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Abstract. In this paper, we define the notion of paratopological polygroups and find their topological
properties. In particular, we find those properties that make a paratopological polygroup a topological
polygroup. We also give an example of topological polygroup and obtain some of their properties.

1. Introduction and Preliminaries

We follow the terminology of [1, 2, 6, 7, 11, 13]. The notion of hyperstructure, as a generalization of
algebraic structure, was introduced by F. Mary at the 8th congress of Scandinavian Mathematicians in 1934
[19]. One of the most important instances of hyperstructures is hypergroupoid. Let H be a nonempty set
and P∗(H) be the set of all non-empty subsets of H. A hyperoperation on H is a mapping o : H ×H → P∗(H).
The pair (H, o) is called a hypergroupoid. In the above definition, if A and B are two non-empty subsets of H,
then we define AoB =

⋃
a∈A,b∈B aob. A semihypergroup is a hypergroupoid (H, o) such that:

∀(a, b, c) ∈ H3 : ao(boc) = (aob)oc.

A hypergroup is a semihypergroup (H, o) such that:

∀a ∈ H, aoH = Hoa.

This condition is called the reproduction axiom.
Hypergroupoid theory has been developed by Koskas [18], Corsini [3, 4], Davvaz [5, 8, 20], Vougioukis

[21] and Jafarabadi [15]. Hypergroupoids have many applications in pure and applied mathematics. There
are applications to the following subjects: geometry, hypergraphs, binary relations, lattices, fuzzy sets,
cryptography, combinatorics, codes and artificial intelligence, see [7].

Polygroups are special subclasses of hypergroups, which were studied in 1981 by Ioulidis in [14]. A
polygroup is a system ℘ =< P, o, e,−1 >, where e ∈ P, −1 is a unary operation on P (called the inversion on the
polygroup P), and (P, o) is a semihypergroup satisfying the following axioms:

(i) ∀x ∈ P: eox = xoe = x;
(ii) ∀x, y, z ∈ P, x ∈ yoz implies y ∈ xoz−1 and z ∈ y−1ox.

In any polygroup the following hold: e ∈ xox−1
∩ x−1ox, e−1 = e, (x−1)−1 = x, (xoy)−1 = y−1ox−1. A nonempty

subset N of polygroup P is called a normal subpolygroup of P if for any a, b ∈ N, aob−1
⊆ N and a−1oNoa ⊆ N.
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Algebraic structures which also have a topology are useful in mathematics. In the same direction, some
of mathematicians have studied the properties of hypergroupoids endowed with a topology. Ameri [1]
and Hoskova [12] have defined and studied τu(τ`)-topological hypergroupoids. Heidari et al [10] have
investigated the properties of these topologies on hypergroups. Now we introduce a topology on P∗(H).

Lemma 1.1. ([13]) Let (H, τ) be a topological space. Then the family = consisting of all sets

SV = {U ∈ P∗(H) : U ⊆ V}; V ∈ τ,

is a basis for a topology τu on P∗(H).

Definition 1.2. Let (H, o) be a hypergroup and (H, τ) be a topological space. Then, the hyperoperation o is
said to be continuous if o : H × H → P∗(H) is continuous. Here H × H and P∗(H) are equipped with the
product topology and τu, respectively.

Recently, Heidari et al. [11] defined the notion of topological polygroups and proved some properties.
They also proved the isomorphism theorem of topological polygroups.

In this paper, we define the notion of paratopological polygroups and find its topological properties. In
particular, we find some properties that make a paratopological polygroup into a topological polygroup.
In Section 2, we define the concept of τ-complete part and prove some properties of τ-complete part
(para)topological polygroups. In Section 3, we introduce a uniformity on polygroups and show that every
polygroup whose topology is induced by this uniformity is a topological polygroups. We also obtain some
properties of topological polygroups.

2. Continuity of the Inversion on Paratopological Polygroups

A paratopological group is a pair (G, τ) consisting of a group G and a topology τ on G making the group
operation continuous. A paratopological group G with continuous inversion is called a topological group.
The continuity of the inversion is one of the important research topics in the theory of paratopological
groups. In this section, we define paratopological polygroups and find conditions that make them into
topological polygroups.

Definition 2.1. Let (P, o, e,−1 ) be a polygroup and (P, τ) be a topological space. The system (P, o, e,−1 , τ) is
called a paratopological polygroup if the operation o : P × P→ P∗(P) is continuous.

A paratopological polygroup (P, τ) with continuous inversion is called a topological polygroup [10].

Now, we give an example of a paratopological polygroup which is not a topological polygroup.

Example 2.2. Let (R,+) be the additive group of real numbers. Put PR = R ∪ {a}, where a < R. We can
define a hyperoperation o on PR as follows:

(i) aoa = 0,
(ii) 0ox = xo0 = x, for every x ∈ PR,
(iii) aox = xoa = x, for every x ∈ PR − {0, a},
(iv) xoy = x + y, for every (x, y) ∈ R2 such that y , −x,
(v) xo(−x) = {0, a}, for every x ∈ PR − {0, a}.

Jafarpour et al. [16] proved that (PR, o, e,−1 ) is a polygroup. Now, let τ be the sorgenfrey topology on R
and η(e) be the neighborhood filter at e. The topology τa on PR is generated by the base τ∪{{a}∪U : U ∈ η(e)}.
It is easy to see that (PR, o, e,−1 , τa) is a paratopological polygroup. But the inversion in PR is not continuous,
since ([0, δ))−1

⊆ [0, ε) for all ε, δ > 0.

Lemma 2.3. ([11]) Let (P, o, e,−1 ) be a polygroup and τ be a topology on P. Then, the following assertions hold:

(1) The mapping o : P× P→ P∗(P) is continuous if and only if for every x, y ∈ P and U ∈ τ such that xoy ⊆ U, there
exist V,W ∈ τ such that x ∈ V, y ∈W and VoW ⊆ U;



J. Jamalzadeh / Filomat 32:8 (2018), 2755–2761 2757

(2) The mapping inv : P → P is continuous if and only if for every x ∈ P and U ∈ τ such that x−1
∈ U, there exists

V ∈ τ such that x ∈ V,V−1
⊆ U.

Definition 2.4. If (H, o) is a hypergroupoid and (H, τ) is a topological space, then we say that o is τ-closed
when for every x, y ∈ H, xoy is a closed subset of (H, τ).

Lemma 2.5. Let (P, o, e,−1 , τ) be a regular paratopological polygroup and o be τ-closed. Then the graph of the
inversion is a closed subset of P × P.

Proof. Since the identity of P is unique, 1rinv = {(x, y) : e < xoy ∩ yox} is the graph of the inversion on P. It is
sufficient to prove that (1rinv)c = {(x, y); e < xoy or e < yox} is an open subset in P × P. Let e < xoy. Since o is
τ-closed, from the regularity of P, it follows that open subsets U and V exist such that e ∈ U, xoy ⊆ V and
U ∩ V = ∅. Now, since P is a paratopological polygroup, there exists open neighborhoods W1 and W2 in P
of x and y, respectively, such that W1oW2 ⊆ V, hence (x, y) ∈ W1 ×W2 ⊆ (1rinv)c. This completes the proof
of the lemma.

A topological space X is called (countably compact) compact if any (countable) open cover of X has a
finite subcover.

Theorem 2.6. Let (P, o, e,−1 , τ) be a regular compact paratopological polygroup and o be τ-closed. Then the inversion
on P is continuous.

Proof. Let F be a closed subset of P. Then P × F is closed in P × P. By Lemma 2.5, 1rinv is a closed subset of
P×P. Hence 1rinv ∩ (P×F) is a closed subset of P×P. On the other hand, since P is a compact space, we can
apply Theorem 3.1.6 from [9] to conclude that the natural projection π1 : P×P→ P onto the first coordinate
is closed. Therefore π1(1rinv ∩ (P × F)) = F−1 is closed. This implies the assertion of the theorem.

Theorem 2.7. Let (P, o, e,−1 , τ)be a regular sequential countably compact paratopological polygroup and o be a
τ-closed. Then the inversion on P is continuous.

Proof. Since P is a sequential space, by Proposition 1.6.15 from [9], it is sufficient to show that the inversion
of P is sequentially continuous. Let {xn}

∞

n=1 be a sequence which convergences to x. We put C = {xn}
∞

n=1∪ {x}.
Since the sequence {xn}

∞

n=1 converges to x, the set C with the topology induced from P is a compact space.
Since P is countably compact, by Corollary 3.10.14 from [9], C × P is a countably compact space. Then the
closedness of 1rinv in the space S×S implies that G = (C×P)∩1rinv is countably compact and being countable,
is compact. It follows from compactness of G that π1 : G → C and π2 : G → C−1 are homeomorphisms.
Hence inv|C = π2oπ−1

1 |C : C→ C−1 is continuous.

Example 2.8. Let (G, τ) be a topological group and H be a compact subgroup of G. For every 11, 12 ∈ G we
define 11oH12 = {11h12|h ∈ H} = 11H12. Then (G, oH) is a hypergroupoid. Suppose that U is an open set G
such that 11oH12 ⊆ U. So, for any h ∈ H we have 11h12 ∈ U. Since G is a topological group, there exists
open subsets Uh(11),Uh,Uh(12) in G such that 11 ∈ Uh(11), 12 ∈ Uh(12), h ∈ Uh and Uh(11).Uh.Uh(12) ⊆ U. On
the other hand, since H is a compact subset of G, there exists an integer n ≥ 1 such that H ⊆

⋃n
i=1 Uhi . Now,

we put U11 =
⋂n

i=1 Uhi (11), V =
⋃n

i=1 Uhi and U12 =
⋂n

i=1 Uhi (12), and we have U11 VU12 ⊆ U. It means that
U11 ,U12 are open neighborhoods of 11 and 12 respectively such that

oH(U11 ×U12 ) = U11 .H.U12 ⊆ U11 .V.U12 ⊆ U.

Therefore oH is continuous.

Example 2.9. Suppose that H is a compact subgroup of a topological group (G, τ). Then the system
G//H = ({H1H, 1 ∈ G}, ∗,H,−I ), where (H11H) ∗ (H12H) = {H11h12H|h ∈ H} and (H1H)−I = H1−1H, is a
polygroup [7]. Let π : G → G//H, where π(1) = {H1H}. Then we define a topology τG//H on G//H as
follows: A subset U of G//H is open if π−1(U) is an open subset of G. It is easy to show that π is open
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and πo(oH) = ∗o(π × π). Now, we prove that (G//H, τG//H) is a topological polygroup. Let U be an open
subset in G//H such that (H11H) ∗ (H12H) ⊆ U, i.e., π(11) ∗ π(12) ⊆ U. Since πo(oH) = ∗o(π × π), we have
11oH12 ⊆ π−1(U). On the other hand, since π−1(U) is open in P∗(H), the continuity of oH implies that there
exist open neighborhoods W1,W2 of 11, 12 in G such that W1oHW2 ⊆ π−1(U). Thus π(W1) ∗π(W2) ⊆ U which
implies that π(W1), π(W2) are open neighborhoods of H11H,H12H in G//H. Therefore ∗ is continuous. Now,
we prove that the inversion on G//H is continuous. Suppose that U is an open subset of H1−1H in G//H,
i.e., π(1−1) ⊆ U. Since the inversion is continuous in G, there exists an open neighborhood V of 1 in G such
that V−1

⊆ π−1(U). Thus (π(V))−1
⊆ U, which implies that π(V) is the open neighborhood of H1H in G//H,

hence the inversion on G//H is continuous. Therefore (G//H, τ) is a topological polygroup.

3. Complete Part on Open Subsets of (Para)topological Polygroup and Results

Complete parts were introduced for the first time by Koskas [18] on hypergroups. Many studies
have been done on this concept in semihypergroups, for example see [3, 4, 6, 14, 20]. Let (H, o) be a
semihypergroup. A subset A of H is called a complete part if for all elements a1, . . . , an of H, Πn

i=1ai ∩ A , ∅
implies Πn

i=1ai ⊆ A.

Definition 3.1. A polygroup (H, o) with a topology τ on H is called a τ-complete part if every U ∈ τ is a
complete part.

This concept was defined by Heidari et al. [10] on topological semihypergroups. In [11], they studied
topological polygroups P with this property .

In this section, we obtain some results for the (para)topological polygroups (P, τ) that are τ-complete
parts.

Lemma 3.2. For every τ-complete part paratopological polygroup (P, o,−1 , τ), the inversion is continuous if and only
if it is continuous at e.

Proof. Suppose U is an open neighborhood of x−1. Since P is a τ-complete part, Lemma 2.13 from [11]
implies that xoU is an open neighborhood of e. Continuity of the inversion at e implies that there exists
an open neighborhood V of e such that V−1 = inv(V) ⊆ U. We have (Vox)−1 = x−1oV−1

⊆ x−1o(xoU). On
the other hand, since U is a complete part and x−1oxoU ∩ U , ∅, x−1oxoU ⊆ U. Since Vox is an open
neighborhood of x, inv : P→ P is continuous at x.

Lemma 3.3. Let (P, o, e,−1 , τ) be a τ-complete part paratopological polygroup. If U,V are open neighborhoods of e,
where V2

⊆ U, then (V−1)−1
⊆ U.

Proof. It is sufficient to show that V−1 ⊆ U−1. Let x ∈ V−1. Since P is a τ-complete part, Lemma 2.13 from
[10] implies that xoV is an open neighborhood of x. Then xoV ∩ V−1 , ∅, so there exist v1, v2 ∈ V such that
v−1

2 ∈ xov1. Now, we have x ∈ v−1
2 ov−1

1 ⊆ (V−1)2
⊆ U−1.

Let (P, o, e,−1 , τ) be a paratopological polygroup. We say that P is topologically periodic if for each x ∈ P
and every open neighborhood of e, there exists an integer n > 0 such that xn = xox . . . ox ⊆ U.

Theorem 3.4. Let P be a τ-complete part countably compact paratopological polygroup. Then P is a topological
polygroup.

Proof. According to Lemma 3.2, it suffices to verify the continuity of the inversion at identity e. Let U be
an open neighborhood of the identity e in P and {Vi|i ∈ ω} be a family of open neighborhoods of e such
that V0 = U, V2

i+1 ⊆ Vi for each i ≥ 1. By Lemma 3.3 we have (V−1
i+1)−1

⊆ Vi. Now, we will show that

F =
⋂

V−1
i |i ∈ ω} ⊆ U. If x ∈ F, so x ∈ V−1

i for each i ∈ ω. Therefore (x−1)n−1
∈ ((V−1

i+1)−1)n−1
⊆ Vn−1

i
for each i ∈ ω. Since P is topologically periodic, there exists n ∈ ω − {0} such that Vn−1

i0
⊆ V1. Then
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x ∈ xno(x−1)n−1
⊆ V2

1 ⊆ U. Since P is countably compact, there exist i1, . . . , in ∈ ω such that
⋂n

i=1 V−1
i j
⊆ U.

Hence V =
⋂n

i=1 Vi j is an open neighborhood of e such that inv(V) ⊆
⋂n

i=1 V−1
i j
⊆ U. This means that inv is

continuous.

Proposition 3.5. Let P be a τ-complete part countably compact topological polygroup. Then P is regular.

Proof. By Theorem 1.5.5 of [9], it is enough to show that for any x ∈ P and every open neighborhood U
of x, there exists an open neighborhood W of x such that x ∈ W ⊆ W ⊆ U. Let x ∈ P. Suppose U is an
open neighborhood of x. Since U is a complete part, Lemma 2.13 from [11] shows that x−1oU is an open
neighborhood of e. By Theorem 2.18 of [10], there exists a neighborhood V of e such that e ∈ V ⊆ V ⊆ x−1oU.
Hence x ∈ xoV ⊆ xoV ⊆ x−1oxoU. But we have xoV = xoV. If we let W = xoV, the proof is complete.

4. Uniformity on a Polygroup and its Topology

In this section, we introduce a uniformity on an arbitrary polygroup P. We obtain a topology on P and
prove that with this topology, P is a topological polygroup. Let X be a non-empty set and A,B be subsets
of X × X. Define

1. ∆ = {(x, x) : x ∈ X},
2. A−1 = {(x, y) : (y, x) ∈ A},
3. A + B = {(x, z) ∈ X × X : (x, y) ∈ A and (y, z) ∈ B for some y ∈ X}.

A uniformity on a nonempty set X is a subfamily U of the set of all subsets of X × X which satisfies the
following conditions:

(U1) ∆ ⊆ U for every U ∈ U,
(U2) If U ∈ U, then U−1

∈ U,
(U3) If U, V ∈ U, then U ∩ V ∈ U,
(U4) For every U ∈ F, there exists V ∈ U such that V + V ⊆ U,
(U5) If U ∈ U and U ⊆ V ⊆ X × X then V ∈ U.
For every uniformityU on a set X, the family

τU = {V ⊆ X, for any x ∈ V, there exists U ∈ U such that U[x] ⊆ V}

is a topology on X which U[x] = {y|(x, y) ∈ U}, for every U ∈ U.
Now, we define a uniformity on polygroups.

Definition 4.1. Let P be a polygroup and N be a normal subpolygroup of P. We denote UN = {(x, y) ∈ P×P :
xN = yN}.

Theorem 4.2. Let ℵ be an arbitrary family of normal subpolygroups of P which is closed under intersection. Then

Uℵ = {U ⊆ P × P : UN ⊆ U f or some N ∈ ℵ}

is a uniformity on P.

Proof. (U1) For every U ∈ Uℵ, there exists N ∈ ℵ such that UN ⊆ U. Since xN = xN for any x ∈ P,
∆ ⊆ UN ⊆ U.

(U2) Let U ∈ U. There exists N ∈ ℵ such that UN ⊆ U. It is easy to show that UN = U−1
N , hence

UN = U−1
N ⊆ U−1. Therefore U−1

∈ Uℵ.
(U3) For every U,V ∈ U, there exist N1,N2 ∈ ℵ such that UN1 ⊆ U, UN2 ⊆ V. Let (x, y) ∈ UN1 ∩ UN2 .

Then xoN1 = yoN1 and xoN2 = yoN2, so xo(N1 ∩ N2) = yo(N1 ∩ N2). Hence (x, y) ∈ UN1∩N2 . Conversely,
let (x, y) ∈ UN1∩N2 . Then xo(N1 ∩ N2) = yo(N1 ∩ N2), hence y−1ox ⊆ N1 and y−1ox ⊆ N2. So (x, y) ∈ UN1 ,
(x, y) ∈ UN2 . Therefore UN1∩N2 = UN1 ∩UN2 . Since ℵ is closed under intersection, U ∩ V ∈ Uℵ.

(U4) For any U ∈ Uℵ, there exists N ∈ ℵ such that UN ⊆ U. We have UN + UN ⊆ UN. Since V = UN ∈ Uℵ,
this completes (U4).

(U5) Let U ∈ Uℵ and U ⊆ V ⊆ X × X. Then there exists N ∈ ℵ such that UN ⊆ U ⊆ V, which means that
V ∈ Uℵ.
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For the uniformityUℵ on the polygroup P, the set β = {xoN|x ∈ P,N ∈ ℵ} is a base for the topology τℵ.

Theorem 4.3. The system (P, o, e,−1 , τℵ) (ℵ is a family of normal subpolygroups of P which is closed under intersec-
tion) is a topological polygroup.

Proof. Suppose xoy ⊆ O, where x, y ∈ P and O is an open subset of P. By the definition of the topology
τℵ, there exists a normal subgroup Nt such that UN(t) = tNt ⊆ O, for any t ∈ xoy. Since ℵ is closed
under intersection, we have N =

⋂
t∈xoy Nt ∈ ℵ. Therefore xoN, yoN are neighborhoods of x, y such that

(xoN)o(yoN) ⊆ xoyoN ⊆ O. This proves that o is continuous on P. Now, let O be an open neighborhood of
x−1. By the definition of the topology τℵ, there exists a normal subgroup N such that x−1oN ⊆ O. Since Nox
is an open neighborhood of x, (Nox)−1 = x−1oN−1 = x−1oN ⊆ O. Therefore inv is continuous, this completes
the proof.

Theorem 4.4. Any normal subpolygroup in the collection ℵ is a closed subpolygroup of P.

Proof. Let N be a normal subpolygroup in ℵ and y ∈ Nc. Then yoN ∩N = ∅, by the definition of topology τℵ,
yoN is an open neighborhood of y which yoN ⊆ Nc. This means the Nc is the open subset of P.

Theorem 4.5. (P, τℵ) is a Hausdorff space if and only if
⋂

N∈ℵN = {e}.

Proof. Let (P, τℵ) be a Hausdorff space. Since ℵ is a base of e in (P, τℵ), Proposition 1.5.2 of [9] implies⋂
N∈ℵN = {e}. But N ⊆ N, so

⋂
N∈ℵN = {e}.

Conversely, let
⋂

N∈ℵN = {e} and x, y be distinct elements of P. Then e ∈ x−1oy. By the assumption,
there exists N ∈ ℵ such that x−1oy ∩ N = ∅. Hence xoN, yoN are two open neighborhoods of x, y such that
xoN ∩ yoN = ∅, then we conclude that (P, τℵ) is a Housdorff space.

Theorem 4.6. Consider the topological polygroup (P, τℵ). The following statements are equivalent:
(i) (P, τℵ) is a T3 1

2
-space;

(ii) (P, τℵ) is a T3-space;
(iii) (P, τℵ) is a T2-space;
(iv) (P, τℵ) is a T1-space.

Proof. The proofs of (i) ⇒ (ii), (ii) ⇒ (iii) and (iii) ⇒ (iv) are clear. Let (P, τℵ) be a T1-space. Since τℵ is
a topology induced by uniformity, by Theorem 4.2.9 of [9], (P, τℵ) is completely regular and so (P, τℵ) is a
T3 1

2
-space.

Recall that a uniform space (X,U) is totally bounded if for each U ∈ U, there exist x1, x2, . . . . . . xn ∈ X
such that X =

⋃n
i=1 U[xi].

Theorem 4.7. Let ℵ be a family of normal subgroups of a polygroup P. Then the following conditions are equivalent:
(i) The topological polygroup (P, τℵ) is compact;
(ii) The topological polygroup (P,Uℵ) is totally bounded.

Proof. (i)⇒ (ii) This is clear by Theorem 14.3.8 from [17].
(ii)⇒ (i) Since ℵ is closed under intersection, so

⋂
N∈ℵN ∈ ℵ; we put N0 =

⋂
N∈ℵN. By the assumption,

there exist x1, x2, . . . xn ∈ P such that P =
⋃n

i=1 UN0 [xi]. Now suppose P =
⋃
α∈I Oα, where each Oα is an

open subset of P. Then for any xi ∈ P there exists αi ∈ I such that UN0 [xi] ⊆ Oαi . So P =
⋃n

i=1 UN0 [xi] ⊆⋃n
i=1 Oαi .Therefore P =

⋃n
i=1 Oαi , which means that (P, τℵ) is compact.

Corollary 4.8. (P, τℵ) is a complete space.

Proof. The proof is clear from Theorem 14.3.8 of [17].
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