
the index M; can also be considered as an edge-degree based topological index, since according to (1) holds

(32]

m

M, = Z(d(ei) +2).

i=1
A so-called forgotten topological index, F, is defined as [13] (see also [14]):

F=F(G) = Z &
i=1
By analogy to M, the invariant F can be written in the following way [32]

F= Z(df +d?) = Z(di +d;)? —2M,.
i~j i~j

The general sum-connectivity index, denoted by H,, is defined as [51]:

Ha = Ho(G) = ) (@i +d)*,
i~

where a is an arbitrary real number. It can be easily observed that
m
Ho=) (e)+2*,  Ho=m.
i=1

Hence, H,, can be considered as edge-degree-based topological index as well. It can be easily verified that
M;=Hy, x = Hf% (sum-connectivity index introduced in [50]), H = 2H_; (harmonic index defined in [11]).
The general first Zagreb index, Q,, is defined as [29]:

n
Qu = Qu(G) = ),
i=1
where a is an arbitrary real number. Obviously, Q; = M, Q3 =F, Q1 =ID and Q_1;; = ‘R, where
= 1
ID = —

is the inverse degree index [7, 8, 11], whereas

=

I
i
g/

OR:

is the zeroth—order Randié¢ index [26, 28].

Multiplicative versions of topological indices were proposed in 2010 [40, 41], whereas the first and
second multiplicative Zagreb indices, denoted by I1; and I, respectively, were first considered in a paper
[18] published in 2011, and were promptly followed by numerous additional studies [9, 10, 15, 24, 30, 39,
42,44, 46, 47]. These indices are defined as:

I = IT,(G) = de, I, = IL(G) = Hdidj.
i=1 i~



I. Gutman et al. / Filomat 32:8 (2018), 3031-3042 3033

One year later, the multiplicative sum-Zagreb index, I}, was introduced [10], defined as

IT, = IT;(G) = H(d,- +d)).

i~j
[T} can be also be viewed as an edge-degree-based topological index since

m

I16) = [ @) +2).

i=1

It should be mentioned that much earlier, the product of vertex degrees was considered by Narumi and
Katayama [35, 36], which essentially is the oldest multiplicative Zagreb—type index.

Further details on the multiplicative Zagreb indices can be found in the recent papers [1, 25, 43, 45] and
the references quoted therein.

In this paper, we are interested in establishing upper and lower bounds for the differences

Ha—m(l_[’i);'lx and Qa—n(l_[l)ﬁ .

By achieving this goal, we will generalize a number of results that were earlier reported in the literature.
In particular, in [39], the following inequalities were shown that:

2m—n(H1)217‘ >0, )
M —n([L)7 >0, 3)
My —m(Ily)# > 0. (4)

In [44] it was proven that
My —m(I1;)" 2 0 ()

whereas in [12] that

IN)

F+2M, —m(I1})" 2 0. (6)

2. Preliminaries

In this section we recall some analytical inequalities for real number sequences that will be used in the
subsequent considerations.
Leta; = (a;)and b= (b;),i=1,2,...,p, be positive real number sequences with the properties

0<r; <a;<R; <+ and 0<7,<b <Ry <+00.

In [2] (see also [33]) the following inequality was proven

bi| < PPy(p)(R1 — 11)(Ra — 12), ()

o= -3 25

aib,- -

1

a;

1

p

4
i=1

4 p
=1 =1

where
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For the positive real number sequencea = (a;),i = 1,2, ..., p, the following inequality was proven in [48]
(see also [27])

1/p

4 2 4 4
[Z Va_i] S(P—l)zaﬁp[l—[ai] : ®)
i=1 i=1 1

i=

For the sequence of positive real numbersa = (a;),i = 1,2,...,p, with the propertya; > a, > --- 2 a, > 0,
in [6] the following was proven

P b \Up
Zw—p[Hai] 2 (Vi - V) ©)

i=1 i=1

Before we proceed, let us define one special class of d-regular graphs I'; (see [38]). Let N(i) be a set of all
neighbors of the vertex i, i.e.,, N(i) = {k|k € V, k ~ i}. Let d(i, j) be the distance between the vertices i and ;.
Denote by I'y a set of all d-regular graphs, 1 < d < n — 1, with diameter 2, and [N(i) N N(j)| = d fori » j.

3. Main results

In the next theorem, we establish upper and lower bounds for the difference Q, — n(I1;)%?", in terms of
the number of vertices and minimal and maximal vertex degrees.

Theorem 3.1. Let G be a simple connected graph with n > 2 vertices. Then, for any real & > 0,
@ a\2 s a a\2
(A% =6%)" < Qu—n(M)¥ <ny(m) (A% - 7). (10)
Ifa <0, then
a a)\2 a 2 a a\2
(6% =A%) < Qo —n (M) ¥ <nPy(n) (6% - A%)". 11)

Equalities on the right—hand sides hold if and only if G is reqular. Equalities on the left-hand sides hold if and only if
dy=---=dy1 = Vdidy.

Proof. Forp =mn,a; =b; = dl.%, Ri=Ry=A%,ri=r=0,a>0,i=1,2,...,n, the inequality (7) becomes

2
ng‘d? - (g dl’;] < nz)/(n) (A% - 6%)2,

ie.,

n 2
nQu — [Z d}] < ny(n) (Af - 5%)2. 12)
i=1

Forp=n,a>0,a = df‘, i=1,2,...,n, the inequality (8) transforms into

n 2 n n 1/n
[Zd}] S(n—l)Zd?‘+n[de‘] ,
i=1 i=1 i=1

ie.,

n 2
[Z d}'] <(n=1)Qq +n ()% . (13)
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From (12) and (13) the inequality (10) is obtained.
Equality in (13) holds if and only if d; = --- = d,;, so the equality on the right-hand side of (10) holds if

and only if G is regular.
Forp=n,a>0,4;=4d?,i=1,2,---,n, the inequality (9) becomes

n n 1/n
Zd?—n[Hd?] > (af-0t)’,
i=1 i=1
ie.,

Qu—n(M)H > (A% =52, (14)

which coincides with the left-hand side of (10).

Equality in (14) holds if and only if d, = - -- = d,—1 = Vd d,. Equality on the left-hand side of (10) holds
under same condition.

Inequalities (14) can be verified in an analogous manner. [J

In a similar way, we arrive at the following:

Theorem 3.2. Let G be a simple connected graph with n vertices. If n > 3 and a > 0, then

[l NTEY

ot < Qu--1(3)

< A+ (=12 -1)(A] - 6%)2.

Aa+(A

Ifn>3and a <0, then

I1; \%
&)

a _1\2 _ s _ %2
< AT+ (n-1Py(n-1) (67 - A7) .

A+ (of - af) < Qa—(n—l)(

Equalities on the right—hand sides hold if and only if Ay = dy = --- = d, = 0. Equalities on the left—hand sides hold if
and only ifdz = -+ =dy-1 = VAL0.

Theorem 3.3. Let G be a simple connected graph with n vertices. If n > 3 and a > 0, then

Ll ST

).

a o a2 T1 Z(na—l) o
6% + (A - 62) sQa—(n—l)(é—zl) <%+ (1 -1y - 1) (A% =5
Ifn>3and a <0, then

o a a\2 IT D a a2
6% + (oF - A%) sQa—(n—l)(é—zl) <o+ (=D -1)(6f - A%) .

Equalities on the right—hand side of the above inequalities hold if and only if A = dy = --+ = d,—1 = 01, and on the
left—hand side if and only if Ay = dp = -+ =dy0 = VAO1.

Theorem 3.4. Let G be a simple connected graph with n vertices. If n > 4 and a > 0, then

a a\2 IT T
N N I Qa—(n—Z)(AZ:SZ)
a a2
< AT+ + (-2 -2) (A7 -57) .
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Ifn>4and a <0, then

a a g a2 2%1)
A+ 5%+ (07 —AT) < Qu-(n- 2)(A262)
a a2
< AT+ (n-2y(n—2) (57 - AF) .
Equalities on the left-hand sides of the above inequalities hold if and only if Ay = dp = -+ = d,-1 = 01, and on the
right—hand sides if and only if d3 = - -+ = d,—p = VA1 01.

In the next corollary we point out some inequalities that are obtained from (10) and (11) for some
particular values of the parameter a.

Corollary 3.5. Let G be a simple connected graph with n > 2 vertices. Then

4 17\2 4 1=\2
% < R—n() # < nzy(n)%,
% <ID-n(L) ¥ < nzy(n)M, (15)
(VA= VB) < 2m—n ()% < nty(m) (VA - VB, (16)
(A=06)* <My —n(Th)" < nPy(n) (A —06), (17)
(AT =61) < F-n () <niy(n) (At -52) . (18)

Remark 3.6. The left-hand side inequalities in (16) and (17) are stronger than (2) and (3), respectively.

Since 2R_; < ID (see [31]), where R_; =} ;
corollary of Theorem 3.1 is valid:

i~ T d is an often used Randié-type index [3, 28], the following

Corollary 3.7. Let G be a simple connected graph with n > 2 vertices. Then

1 A — Vo)?
2R —n(IL) > < n2y(n)u ,
Ad
with equality if and only if G is reqular.
Since F > 2M,, based on the right part of (18) the following result is obtained.

Corollary 3.8. Let G be a simple connected graph with n > 2 vertices. Then
3 2
2M, —n(IT))> < nzy(n) (A% - 6%) ,
with equality if and only if G is reqular.

Let 1 > o > --- > py—1 > pu = 0 be the Laplacian eigenvalues values of the graph G [16, 17, 34]. Then
the Kirchhoff index, Kf, is defined as [21] (see also [52])

n—=1 1
KfG=n}) —
i=1 [Jl
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Corollary 3.9. Let G be a simple connected graph with n vertices. If n > 2 then

{ N (\/Z_\/E)Z]
KF@) 2 1+ (1 =1)|n(T)H + | (19)
Ifn > 3, then
- w (VAT - VB)
Kf(G)z%ﬁL(n—l)[(n—l)(%) ( ’+%]. 20)

Equality in (19) holds if and only if G = K,, or G = Ky » when n is even, or G € I'q. Equality in (20) holds if and only
ifG=K,, orG = Ky forevenn, or G = Ky p—1, 0r G € I'.

Proof. In [49], the following inequality for the Kirchhoff index was reported:
=~ 1
Kf(G)2—1+(n—1);E:—1+(n—1)ID. 1)

The inequality (19) is obtained from (21) and the left part of (15).
For a = -1, from Theorem 3.2 the following is obtained:

2
b . (1‘11) _1, (VA- V)

~een(R) Extt A
According to the above and inequality (21), inequality (20) is obtained. [

a

In the next theorem we establish lower and upper bounds for the difference H, — m (H’i)% depending
on the parameters m, A,,, and 6.

Theorem 3.10. Let G be a simple graph with m > 1 edges. If « > 0 then

a

(A% = 02) < Hy=m(I5)" < m2yom (A 5. (22)
If a <0, then
(68 =A%) < Ho —m (11)" < wyim (0F - A .

Equalities on the right-hand sides of the above inequalities are attained if and only if L(G) is regular. Equalities on
the left-hand sides hold if and only if A,, = d(e2) +2 = --- = d(em-1) + 2 = O, = /D¢, 0¢,-

Proof. Forp =m, a 2 0,a; = b; = (d(e;) + 2):,Ri =R, = Az, =1 = 62, i=1,2,...,m, the inequality (7)
becomes

m m 2
mY (de) +2)" - [Z(d(e» + 2)2’] <ny(n) (] -o)
i=1 i=1

ie.,

m

2
mH, —[Z(d(e» +2>‘z‘] < mly(m) (A% - 62) . @)

i=1
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Forp=m,a>0,a; = (d(e;) +2)*,i=1,2,...,m, the inequality (8) transforms into

m 2 m m m
[ <d<ei>+2>‘z*] s(m—1)Z<d<ei>+2>“+m[H<d<ez->+2>“J ,
i=1

i i=1 i=1

ie.,

m 2 o
[Z(d(e,-) + 2)‘5] < (m—DHy +m(I1})" . (24)

i=1

The right-hand side of (22) is obtained from (23) and (24), .

Equality in (24) holds if and only if A,, = d(e1) +2 = --- = d(es) + 2 = 6,. Therefore, equality on the
right-hand side of (22) holds if and only if L(G) is regular.

Forp=m,a>0,a; = (d(e;) +2)%, a1 = A}, am = 0,1 =1,2,...,m, the inequality (9) becomes

Zm:(d(ei) +2)% —m [ﬁ(d(ei) + 2)HJW > (A% -6} )2 ,

i=1 i=1
ie.,
o\m A
Hy—m(IT)" 2 (A2 -82)

which is just the left-hand side of (22). Equality in the above inequality, and therefore on the left-hand side
of (22), holds if and only if A,, = d(e;) +2 = --- = d(em—2) + 2 = 8, = /A¢,Oe, -
For the case a < 0 the inequalities are proved in a similar way. [J

The same procedure as in the case of Theorem 3.10 can be applied to deduce the following result.

Theorem 3.11. Let G be a simple connected graph with m edges. If m > 2 and o > 0, then

A+ (a2 =88 < Ho—(m-n(<2 7
€1 3 e = a Ae]
a a\2
< AL+ (m=1P(m-1) (AL -067)
Ifm>2and a <0, then
o 4 (6f - ALY I\
AEl +(681 _Aez) < Hﬂ_(m_l) E
« 2 N
< A+ (m—-1Pp(m-1) (52 - AL) -
Equalities on the right-hand sides hold if and only if A,, = d(e2) +2 = -+ = d(ey-1) + 2 = 6, and on the left-hand
sides if and only if d(e3) + 2 = --- = d(ey) + 2 = 0p, = \/Ar,0e,.

Theorem 3.12. Let G be a simple connected graph with m edges. If m > 3 and a > 0, then

a st 4 (Al 53V Im_\™
AL +8% +(AL-062) < Hy—(m-2) =
e1Yeq
a a 2 % %2
< A+ 58+ (m—2P(m-2) (AL -52)
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Ifm>3and a <0, then

a a 2
a a 2 2
AL +63 + (02 - A2)

IA

2 o\
= (m=2) Aoon
a a\2
<AL 88+ (m =2 y(m-2) (68 —AL) -
Equalities on the right-hand sides hold if and only if A,, = d(e2) +2 = -+ = d(ey-1) + 2 = O,,, and on the left-hand
sides if and only if d(ez) + 2 = - -- = d(ep—2) + 2 = /A¢,0c,-
Since 26 < 0., < A, < 2A, the following corollary of Theorem 3.10 is valid.

Corollary 3.13. Let G be a simple connected graph with m > 1 edges. If « > 0, then

a

a A 2
Hy = m(IT})" < 2%mPy(m) (A - 63)".
Ifa <0, then
H,-m (H;)E < 2%m*y(m) (6% - A%)Z.
In both cases equalities hold if and only if G is regular.

We now state some inequalities resulting from Theorem 3.10 and Corollary 3.13, pertaining to particular
values of the parameter o, namely for @ = -3, @ = =1, a = 1, and & = 2, respectively.

Corollary 3.14. Let G be a simple connected graph with m > edges. Then

(8~ )" _ & ({5 - 36.)°

A _X_m(ng)"" < mPy(m) s

< 2 (%_%)2

< m)/(m)wf
@méf) iom(m)t s mzﬂm)(rmf)
VA - Vo)
: ’“ZW%'

(V= = VB) <My =m (1) < myon) (Vs - B
< 2m27/(m) ( VA - \/5)2 ’

(25)

(A, = 06,)" = 2Mo < F = m(IT;)" <mPy(m) (Ae, = 6e,) — 2My 6

<4m?y(m)(A - 6)° -
Remark 3.15. Left inequality of (25) is stronger than (5), and left inequality of (26) is stronger than (6).
As F > 2M,, from (26) we obtain:
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Corollary 3.16. Let G be a simple connected graph with m > 1 edges. Then

2

2F - m(I1})" 2 (A, = 60),
4M; —m (IT;)" < Py (m) (A, — 52,)F < dmPy(m)(A - 6)2.
Equalities hold if and only G is regular.

In the next theorem we establish a relationship between H, and I1,.

Theorem 3.17. Let G be a simple connected graph with n vertices and m > 1 edges. Then for any a > 0

a

n a g 232 4 a)2
Hy = — (L) < m?y(m) (A7, =6, ) <2%m*y(m) (A% - 6%)". @)

Equality on the left—hand side of (27) holds if and only if L(G) is reqular, and on the right—hand side if and only if G
is reqular.

Proof. According to

di+d]' di+dj " (1_[;)W
= _— =
n ; dld] = m[iNj dld] ] m 17/
we have that

i 1
m (IT)" < n ()" . (28)
If « > 0 is an arbitrary real number, then
m® ()" < n® ()",

ie.,
o

()" .

m (H’i)'" < ma-1
From the above and the right-hand side of (22), the left-hand side of inequality (27) follows. [J

Corollary 3.18. Let G be a simple connected graph with n vertices and m > 1 edges. Then

M= n () < 2y () (VA — VB ) < 2y (m) (VA - VB
F - %2 (HZ)% < mzj/(m) (Ael_6e1)2 _ 2M2 < 4m27/(m)(A—6)2 _ 2M2,

2 2
AV, = (T)F <y (m) (A, = 0.7 < 4Py (m)(A - ).

Equalities on the first right—hand sides of the above inequalities are attained if and only if G is reqular or biregular.
Equalities on the second right—hand sides are attained if and only if G is regular.

In a similar manner as in the case of Theorem 3.17, the following result can be proven.

Theorem 3.19. Let G be a simple connected graph with n vertices and m > 1 edges. Then for any real a < 0

na @ I3 a\2
Hy= —— ()" 2 (6, - A) - (29)

a—1

Equality holds if and only if G is a reqular or a biregular graph.
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For a = -1 and & = —1, we have the following special cases of Theorem 3.19.

Corollary 3.20. Let G be a simple connected graph with n vertices and m > 1 edges. Then

my\m (é/A_ﬁ_é/é_ﬁ)z

_1
ISR (Hz) o>

Vi N/
1 (VAe - Vou)

m? !
SH-— () "> ~— 1 7
=y )= Ae, O,

Remark 3.21. It can be easily verified that according to (4) and (28), the following lower bound

M, > ’%(nl)’

holds for the second Zagreb index M,.
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