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Abstract. Let R be a commutative ring with identity and let M be an R-module. We investigate when the
strongly prime spectrum of M has a Zariski topology analogous to that for R. We provide some examples
of such modules.

1. Introduction

In this paper all rings are commutative with nonzero identity and all modules are unital. Throughout
R will denote an arbitrary ring unless stated otherwise.

Recall that the spectrum Spec(R) of a ring R consists of all prime ideals of R. For any ideal I of R, we
set V(I) = {p ∈ Spec(R) | I ⊆ p}. Then the sets V(I), where I is an ideal of R, satisfy the axioms for the closed
sets of a topology on Spec(R), called the Zariski topology (see, for example, [7]). In this paper, our concern
is to extend this notion to modules. First we need to define what we shall mean by a (strongly) prime
submodule of a module.

Let M be an R-module and N be a submodule of M. Then (N :R M) denotes the ideal {r ∈ R | rM ⊆ N}
and the annihilator of M, denoted by AnnR(M), is the ideal (0M :R M). If there is no ambiguity, we will write
(N : M) (resp. Ann(M)) instead of (N :R M) (resp. AnnR(M)). N is said to be prime if N , M and whenever
rm ∈ N (where r ∈ R and m ∈M) then r ∈ (N : M) or m ∈ N. If N is prime, then ideal p := (N : M) is a prime
ideal of R. In this case, N is said to be p-prime (see [11, 15]). Naghipour in [18] defined a proper submodule
N of an R-module M to be strongly prime if ((N + Rx) :R M)y ⊆ N implies x ∈ N or y ∈ N for x, y ∈ M. The
set of all strongly prime submodules of an R-module M is called the strongly prime spectrum of M and is
denoted by XM. Prime submodules and its variants such as strongly prime submodule [18], weakly prime
submodules [6], almost prime submodules [10] and so on have been studied recently in a number of papers,
for a common generalization of these concepts we refer the reader to [9]. By [18, Proposition 1.1] every
strongly prime submodule is prime.

In section 2, we introduce modules whose strongly prime spectrum admits a topology. We investigate
its algebraic properties and relationship with other type of modules in Theorems 2.1 and 2.2. Also, we
study the Noetherian property of the topological space XM (see Theorem 2.3). To provide more examples
of modules that XM admits a topology we introduce a new family of modules. Section 3 is devoted to a
study of this new family of modules in details. In particular, we show that distributive modules satisfy the
new family of modules. Also, we generalize some results of previous literature. The results are supported
by examples.
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2. Topology on XM

For any submodule N of an R-module M we define V(N) to be the set of all strongly prime submodules
of M containing N. Of course, V(M) = ∅ just the empty set and V(0) is XM. Note that for any family of
submodules {Ni}i∈I of M, ⋂

i∈I

V(Ni) = V(
∑
i∈I

Ni).

Thus if Z(M) denotes the collection of all subsets V(N) of XM then Z(M) contains the empty set and XM, and
Z(M) is closed under arbitrary intersections. We shall say that M is a module with a Zariski topology if Z(M) is
closed under finite unions, i.e. for any submodules N and L of M there exists a submodule J of M such that
V(N) ∪ V(L) = V(J), for in this case Z(M) satisfies the axioms for the closed subsets of a topological space.
Note that we are not excluding the trivial case where XM is empty.

In this section, we are going to give examples of modules with a Zariski topology and we are interested
in investigating the algebraic properties of this class of modules as well as topological properties of XM.

A submodule N of M is said to be strongly semiprime if it is an intersection of strongly prime submodules
(e.g. every proper submodule of a co-semisimple module is a strongly-semiprime submodule (see [2,
p.122])). Our definition differs from that of [18]. LetA(R) denote the set of all R-modules M such that either
XM = ∅ or for every strongly prime submodule P of M and strongly semiprime submodules N and L of M
with N ∩ L ⊆ P we infer that either L ⊆ P or N ⊆ P. Let N be a submodule of an R-module M. Then we
define the strongly prime radical of N as Srad(N) =

⋂
P∈V(N) P.

Lemma 2.1. Let M be an R-module. Then M is a module with a Zariski topology if and only if M ∈ A(R).

Proof. (⇒) Let P be any strongly prime submodule of M and let N and L be strongly semiprime submodules
of M such that N ∩ L ⊆ P. By assumption, there exists a submodule H of M such that V(N) ∪ V(L) = V(H).
There is a collection of strongly prime submodules {Qi}i∈I such that N =

⋂
i∈I Qi. Thus, for each i ∈ I,

Qi ∈ V(N) ⊆ V(H). Hence, H ⊆ N. Similarly H ⊆ L. Therefore, H ⊆ N ∩ L. Now V(N) ∪ V(L) ⊆ V(N ∩ L) ⊆
V(H) = V(N) ∪ V(L). It follows that V(N) ∪ V(L) = V(N ∩ L). But P ∈ V(N ∩ L) now gives P ∈ V(N) or
P ∈ V(L), i.e. N ⊆ P or L ⊆ P.

(⇐) Let N and L be any submodules of M such that V(N) and V(L) are both non-empty. Then V(N)∪V(L) =
V(Srad(N)) ∪ V(Srad(L)) = V(Srad(N) ∩ Srad(L)), since M ∈ A(R).

Example 2.2. We give an example of a module M such that Z(M) is not a topological space. Consider M = R2 as a
vector space over the field of real numbers R. Suppose that L1,L2 and L3 are three distinct lines (maximal subspaces)
of M. By [18, Proposition 1.3], L1,L2 and L3 are strongly prime submodules of M. Note that L1∩L2 ⊆ L3 but L1 * L3
and L2 * L3. Thus, M < A(R). It follows from Lemma 2.1 that M is not a module with a Zariski topology.

In the next lemma we show that if M is a module with a Zariski topology over a filed, then it is a one
dimensional vector space.

Lemma 2.3. Let R be a field and M be an R-module with a strongly prime submodule P of M such that for every
strongly semiprime submodules N and L of M with N ∩ L ⊆ P we deduce that either L ⊆ P or N ⊆ P. Then M is a
one-dimensional vector space over R.

Proof. Suppose that M is not one-dimensional. Then P , 0, by [18, Proposition 1.3]. We take a non-zero
element p ∈ P. Since P , M, there exists an element m ∈ M \ P. Since in a vector space over a field,
every proper subspace is the intersection of all maximal (proper) subspaces which contain it (see [7, p.297,
Proposition 8]), by [18, Proposition 1.3], Rm and R(m+p) are strongly semiprime with Rm∩R(m+p) = 0 ⊆ P.
But Rm * P and R(m + p) * P. This is a contradiction.

Lemma 2.4. Let M be an R-module and N be a submodule of M. Then

XM/N = {P/N |P ∈ XM, N ⊆ P} .
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Proof. This follows from [9, Lemma 2.9].

Proposition 2.5. Let M ∈ A(R).

1. Any homomorphic image of M belongs toA(R).
2. M/mM is a cyclic module for any maximal ideal m of R.

Proof. (1) We have to show that for every submodule N of M, M/N ∈ A(R). By Lemma 2.4, every strongly
prime submodule of M/N is in the form P/N where P is a strongly prime submodule of M and N ⊆ P. Thus
any strongly semiprime submodule of M/N has the form Q/N where Q is a strongly semiprime submodule
containing N. Now, the result immediately follows.

(2) We may assume that M , mM. Then M/mM is a nonzero vector space over R/m, and so has a
maximal subspace, namely Q. Note that Q is also an R-submodule of M/mM. Thus there exists a maximal
submodule P of M such thatmM ⊆ P and P/mM = Q. Note that Q is a strongly prime submodule of M/mM
[18, Proposition 1.3]; so P is strongly prime by Lemma 2.3. Hence XM , ∅ and M/mM ∈ A(R/m). Therefore
by Lemma 2.3, M/mM is one-dimensional over R/m, i.e., M/mM is a cyclic R-module.

We recall that an R-module M is said to be a multiplication module (see [5] and [8]) if every submodule
N of M is of the form IM for some ideal I of R. Let N be a submodule of an R-module M and let p be a prime
ideal of R. Then the saturation of N with respect to p is the contraction of Np in M and designated by Sp(N).
It is known that Sp(N) = {e ∈M | se ∈ N for some s ∈ R \ p}. For more details we refer the reader to [13]. The
notion of saturation of ideals (or submodules) has been appeared in many literature, such as [3, 13, 19].

Lemma 2.6. Let M be an R-module and let S be a multiplicatively closed subset of R. Then

XS−1M = {S−1P |P ∈ XM and S−1P , S−1M}.

Proof. See [9, Theorem 2.10] or [18, Theorem 1.5].

Theorem 2.1. Consider the following statements for an R-module M.

1. M is a multiplication module;
2. For every submodule N of M there exists an ideal I of R such that V(N) = V(IM);
3. M belongs toA(R);
4. Mp belongs toA(Rp) for every prime ideal p of R;
5. M has at most one strongly prime submodule P with (P : M) = p for every prime ideal p of R.

Then (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5).

Proof. (1)⇒ (2) This is clear. (2)⇒ (3) Let N and L be two submodules of M. Then by (2), there exist ideals I
and J of R such that V(N)∪V(L) = V(IM)∪V(JM) = V(IJM) (see [16, Corollary 3.2]). Thus, M is a module with
a Zariski topology. Now the result follows from Lemma 2.1. (3)⇒ (4) Let P be a strongly prime submodule
of Mp. Then by Lemma 2.6, there exists a strongly prime submodule Q of M such that Qe := Qp = P. Now
let N1 and N2 be strongly semiprime submodules of Mp with N1 ∩ N2 ⊆ P. Then N1 ∩M and N2 ∩M are
strongly semiprime submodules of M with (N1 ∩M) ∩ (N2 ∩M) = (N1 ∩N2) ∩M ⊆ P ∩M. By Lemma 2.6,
P ∩M ∈ XM. Hence, N1 ∩M ⊆ P ∩M or N2 ∩M ⊆ P ∩M. It follows that N1 = (N1 ∩M)e

⊆ (P ∩M)e = P
or N2 ⊆ P. Thus, Mp belongs to A(Rp). (4) ⇒ (5) Let p be any prime ideal of R such that there exists
a strongly prime submodule P of M with (P : M) = p. Then pM ⊆ P. It follows that (pM)e

⊆ Pe
⊆ Mp.

By Proposition 2.5, Mp/pMp is cyclic so that Pe = (pM)e or Pe = Mp. Hence, by [13, Result 2] we have
P = Sp(P) = Pe

∩M = (pM)e
∩M = Sp(pM), or P = Sp(M) = M. Thus, P = Sp(pM). It follows that P = Sp(pM)

is the unique strongly prime submodule of M with (P : M) = p.
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In next theorem we present new examples of modules with the Zariski topology. Let M be an R-module.
For every x ∈M, we define c(x) as the intersection of all ideals I of R such that x ∈ IM. A module M is called
a content R-module if, for every x ∈ M, x ∈ c(x)M. Every free module, or more generally, every projective
module, is a content module [21, p.51]. An R-module M is a content module if and only if for every family
{Ai|i ∈ J} of ideals of R, (∩i∈JAi)M = ∩i∈J(AiM) (see [21, p.51]). The equivalence above implies that every
faithful multiplication module is also a content module [8, p.758, Theorem 1.6]. Let B(R) denote the set
of all R-modules M such that either XM = ∅ or for every strongly prime submodule P of M there exists an
ideal I of R such that P = IM. In Section 3, we show that B(R) is non-empty and we investigate properties
of elements of B(R) in details.

Theorem 2.2. Let M be an R-module.

1. If M is content and belongs to B(R), then M ∈ A(R).
2. If M is free, then M ∈ A(R) if and only if M is cyclic.
3. If M is projective, then M ∈ A(R) if and only if M is locally cyclic.
4. Let dim R = 0 and R has only finitely many prime ideals. If M has at most one strongly prime submodule P

with (P : M) = p for every prime ideal p of R, then M ∈ A(R).
5. If Srad(N) =

√
(N : M)M, for each submodule N of M, then M ∈ A(R).

Proof. (1) Let L be a submodule of M and let Srad(L) =
⋂
λ∈Λ Pλ, where Pλ is a strongly prime submodule of

M such that pλ := (Pλ : M) for each λ ∈ Λ. By assumption, for each λ ∈ Λ, Pλ = pλM. Since M is a content
module, we have

Srad(L) =
⋂
λ∈Λ

Pλ =
⋂
λ∈Λ

(pλM) = (
⋂
λ∈Λ

pλ)M = (
⋂
λ∈Λ

(Pλ : M))M

= ((
⋂
λ∈Λ

Pλ) : M)M = (Srad(L) : M)M.

Therefore, V(L) = V(Srad(L)) = V((Srad(L) : M)M) and the result follows from Theorem 2.1.
(2) If M is a cyclic R-module, then it is a multiplication module (see [5]). Hence, Theorem 2.1 implies that

M ∈ A(R). Conversely, suppose that M ∈ A(R). Let { fλ |λ ∈ Λ} be a basis for M. Letm be any maximal ideal
of R. Then M/mM is a free R/m-module with basis { fλ+mM |λ ∈ Λ}. But M/mM is cyclic by Proposition 2.5.
Thus, M is cyclic.

(3) Let M ∈ A(R) and p be any prime ideal of R. By Theorem 2.1 the Rp-module Mp belongs to A(Rp).
Since M is projective, Mp is free and so that Mp is cyclic by (2). Thus M is locally cyclic. The converse
follows from [16, Theorem 4.1].

(4) Assume that M < A(R). Then it follows that there exist strongly semiprime submodules S1 and S2 of
M and a strongly prime submodule P of M such that S1 ∩S2 ⊆ P but S1 * P and S2 * P. Put S1 =

⋂
i∈I Pi and

S2 =
⋂

j∈J Q j, where Pi and Q j are strongly prime submodules of M for each i ∈ I and j ∈ J. Since S1 * P, we
have Pi * P for every i ∈ I. Similarly, Qi * P for every j ∈ J. On the other hand, we have (S1 : M) ⊆ (P : M)
or (S2 : M) ⊆ (P : M), because S1 ∩ S2 ⊆ P. Thus

⋂
i∈I(Pi : M) ⊆ (P : M) or

⋂
j∈J(Q j : M) ⊆ (P : M).

By assumption, both I and J are finite index sets. Consequently, there exists i0 ∈ I or j0 ∈ J such that
(Pi0 : M) = (P : M) or (Q j0 : M) = (P : M), since dim R = 0. By assumption, Pi0 = P or Q j0 = P, which is a
contradiction.

(5) Let N be a submodule of M. If V(N) = ∅, then V(N) = V(RM). Otherwise, V(N) = V(Srad(N)) =

V(
√

(N : M)M). In both cases, the result follows from Theorem 2.1.

In the next section we will provide another example of a module with a Zariski topology (see Theo-
rem 3.2). In the sequel, we investigate a topological property of XM. A topological space X is said to be
Noetherian if the open subsets of X satisfy the ascending chain condition. Recall that a ring has Noetherian
spectrum if and only if the ascending chain condition (ACC) for radical ideals holds [20]. In the next
theorem, we generalize this fact to modules that belong toA(R). Let M be an R-module and Y be a subset
of XM. Then the intersection of all elements in Y is denoted by =(Y).

intersections and form an open base; (4) each irreducible closed subset of Y has a generic point.
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Theorem 2.3. Let M be an R-module.
1. If M ∈ A(R), then XM is a Noetherian topological space if and only if the ACC holds for strongly prime radical

submodules of M.
2. If M ∈ A(R) and for every submodule N of M there exists a finitely generated submodule L of N such that

Srad(N) = Srad(L), then XM is a Noetherian topological space.
3. Let R be a Noetherian ring and M be an R-module such that for every submodule N of M there exists an ideal I

of R such that V(N) = V(IM). Then XM is a Noetherian topological space.
4. If Srad(N) =

√
(N : M)M, for each submodule N of M, and Spec(R) is Noetherian, then XM is a Noetherian

topological space.

Proof. (1) Suppose the ACC for strongly prime radical submodules of M holds. Let V(N1) ⊇ V(N2) ⊇ · · · be
a descending chain of closed subsets of XM, where Ni ≤M. Then=(V(N1)) ⊆ =(V(N2)) ⊆ · · · is an ascending
chain of strongly prime radical submodules=(V(Ni)) = Srad(Ni) of M. So, by assumption there exists k ∈N
such that for all i ∈N, =(V(Nk)) = =(V(Nk+i)). Now, we infer that

V(Nk) = V(=(V(Nk))) = V(=(V(Nk+i))) = V(Nk+i).

Hence, the first chain is stationary, i.e., XM is a Noetherian space.
Conversely, we suppose that XM is a Noetherian topological space. Let N1 ⊆ N2 ⊆ · · · be an ascending

chain of strongly prime radical submodules of M. Thus Ni = =(V(Ni)) = Srad(Ni). Hence V(N1) ⊇ V(N2) ⊇
· · · is a descending chain of closed subsets of XM. By assumption there is k ∈ N such that for all i ∈ N,
V(Nk) = V(Nk+i). Therefore

Nk = Srad(Nk) = =(V(Nk)) = =(V(Nk+i)) = Srad(Nk+i) = Nk+i.

(2) Let N1 ⊆ N2 ⊆ N3 ⊆ · · · be an ascending chain of strongly prime radical submodules of M, and let
N =

⋃
i Ni. By assumption, there exists a finitely generated submodule L of N such that Srad(N) = Srad(L).

Hence there exists a positive integer n such that L ⊆ Nn. Then

Srad(N) = Srad(L) ⊆ Srad(Nn) ⊆ Srad(N),

so that Nn = Nn+1 = Nn+2 = · · · . Thus, M satisfies ACC on strongly prime radical submodules. Hence, by
(1), XM is a Noetherian topological space.

(3) We note that Theorem 2.1 shows that M belongs toA(R). By [7, p.97, Proposition 9], it is enough for
us to show that every open subset of X is quasi-compact. Let H be an open subset of M and let {Eλ}λ∈Λ be an
open covering of H. Then there are submodules N and Nλ of M such that H = X \V(N) and Eλ = X \V(Nλ)
for each λ ∈ Λ and

H ⊆
⋃
λ∈Λ

Eλ = X \
⋂
λ∈Λ

V(Nλ).

By assumption, for each λ ∈ Λ, we may set V(Nλ) = V(JλM), where Jλ is an ideal of R. Then

H ⊆ X \ V(
∑
λ∈Λ

JλM) = X \ V((
∑
λ∈Λ

Jλ)M).

Since R is a Noetherian ring, there exists a finite subset Λ′ of Λ such that H ⊆
⋃
λ∈Λ′ Eλ. Hence, H is

quasi-compact. Therefore X is a Noetherian space.
(4) We note that according to Theorem 2.2, M belongs toA(R). Let V(N1) ⊇ V(N2) ⊇ · · · be a descending

chain of closed subsets of XM. Then, we have Srad(N1) ⊆ Srad(N2) ⊆ · · · . For each i ∈N, there is a set Λi, such
that Srad(Ni) =

⋂
λ∈Λi

Pλ, where for everyλ ∈ Λi, Pλ ∈ V(Ni). We may assume that Λi , ∅ for each i ∈N. If for
each i ∈N there exists someλi such thatλi ∈ Λi and (Pλi : M) = (0), then

√
(0)M = Srad(N1) = Srad(N2) = · · ·

and we are done. If not, suppose that j is the largest index such that (Pλ : M) = (0) for some λ ∈ Λ j (if
there is no such index, put j = 0). Hence,

√
(0)M = Srad(N1) = Srad(N2) = · · · = Srad(N j). By assumption,

for each k > j and λ ∈ Λk, Srad(Nλ) =
√

(Nλ : M)M. Since Spec(R) is Noetherian, the ascending chain√
(Nk : M) ⊆

√
(Nk+1 : M) ⊆ · · · of radical ideals must be stationary (see [20]). This implies that there exists

h ≥ k such that V(Nh) = V(Nh+1) = · · · . Thus XM is a Noetherian topological space.
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Corollary 2.7. Let M be an R-module such that M ∈ A(R). If M is Noetherian or Artinian, then XM is a Noetherian
topological space.

Proof. Use Theorem 2.3 and [17, p.1367, Proposition 18].

3. Modules Belong toB(R)

The Part (1) of Theorem 2.2 is a motivation for us to investigate some properties of modules in B(R).
One can easily show that if M ∈ B(R), then P = (P : M)M for every strongly prime submodule P of M.

Proposition 3.1. Let M ∈ B(R) and p ∈ Spec(R). Then there is at most one strongly prime submodule P of M such
that (P : M) = p.

Proof. We may assume that XM is non-empty. Let P and Q be two strongly prime submodules of M such
that (P : M) = (Q : M) = p. Since M ∈ B(R),

P = (P : M)M = (Q : M)M = Q,

as desired.

The following result is a direct consequence of Lemma 2.1, Theorem 2.2(4) and Proposition 3.1.

Corollary 3.2. Let R be a zero dimensional ring with only finitely many prime ideals and M be an R-module such
that M ∈ B(R). Then M is a module with Zariski topology.

An R-module M is called weak multiplication if every prime submodule P of M is of the form IM for
some ideal I of R (see [1] and [4]). By definition, if M is a weak multiplication R-module, then M ∈ B(R).
However, in the next example we show that B(R) is strictly larger than the class of weak multiplication
modules.

Example 3.3. We claim that theZ-module M = Q⊕
(⊕

i∈I
Z

piZ

)
,where {pi}i∈I is the set of all prime integers, belongs

to B(Z) and M is not a weak multiplication module. For, it is easy to see that Max(M) = {pM | p is a prime integer}
and the set of all prime submodules of M is

Max(M) ∪

(0) ⊕

⊕
i∈I

Z

piZ


 .

Hence, M is not weak multiplication. To show that M belongs to B(Z), it is enough for us to show that L :=
(0) ⊕ (

⊕
i∈IZ/piZ) is not a strongly prime submodule. Let x, y ∈M \ L. Therefore,

(((0) ⊕ (
⊕

i∈I

Z/piZ) +Zx) :Z M)y = ((Zx ⊕ (
⊕

i∈I

Z/piZ)) :Z M)y = (Zx :Z Q)y = (0).

This implies that (L+Zx : M)y = (0) ⊆ L. Hence, L is not a strongly prime submodule of M and so XM = Max(M) =
{pM | p is a prime integer}. This shows that M ∈ B(Z).

The next theorem indicates a local property.

Theorem 3.1. Let M be an R-module. Then M ∈ B(R) if and only if Mp ∈ B(Rp) for every prime (or maximal) ideal
p of R.
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Proof. Let M ∈ B(R) and P be a strongly prime submodule of Mp where p is a prime ideal of R. According
to Lemma 2.6, there exists a strongly prime submodule Q of M such that Qp = P. Since M ∈ B(R), there is
an ideal I of R such that Q = IM. Therefore, P = Qp = IpMp.

Conversely, let P be a strongly prime submodule of M and let m be an arbitrary maximal ideal of R. If
Pm , Mm, then by Lemma 2.6, Pm is a strongly prime submodule of Mm, so Pm = (Pm : Mm)Mm. Since every
strongly prime submodule is prime, it follows from [12, Corollary 1] that(

P
(P : M)M

)
m

=
Pm

(P : M)mMm

=
Pm

(Pm : Mm)Mm

= (0).

If Pm = Mm, then (Pm : Mm) = Rm. Hence,(
P

(P : M)M

)
m

=
Pm

(P : M)mMm

=
Mm

Mm

= (0).

Therefore P = (P : M)M. This shows that M ∈ B(R).

Corollary 3.4. Let M ∈ B(R) and p be a minimal prime ideal of R. Then Mp ∈ A(Rp).

Proof. By Theorem 3.1 we have Mp ∈ B(Rp). Hence, Corollary 3.2 implies that Mp ∈ A(Rp).

We recall that an R-module is called uniserial if its submodules are linearly ordered by inclusion (see
[23]). Obviously, any uniserial module belongs toA(R). An R-module M is called distributive if the lattice
of its submodules is distributive, i.e., A∩ (B + C) = (A∩ B) + (A∩ C) and A + (B∩ C) = (A + B)∩ (A + C) for
all submodules A,B and C of M (see [5]). Theorem 3.1 enables us to show that every distributive module
belongs to both B(R) andA(R).

Theorem 3.2. If M is a distributive R-module, then M ∈ A(R) ∩ B(R).

Proof. Let P be a strongly prime submodule of a distributive R-module M such that p := (P : M). Let N and
L be two arbitrary submodules of M such that N ∩ L ⊆ P. Then by Lemma 2.6, Pp is strongly prime, and
Np ∩ Lp = (N ∩ L)p ⊆ Pp. Since Mp is distributive and Rp is a local ring, by [22, Corollary 1], Mp is uniserial.
Therefore, either Np ⊆ Pp or Lp ⊆ Pp. Consequently either N ⊆ Np ∩M ⊆ Pp ∩M = P or L ⊆ P. This shows
that M ∈ A(R).

We show that M ∈ B(R). By Theorem 3.1, it is enough for us to show that for each prime ideal p ∈ Spec(R),
Mp ∈ B(Rp). Let P ∈ XMp and m ∈ P. Since P is a proper submodule of Mp, there is an element m′ ∈ Mp \ P.
By assumption, Mp is uniserial. Hence, P ⊆ m′Rp. This implies that rm′ = m ∈ P for some r ∈ Rp. Since P is
strongly prime, we infer that r ∈ (P :Rp Mp). Thus m ∈ (P :Rp Mp)Mp. This yields that P = (P :Rp Mp)Mp. We
conclude that Mp ∈ B(Rp).

Question: Is the converse of Theorem 3.2 true?

Recall that if R is an integral domain with quotient field K, the rank of an R-module M (rank M or rankR M)
is defined to be the maximal number of elements of M linearly independent over R. Indeed, the rank of
M is equal to the dimension of the vector space KM over K, that is rank M = rankK KM (see [14]). The next
proposition is a generalization of [4, Proposition 2.4]. It is shown in [4, Proposition 2.4] that if M is a weak
multiplication module over an integral domain, then the following statements hold.

1. if M is a nonzero torsion-free module, then rank M = 1.
2. if M is a torsion module, then rank M = 0.

Proposition 3.5. Let R be an integral domain and M ∈ B(R). Then

1. If M is a nonzero torsion-free module, then rank M = 1.
2. If M is a torsion module, then rank M = 0.
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Proof. (1) First let R be a field and 0 , M ∈ B(R) be a vector space. If rank M > 1, then let 0 , V be a maximal
subspace of M. By [18, Proposition 1.3], V is a strongly prime submodule of M, and since M ∈ B(R), V = IM,
where I is an ideal of the field R. So I = 0 or I = R, which is a contradiction. Hence rank M ≤ 1, and since
0 , M, then rank M = 1.

Now in the general case, if M is a nonzero torsion-free R-module, then KM , 0, where K is the quotient
field of R. By Theorem 3.1, KM ∈ B(K) is a K-vector space, and as we mentioned above, rankK KM = 1.
Hence, rank M = rankK KM = 1.

(2) Suppose that M is a torsion module. Then KM = 0 and therefore rank M = rankK KM = 0.

Let M be an R-module and consider the following map.

fM :XM −→ Spec(R/Ann(M))
P 7−→ (P :R M)/Ann(M)

Then fM is called the natural map of XM. Obviously, if M is a multiplication R-module, then M ∈ B(R). We
are going to show that the converse is true if M is finitely generated. According to [9, Corollary 4.4] every
finitely generated module has the surjective natural map. However, the converse is not true in general. For
example, consider the faithful Z-module M = Z ⊕Z(p∞). It is easy to see that

XM = {pM | p is a prime integer} ∪ {(0) ⊕Z(p∞)}.

This implies that for every prime ideal p of Z, there exists a strongly prime submodule P := pM of M such
that (P : M) = p, i.e. M has the surjective natural map. We note that M is not finitely generated.

Modules with surjective natural map have interesting property. For example, the following result is a
generalization of Nakayama lemma to the class of all modules with surjective natural map.

Lemma 3.6 (Nakayama’s Lemma). Let M be an R-module with surjective natural map and I be an ideal of R
contained in the Jacobson radical of R. If IM = M, then M = 0.

Proof. Let M , 0. Then there is a maximal ideal m of R such that Ann(M) ⊆ m. By assumption there is
s strongly prime submodule P of M such that (P : M) = m. Thus, M = IM ⊆ mM ⊆ P, a contradiction.
Therefore M = 0.

We recall that by [5, Proposition 5] a finitely generated module is a multiplication module if and only if
it is locally cyclic. Thus, the next theorem is a major generalization of [4, Theorem 2.7]. More precisely, it
is shown in [4, Theorem 2.7] that every finitely generated weak multiplication module is a multiplication
module.

Theorem 3.3. Let M ∈ B(R) be a non-zero R-module with surjective natural map. Then M is locally cyclic.

Proof. By assumption Supp(M) is a non-empty set. Let p ∈ Supp(M). Then it follows from Theorem 3.1 that
Mp ∈ B(Rp).

We claim that Mp is an Rp-module with surjective natural map. Suppose that Ann(Mp) ⊆ q ∈ Spec(Rp).
Then there is a prime ideal q′ of R such that (Ann(M))p ⊆ Ann(Mp) ⊆ q′Rp = q ⊆ pRp. Taking the contraction
of each term of this sequence of ideals in R, we have that Ann(M) ⊆ q′ ⊆ p. Thus, q′ is a prime ideal
of R containing Ann(M) so that by assumption there is a strongly prime submodule Q of M such that
(Q : M) = q′. By Lemma 2.6, QRp is a strongly prime submodule of Mp and [12, p.3742, Corollary 3 to
Proposition 1] yields that (QRp :Rp Mp) = q′Rp = q.

Also, it is easy to see that Mp/pMp ∈ B(Rp). If pMp = Mp, then by Lemma 3.6, Mp = 0, a contradiction.
So pMp , Mp whence by Proposition 3.5 we infer that rank Rp

pRp

Mp
pMp

= 1. Thus Mp is a cyclic Rp-module.

Therefore M is a locally cyclic R-module.

Corollary 3.7. If M is a finitely generated R-module, then the following statements are equivalent:
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1. M belongs toA(R);
2. M is multiplication;
3. M belongs to B(R);

Proof. (1)⇒ (2) Use Proposition 2.5 and [8, Corollary 1.5]. (2)⇒ (1) Use Theorem 2.1. (2)⇒ (3) This is true
by definition. (3)⇒ (2) Use Theorem 3.3 and [5, Proposition 5].

The next theorem is a generalization of [4, Theorem 2.8]. More precisely, it is shown in [4, Theorem 2.8]
that if R is a ring, then the following are equivalent.

1. dim R = 0.
2. For every weak multiplication R-module M, if S(0)(0) = 0, then M is cyclic.
3. For every weak multiplication R-module M, if S(0)(0) = 0, then M is a multiplication module.

Theorem 3.4. Suppose that R is a ring. Then the following statements are equivalent.

1. dim R = 0.
2. Every torsion-free R-module M ∈ B(R) is cyclic.
3. Every torsion-free R-module M ∈ B(R) is multiplication.

Proof. (1)⇒ (2) First let R be a field and let M ∈ B(R) be a torsion-free R-module. If M = 0, then M is cyclic.
So, let 0 , M. Hence, M is a nonzero vector space over the field R. According to Proposition 3.5, we have
rank M = 1. That is M � R, and M is cyclic.

Now we assume that R is an arbitrary ring and 0 , M. It is easy to see that T(M) = 0 is a prime
submodule of M where T(M) is the torsion submodule of M. By [11, Theorem 1], M � M/(0) = M/T(M) is
a torsion-free R/(T(M) : M)-module. Since (T(M) : M) is a prime ideal of R and dim R = 0, R/(T(M) : M) is
a field. So, M ∈ B(R/(T(M) : M)) is a torsion-free module over the field R/(T(M) : M). As we mentioned
above M is a cyclic R/(T(M) : M)-module and whence M is a cyclic R-module. (2)⇒ (3) Every cyclic module
is multiplication (see [5]). (3) ⇒ (1) Let p be a prime ideal of R. If K is the quotient field of the integral
domain R/p, then by [12, Theorem 1], K as R

p
-module has only one strongly prime submodule, namely (0).

So K is a torsion-free R/p-module and M ∈ B(R/p). By assumption it is a multiplication module. Since R/p
is a submodule of K, R/p = IK, where I is a nonzero ideal I of R/p. Note that IK = K. Hence R/p = K.
Therefore p is a maximal ideal. Consequently dim R = 0.

Corollary 3.8. If R is an integral domain, then the following statements are equivalent.

1. R is a field;
2. Every R-module M ∈ B(R) is cyclic;
3. Every R-module M ∈ B(R) is a multiplication module.

Proof. This follows from Theorem 3.4.

It is shown in [5, Proposition 8] that every finitely generated Artinian multiplication module is cyclic.
The following result is a generalization of [5, Proposition 8].

Proposition 3.9. Let R be an Artinian ring and M ∈ B(R). Then M is cyclic.

Proof. Let p be a prime ideal of R. Then Mp ∈ B(Rp) by Theorem 3.1. Since Rp is Artinian, there is
some integer n ∈ N such that (pRp)n = (0). If pMp = Mp, then Mp = (pRp)nMp = (0). Otherwise,
Mp/pMp belongs to B(Rp/pRp) and by Proposition 3.5, rank Rp

pRp

Mp
pMp

= 1. This yields that pMp is a maximal

submodule of Mp. If x ∈ Mp \ pMp, then pMp ⊂ pMp + xRp ⊆ Mp, and therefore pMp + xRp = Mp. Thus
(0) = (pRp)n Mp

xRp
= pRp

Mp
xRp

=
Mp
xRp

. Therefore, Mp = xRp. Hence, M is locally cyclic and the result follows from
[5, Lemma 3].
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