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Abstract. We study the split feasibility problem (SFP) involving the fixed point problems (FPP) in the
framework of p-uniformly convex and uniformly smooth Banach spaces. We propose a Halpern-type
iterative scheme for solving the solution of SFP and FPP of Bregman relatively nonexpansive semigroup.
Then we prove its strong convergence theorem of the sequences generated by our iterative scheme under
implemented conditions. We finally provide some numerical examples and demonstrate the efficiency
of the proposed algorithm. The obtained result of this paper complements many recent results in this
direction.

1. Introduction

Throughout in this paper, we let E1 and E2 be two p-uniformly convex real Banach spaces which are also
uniformly smooth. Let C and Q be nonempty, closed and convex subsets of E1 and E2, respectively. Let
A : E1 → E2 be a bounded linear operator and A∗ : E∗2 → E∗1 be the adjoint of A which is defined by

〈A∗y, x〉 := 〈y,Ax〉, (1)

for all x ∈ C and y ∈ E∗2. We consider the following split feasibility problem (SFP): find an element

x̂ ∈ C such that Ax̂ ∈ Q. (2)

The set of solutions of problem (2) is denoted by Γ := C ∩ A−1(Q) = {x ∈ C : Ax ∈ Q}. We assume that Γ
is nonempty. Then, we have Γ is a closed and convex subset of E1. It is clear that x̂ is a solution to the
split feasibility problem (2) if and only if x̂ ∈ C and Ax̂ − PQAx̂ = 0. The split feasibility problem originally
introduced in Censor and Elfving [11] in finite-dimensional Hilbert spaces for modeling inverse problems
which arise from phase retrievals and in medical image reconstruction. Recently, SFP can also be used to
model the intensity-modulated radiation therapy [10, 12–14].
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Let H1 and H2 be real Hilbert spaces and A : H1 → H2 a bounded linear operator. Let C and Q be
nonempty, closed and convex subsets of H1 and H2, respectively. In order to solve the SFP in Hilbert spaces,
Byrne [10] introduced the following CQ algorithm: x1 ∈ C and

xn+1 = PC(xn − λA∗(I − PQ)Axn), n ≥ 1, (3)

where λ > 0, PC and PQ are the metric projections on C and Q, respectively. It was proved that the sequence
{xn} defined by (5.1) converges weakly to a solution of the SFP provided the step-size λ ∈ (0, 2

‖A‖2 ).
In the setting of Banach spaces, Schöpfer et al. [26] first introduced the following algorithm for solving

the SFP: x1 ∈ E1 and

xn+1 = ΠC J∗E1
[JE1 (xn) − λnA∗ JE2 (Axn − PQ(Axn))], n ≥ 1, (4)

where {λn} is a positive sequence, ΠC denotes the generalized projection on E, PQ is the metric projection
on E2, JE1 is the duality mapping on E1 and J∗E1

is the duality mapping on E∗1. It was proved that the
sequence {xn} converges weakly to a solution of SFP, under some mild conditions, in p-uniformly convex
and uniformly smooth Banach spaces. To be more precisely, the condition that the duality mapping of E1 is
sequentially weak-to-weak-continuous is assumed in [26] (which excludes some important Banach spaces,
such as the classical Lp(2 < p < ∞) spaces). Please see some modifications in [27, 28].

Recently, Wang [31] modified the above algorithm (4) and proved its strong convergence for the following
multiple-sets split feasibility problem (MSSFP): find x ∈ E1 satisfying

x ∈
r⋂

i=1

Ci,Ax ∈
r+s⋂

j=1+r

Q j, (5)

where r, s are two given integers, Ci, i = 1, . . . , r is a closed convex subset in E1, and Q j, j = r + 1, . . . , r + s, is
a closed convex subset in E2. He defined for each n ∈N,

Tn(x) =

{
ΠCi(n)(x), 1 ≤ i(n) ≤ r,
JE1
q [JE1

p (x) − λnA∗ JE2
p (Ax − PQ j(n)(Ax))], r + 1 ≤ i(n) ≤ r + s,

where i :N→ I is the cyclic control mapping

i(n) = n mod (r + s) + 1,

and λn satisfies

0 < λ ≤ λn ≤
( q
κq||A||q

) 1
q−1
, (6)

with κq a uniform smoothness constant and proposed the following algorithm: For any initial guess x1,
define {xn} recursively by

yn = Tnxn
Dn = {w ∈ E1 : ∆p(yn,w) ≤ ∆p(xn,w)}
En = {w ∈ E1 : 〈xn − w, Jp(x1) − Jp(xn) ≥ 0}
xn+1 = ΠDn∩En (x1).

(7)

Using the idea in the work of Nakajo and Takahashi [23], he proved the following strong convergence
theorem in p-uniformly convex Banach spaces which is also uniformly smooth.

Theorem 1.1. Let E1 and E2 be two p-uniformly convex real Banach spaces which are also uniformly smooth. Let C
and Q be nonempty, closed and convex subsets of E1 and E2 respectively, A : E1 → E2 be a bounded linear operator
and A∗ : E∗2 → E∗1 be the adjoint of A. Suppose that SFP (5) has a nonempty solution set Ω. Let the sequence {xn} be
generated by (7). Then {xn} converges strongly to the Bregman projection of x1 onto the solution set Ω.
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It is observed that the main advantage of result of Wang [31] is that the weak-to-weak continuity of the
duality mapping, assumed in [26] is dispensed with and strong convergence result was achieved.

Recently, Shehu et al. [29] introduced a new iterative scheme for solving the SFP and the fixed point
problem of Bregman strongly nonexpansive mappings in the framework of p-uniformly convex real Banach
spaces which are also uniformly smooth as follows: u ∈ C, u1 ∈ E1 and xn = ΠC JE∗1

q

(
JE1
p (un) − λnA∗ JE2

p (I − PQ)Aun

)
un+1 = ΠC JE∗1

q

[
αn JE1

p (u) + (1 − αn)
(
βn JE1

p (xn) + (1 − βn)Txn

)]
, ∀n ≥ 1,

(8)

where {αn} and {βn} are sequences in (0, 1). It was proved that the sequence {xn} and {un} defined by (8)
converge strongly to a solution of the problem under some mild conditions.

It is our purpose in this paper to construct an iterative scheme for approximating a solution to split
feasibility problems which is also a fixed point of a Bregman relatively nonexpansive semigroup. We also
prove its strong convergence of the sequence generated by our scheme in p-uniformly convex real Banach
spaces which are uniformly smooth. Our result complements the results of Byrne [10], Schöpfer et al. [26],
Wang [31], Shehu et al. [29] and many other recent results in the literature.

2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖ and dual space E∗ of E. Let S(E) := {x ∈ E : ‖x‖ = 1} denote
the unit sphere of E. The modulus of convexity of E is the function δE : (0, 2]→ [0, 1] defined by

δE(ε) = inf
{
1 − ‖x+y‖

2 : x, y ∈ S(E), ‖x − y‖ ≥ ε
}
.

The space E is said to be uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2]. Let p > 1. Then E is said to
be p-uniformly convex (or to have a modulus of convexity of power type p) if there is a cp > 0 such that
δE(ε) ≥ cpεp for all ε ∈ (0, 2]. Observe that every p-uniformly convex space is uniformly convex. The modulus
of smoothness of E is the function ρE : R+ := [0,∞)→ R+ defined by

ρE(τ) = sup
{
‖x+τy‖+‖x−τy‖

2 − 1 : x, y ∈ S(E)
}
.

The space E is said to be uniformly smooth if ρE(τ)
τ → 0 as τ → 0. Suppose that q > 1, a Banach space E is

said to be q-uniformly smooth if there exists a κq > 0 such that ρE(τ) ≤ κqτq for all τ > 0. If E is q-uniformly
smooth, then q ≤ 2 and E is uniformly smooth. It is known that E is p-uniformly convex if and only if E∗

is q-uniformly smooth. Moreover, we note that a Banach space E is p-uniformly convex if and only if E is
q-uniformly smooth, where p and q satisfy 1

p + 1
q = 1 (see [32]).

Let p > 1 be a real number. The generalized duality mapping JE
p : E→ 2E∗ is defined by

JE
p (x) = {x̄ ∈ E∗ : 〈x, x̄〉 = ‖x‖p, ‖x̄‖ = ‖x‖p−1

},

where 〈·, ·〉 denotes the duality pairing between E and E∗. In particular, JE
p = JE

2 is called the normalized
duality mapping.

Here and hereafter, we assume that E is a p-uniformly convex and uniformly smooth, which implies
that its dual space, E∗ is q-uniformly smooth and uniformly convex. In this situation, it is known that
the generalized duality mapping JE

p is one-to-one, single-valued and satisfies JE
p = (JE∗

q )−1, where JE∗
q is the

generalized duality mapping of E∗. Moreover, if E is uniformly smooth then the duality mapping JE
p is

norm-to-norm uniformly continuous on bounded subsets of E. (see [1, 17] for more details).
The examples of generalized duality mapping are shown in below:

Example 2.1. ([1]) Let x = (x1, x2, ...) ∈ `p (1 < p < ∞). Then the generalized duality mapping Jp in `p is given by

J`p
p (x) = (|x1|

p−1s1n(x1), |x2|
p−1s1n(x2), ...).
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Example 2.2. ([1]) Let f ∈ Lp([α, β]) (1 < p < ∞). Then the generalized duality mapping JLp
p is given by

JLp
p ( f )(t) = | f (t)|p−1s1n( f (t)).

Definition 2.3. ([9]) Let f : E → R be a convex and Gâteaux differentiable function. The function ∆ f : E × E →
[0,+∞) defined by

∆ f (x, y) := f (y) − f (x) − 〈 f ′(x), y − x〉,

is called the Bregman distance with respect to f .

We remark that the Bregman distance ∆ f is not satisfy the well-known properties of a metric because ∆ f is
not symmetric and does not satisfy the triangle inequality.

It is well known that the duality mapping JE
p is the sub-differential of the functional fp(·) = 1

p‖ · ‖
p for

p > 1 (see [15]). Then, we have the Bregman distance with respect to fp that

∆p(x, y) =
1
p
‖y‖p −

1
p
‖x‖p − 〈JE

p x, y − x〉

=
1
q
‖x‖p − 〈JE

p x, y〉 +
1
p
‖y‖p (9)

=
1
q
‖x‖p −

1
q
‖y‖p − 〈JE

p x − JE
p y, y〉.

If p = 2, we get ∂
(
‖x‖p

p

)
= ∂

(
‖x‖2

2

)
= 2Jx for all x ∈ E, where J is the normalized duality mapping. Then the

Bregman distance (9) reduce to ∆2(x, y) := φ(x, y) = ‖x‖2 − 2〈y, Jx〉 + ‖y‖2 for all x, y ∈ E, where φ is called
the Lyapunov function introduced by Alber [2, 3].

Moreover, the Bregman distance has the following important properties:

∆p(x, y) = ∆p(x, z) + ∆p(z, y) + 〈z − y, JE
p x − JE

p z〉, (10)

∆p(x, y) + ∆p(y, x) = 〈x − y, JE
p x − JE

p y〉, (11)

for all x, y, z ∈ E. For the p-uniformly convex space, the metric and Bregman distance has the following
relation (see [26]):

τ‖x − y‖p ≤ ∆p(x, y) ≤ 〈x − y, JE
p x − JE

p y〉, (12)

where τ > 0 is some fixed number.

Definition 2.4. Let E be a real Banach space. A one parameter family S = {T(t) : t ≥ 0} from E into E is said to be a
nonexpansive semigroup if it satisfies the following conditions:

(S1) T(0)x = x for all x ∈ E;

(S2) T(s + t) = T(s)T(t) for all s, t ≥ 0;

(S3) for each x ∈ E the mapping t 7→ T(t)x is continuous;

(S4) for each t ≥ 0, T(t) is nonexpansive, i.e.,

‖T(t)x − T(t)y‖ ≤ ‖x − y‖, ∀x, y ∈ E.

Remark 2.5. We denote by F(S) the set of all common fixed points of S, i.e., F(S) = {x ∈ C : T(t)x = x, t ≥ 0} =⋂
t≥0 F(T(t)).
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The theory of semigroup is very important in theory of differential equations. Let E = Rn and let L(E)
be the space of all bounded linear operators on E. Consider the the following initial value problem for a
system of homogeneous linear first-order differential equations with constant coefficients:

u′1 = α11u1 + α12u2 + ... + α1nun, u1(0) = x1

u′2 = α21u1 + α22u2 + ... + α2nun, u2(0) = x2
...

u′n = αn1u1 + αn2u2 + ... + αnnun, un(0) = xn.

(13)

which can be written in a matrix form as u′(t) = Au(t), t ≥ 0,
u(0) = x,

(14)

where A ∈ L(E) is bounded linear operator. In this case, A = (αi j) is an n × n matrix with αi j ∈ R for
i, j = 1, 2, ...,n and x = (x1, x2, ..., xn)T

∈ Rn is a given initial vector with xi ∈ R for all i = 1, 2, ...,n. It is
well-known that the problem (14) has a unique solution given by explicit formula u(t) = etAx, t ≥ 0, where
etA is a matrix exponential of the linear differential system (14) defined by

etA :=
∞∑

k=0

tkAk

k!
= I +

tA
1!

+
t2A2

2!
+ · · ·,

where A0 = I is the identity matrix. Note that the family of matrixes (operators) {T(t) := etA : t ≥ 0} is
(uniformly continuous) semigroup on E (see [7]). Then, we can write the solution of the problem (14) as
u(t) = T(t)x, t ≥ 0.

Example 2.6. Solve the following initial value problem:

u′(t) =

(
0 −1
1 0

)
u(t), u(0) =

(
1
0

)
(15)

Let A =

(
0 −1
1 0

)
. It is not hard to show that T(t) := etA =

(
cos t − sin t
sin t cos t

)
, which satisfies the semigroup properties.

Then, we have the solution of (15) is u(t) =

(
cos t − sin t
sin t cos t

) (
1
0

)
=

(
cos t
sin t

)
.

A point z ∈ C called an asymptotic fixed point of T, if there exists a sequence {xn} in C which converges
weakly to z such that limn→∞ ‖xn − Txn‖ = 0. We denoteby F̂(T) by the set of asymptotic fixed points of T.

We now give the following definition:

Definition 2.7. A one-parameter family S = {T(t)}t≥0 : C → E is said to be a Bregman relatively nonexpansive
semigroup if it satisfies (S1), (S2), (S3) and the following conditions:

(a) F(S) is nonempty;

(b) F(S) = F̂(S);

(c) ∆p(T(t)x, z) ≤ ∆p(x, z), ∀x ∈ C, z ∈ F(S) and t ≥ 0.

Using an idea in [4, 5, 8], we define the following concept:

Definition 2.8. A continuous operator semigroup S = {T(t)}t≥0 : C → E is said to be uniformly asymptotically
regular (in short, u.a.r.) if for all s ≥ 0 and any bounded subset B of C such that

lim
t→∞

sup
x∈B
‖JE

p (T(t)x) − JE
p

(
T(s)T(t)x

)
‖ = 0.
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Definition 2.9. A Bregman relatively nonexpansive semigroup S = {T(t)}t≥0 : C → E is said to be a uniformly
Lipschitzian mapping if there exists a bounded measurable function L(t) : (0,∞)→ [0,∞) such that

‖T(t)x − T(t)y‖ ≤ L(t)‖x − y‖, ∀x, y ∈ C.

Recall that the metric projection from E onto C, denote by PCx, satisfying the property

‖x − PCx‖ ≤ inf
y∈C
‖x − y‖, ∀x ∈ E.

It is well known that PCx is the unique minimizer of the norm distance. Moreover, PCx is characterized by
the following properties: PCx ∈ C and

〈JE
p (x − PCx), y − PCx〉 ≤ 0, ∀y ∈ C. (16)

Similarly, one can define the Bregman projection from E onto C, denote by ΠC, satisfying the property

∆p

(
x,ΠC(x)

)
= inf

y∈C
∆p(x, y), ∀x ∈ E. (17)

Lemma 2.10. ([28]) Let C be a nonempty, closed and convex subset of a p-uniformly convex and uniformly smooth
Banach space E and let x ∈ E. Then the following assertions hold:

(i) z = ΠCx if and only if 〈JE
p (x) − JE

p (z), y − z〉 ≤ 0, ∀y ∈ C.

(ii) ∆p(ΠCx, y) + ∆p(x,ΠCx) ≤ ∆p(x, y), ∀y ∈ C.

Lemma 2.11. [34] Let 1 < q ≤ 2 and E be a Banach space. Then the following are equivalent.

(i) E is q-uniformly smooth.

(ii) There is a constant κq > 0 such that for all x, y ∈ E

‖x − y‖q ≤ ‖x‖q − q〈y, jq(x)〉 + κq‖y‖q. (18)

Remark 2.12. The constant κq satisfying (18) is called the q-uniform smoothness coefficient of E.

The following Lemma can be obtained from Theorem 2.8.17 of [1] (see also Lemma 5 of [20]).

Lemma 2.13. Let p > 1, r > 0 and E be a Banach space. Then the following statements are equivalent:

(i) E is uniformly convex;

(ii) There exists a strictly increasing convex function 1∗r : R+
→ R+ with 1∗r(0) = 0 such that

∥∥∥ N∑
k=1

αkxk

∥∥∥p
≤

N∑
k=1

αk‖xk‖
p
− αiα j1

∗

r(‖xi − x j‖),

for all i, j ∈ {1, 2, ...,N}, xk ∈ Br := {x ∈ E : ‖x‖ ≤ r}, αk ∈ (0, 1) with
∑N

k=1 αk = 1, where k ∈ {1, 2, ...,N}.

Lemma 2.14. ([28]) Let E be a real p-uniformly convex and uniformly smooth Banach spaces. Thus, for all z ∈ E,
we have

∆p

(
JE∗
q

( N∑
i=1

ti JE
p (xi)

)
, z

)
≤

N∑
i=1

ti∆p(xi, z),

where {xi}
N
i=1 ⊂ E and {ti}

N
i=1 ⊂ (0, 1) with

∑N
i=1 ti = 1.
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The following lemmas, can be found in [28, 29].

Lemma 2.15. Let E be a real p-uniformly convex and uniformly smooth Banach spaces. Let Vp : E∗ × E→ [0,+∞)
defined by

Vp(x∗, x) =
1
q
‖x∗‖q − 〈x∗, x〉 +

1
p
‖x‖p, ∀x ∈ E, x∗ ∈ E∗.

Then the following assertions hold:

(i) Vp is nonnegative and convex in the first variable;

(ii) ∆p(JE∗
q (x∗), x) = Vp(x∗, x), ∀x ∈ E, x∗ ∈ E∗.

(iii) Vp(x∗, x) + 〈y∗, JE∗
q (x∗) − x〉 ≤ Vp(x∗ + y∗, x), ∀x ∈ E, x∗, y∗ ∈ E∗.

Following the proof line as in Proposition 2.5 of [22], we obtain the following result:

Lemma 2.16. Let E be a real p-uniformly convex and uniformly smooth Banach spaces. Suppose that x ∈ E and {xn}

is a sequence in E. If {∆p(xn, x)} is bounded, so is the sequence {xn} is bounded.

Lemma 2.17. Let E be a real p-uniformly convex and uniformly smooth Banach spaces. Suppose that {xn} and {yn}

are bounded sequences in E. Then the following assertions are equivalent:

(a) limn→∞ ∆p(xn, yn) = 0;

(b) limn→∞ ‖xn − yn‖ = 0.

Proof. Let {xn} and {yn} be bounded sequences in E. For the implication (a) =⇒ (b). Suppose that
limn→∞ ∆p(xn, yn) = 0. From (12), we have

0 ≤ τ‖xn − yn‖
p
≤ ∆p(xn, yn),

where τ > 0 is some fixed number. It follows that limn→∞ ‖xn − yn‖ = 0.
For the converse implication (b) =⇒ (a), we assume that limn→∞ ‖xn − yn‖ = 0. From (12), we observe

that

0 ≤ ∆p(xn, yn) ≤ 〈xn − yn, JE
p xn − JE

p yn〉

≤ ‖xn − yn‖‖JE
p xn − JE

p yn‖

≤ ‖xn − yn‖M,

where M = supn≥1{‖xn‖
p−1, ‖yn‖

p−1
}. It follows that limn→∞ ∆p(xn, yn) = 0. This completes the proof. �

Lemma 2.18. ([33]) Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − γn)an + γnδn, ∀n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that limn→∞ γn = 0,
∑
∞

n=1 γn = ∞ and
lim supn→∞ δn ≤ 0. Then, limn→∞ an = 0.

Lemma 2.19. ([21]) Let {an} be sequences of real numbers such that there exists a subsequence {ni} of {n} such that
ani < ani+1 for all i ∈ N. Then there exists an increasing sequence {mk} ⊂ N such that mk → ∞ and the following
properties are satisfied by all (sufficiently large) numbers k ∈N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk is the largest number n in the set {1, 2, ..., k} such that the condition an ≤ an+1 holds.
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In what follows, we shall use the following notations:
• xn → x mean that {xn} converges strongly to x;
• xn ⇀ x mean that {xn} converges weakly to x.

Lemma 2.20. Let E be a real p-uniformly convex and uniformly smooth Banach spaces. Let z, xk ∈ E (k = 1, 2, ...,N)
and αk ∈ (0, 1) with

∑N
k=1 αk = 1. Then, we have

∆p

(
JE∗
q

( N∑
k=1

αk JE
p (xk)

)
, z

)
≤

N∑
k=1

αk∆p(xk, z) − αiα j1
∗

r

(
‖JE

p (xi) − JE
p (x j)‖

)
,

for all i, j ∈ {1, 2, ...,N}.

Proof. Since p-uniformly convex, hence it is uniformly convex. From Lemmas 2.13 and 2.14, we have

∆p

(
JE∗
q

( N∑
k=1

αk JE
p (xk)

)
, z

)
= Vp

( N∑
k=1

αk JE
p (xk), z

)
=

1
q

∥∥∥ N∑
k=1

αk JE
p (xk)

∥∥∥q
−

〈 N∑
k=1

αk JE
p (xk), z

〉
+

1
p
‖z‖p

≤
1
q

N∑
k=1

αk‖JE
p (xk)‖q − αiα j1

∗

r(‖J
E
p (xi) − JE

p (x j)‖) −
〈 N∑

k=1

αk JE
p (xk), z

〉
+

1
p
‖z‖p

=
1
q

N∑
k=1

αk‖JE
p (xk)‖q −

N∑
k=1

αk〈JE
p (xk), z〉 +

1
p
‖z‖p − αiα j1

∗

r(‖J
E
p (xi) − JE

p (x j)‖)

=

N∑
k=1

αk∆p(xk, z) − αiα j1
∗

r(‖J
E
p (xi) − JE

p (x j)‖),

for all i, j ∈ {1, 2, ...,N}. This completes the proof. �

3. Main Results

Theorem 3.1. Let E1 and E2 be two real p-uniformly convex and uniformly smooth Banach spaces and let C and Q
be a nonempty, closed and convex subsets of E1 and E2, respectively. Let A : E1 → E2 be a bounded linear operator
and A∗ : E∗2 → E∗1 be adjoint of A. Let S = {T(t)}t≥0 be a u.a.r. Bregman relatively nonexpansive semigroup and
uniformly Lipschitzian mapping of C into E1 with a bounded measurable function L(t) : (0,∞) → [0,∞) such that
F(S) :=

⋂
h≥0 F(T(h)) , ∅. Suppose that F(S) = F̂(S) and F(S) ∩ Γ , ∅. For given u ∈ E1, let {un} be a sequence

generated by u1 ∈ C and xn = ΠC JE∗1
q

(
JE1
p (un) − λnA∗ JE2

p (I − PQ)Aun

)
un+1 = ΠC JE∗1

q

[
αn JE1

p (u) + (1 − αn)
(
βn JE1

p (xn) + (1 − βn)T(tn)xn

)]
, ∀n ≥ 1,

(19)

where {αn} and {βn} are sequences in (0, 1), {tn} is a real positive divergent sequence and {λn} is real positive sequence
which satisfy the following conditions:

(C1) limn→∞ αn = 0 and
∑
∞

n=1 αn = ∞;

(C2) 0 < a ≤ βn ≤ b < 1;



P. Cholamjiak, P. Sunthrayuth / Filomat 32:9 (2018), 3211–3227 3219

(C3) 0 < c ≤ λn ≤ d <
( q
κq‖A‖q

) 1
q−1 .

Then, the sequences {xn} and {un} converge strongly to an element x∗ = ΠF(S)∩Γu.

Proof. We first show that {xn} is bounded. Set xn = ΠCvn, where

vn = JE∗1
q

(
JE1
p (un) − λnA∗ JE2

p (Aun − PQ(Aun))
)

for all n ≥ 1. Let v ∈ F(S) ∩ Γ. From (16), we observe that

〈JE2
p (Aun − PQ(Aun)),Aun − Av〉

= 〈JE2
p (Aun − PQ(Aun)),Aun − PQ(Aun)〉 + 〈JE2

p (Aun − PQ(Aun)),PQ(Aun) − Av〉

= ‖Aun − PQ(Aun)‖p + 〈JE2
p (Aun − PQ(Aun)),PQ(Aun) − Av〉

≥ ‖Aun − PQ(Aun)‖p. (20)

It follows from Lemma 2.11 and (20) that

∆p(xn, v) ≤ ∆p(vn, v)

= ∆p

(
JE∗1
q [JE1

p (un) − λnA∗ JE2
p (Aun − PQ(Aun))], v

)
=

1
q
‖JE1

p (un) − λnA∗ JE2
p (Aun − PQ(Aun))‖q − 〈JE1

p (un), v〉

+λn〈JE2
p (Aun − PQ(Aun)),Av〉 +

1
p
‖v‖p

≤
1
q
‖JE1

p (un)‖q − λn〈Aun, JE2
p (Aun − PQ(Aun))〉 +

κq(λn‖A‖)q

q
‖JE2

p (Aun − PQ(Aun))‖q

−〈JE1
p (un), v〉 + λn〈JE2

p (Aun − PQ(Aun)),Av〉 +
1
p
‖v‖p

=
1
q
‖un‖

p
− 〈JE1

p (un), v〉 +
1
p
‖v‖p + λn〈JE2

p (Aun − PQ(Aun)),Av − Aun〉

+
κq(λn‖A‖)q

q
‖JE2

p (Aun − PQ(Aun))‖q

= ∆p(un, v) + λn〈JE2
p (Aun − PQ(Aun)),Av − Aun〉 +

κq(λn‖A‖)q

q
‖JE2

p (Aun − PQ(Aun))‖q

≤ ∆p(un, v) −
(
λn −

κq(λn‖A‖)q

q

)
‖Aun − PQ(Aun)‖p. (21)

By (C3), we get that

∆p(xn, v) ≤ ∆p(un, v).

Now, we set
yn = JE∗1

q (βn JE1
p (xn) + (1 − βn)JE1

p (T(tn)xn))

for all n ≥ 1. From Lemma 2.20, we have

∆p(yn, v) = ∆p(JE∗1
q (βn JE1

p (xn) + (1 − βn)JE1
p (T(tn)xn)), v)

≤ βn∆p(xn, v) + (1 − βn)∆p(T(tn)xn, v) − βn(1 − βn)1∗r(‖J
E1
p (xn) − JE1

p (T(tn)xn)‖)

≤ ∆p(xn, v) − βn(1 − βn)1∗r(‖J
E1
p (xn) − JE1

p (T(tn)xn)‖) (22)
≤ ∆p(xn, v) (23)
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It follows from (23) that

∆p(xn+1, v) ≤ ∆p(un+1, v)

≤ ∆p

(
JE∗1
q (αn JE1

p (u) + (1 − αn)JE1
p (yn)), v

)
≤ αn∆p(u, v) + (1 − αn)∆p(yn, v)
≤ αn∆p(u, v) + (1 − αn)∆p(xn, v)
≤ max{∆p(u, v),∆p(xn, v)}
...

≤ max{∆p(u, v),∆p(x1, v)}. (24)

Hence, {∆p(xn, v)} is bounded, which implies by Lemma 2.16 that {xn} is bounded.

Let un+1 = ΠCzn, where zn = JE∗1
q

[
αn JE1

p (u) + (1 − αn)JE1
p (yn)

]
for all n ≥ 1. From Lemma 2.15 and (22), we

have

∆p(xn+1, v)
≤ ∆p(un+1, v)
≤ ∆p(zn, v)

= Vp

(
αn JE1

p (u) + (1 − αn)JE1
p (yn), v

)
≤ Vp(αn JE1

p (u) + (1 − αn)JE1
p (yn) − αn(JE1

p (u) − JE1
p (v), v)) + αn〈JE1

p (u) − JE1
p (v), zn − v〉

= Vp(αn JE1
p (v) + (1 − αn)JE1

p (yn), v) + αn〈JE1
p (u) − JE1

p (v), zn − v〉

≤ αnVp(JE1
p (v), v) + (1 − αn)Vp(JE1

p (yn), v) + αn〈JE1
p (u) − JE1

p (v), zn − v〉

= αn∆p(v, v) + (1 − αn)∆p(yn, v) + αn〈JE1
p (u) − JE1

p (v), zn − v〉

≤ (1 − αn)[∆p(xn, v) − βn(1 − βn)1∗r(‖J
E1
p (xn) − JE1

p (T(tn)xn)‖)]

+αn〈JE1
p (u) − JE1

p (v), zn − v〉

≤ (1 − αn)∆p(xn, v) − βn(1 − βn)1∗r(‖J
E1
p (xn) − JE1

p (T(tn)xn)‖)]

+αn〈JE1
p (u) − JE1

p (v), zn − v〉 (25)

≤ (1 − αn)∆p(xn, v) + αn〈JE1
p (u) − JE1

p (v), zn − v〉. (26)

Next, we will divide the proof into two cases:
Case 1. Suppose that there exists n0 ∈ N such that {∆p(xn, v)}∞n=n0

is nonincreasing. By the boundedness of
{∆p(xn, v)}∞n=1, we have {∆p(xn, v)}∞n=1 is convergent. Furthermore, we have

∆p(xn, v) − ∆p(xn+1, v)→ 0 as n→∞.

Then, from (25) and (C2), we have

0 ≤ a(1 − b)1∗r(‖J
E1
p (xn) − JE1

p (T(tn)xn)‖)

≤ βn(1 − βn)1∗r(‖J
E1
p (xn) − JE1

p (T(tn)xn)‖)

≤ ∆p(xn, v) − ∆p(xn+1, v) + αn〈JE1
p (u) − JE1

p (v), zn − v〉 → 0 as n→∞,

which implies by the property of 1∗r that

lim
n→∞
‖JE1

p (xn) − JE1
p (T(tn)xn)‖ = 0. (27)

Since JE∗1
q is uniformly norm-to-norm continuous on bounded subsets of E∗1, then

lim
n→∞
‖xn − T(tn)xn‖ = 0. (28)
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From Lemma 2.17, we also have

lim
n→∞

∆p(T(tn)xn, xn) = 0. (29)

Since {T(t)}t≥0 is uniformly Lipschitzian with a bounded measurable function L(t). Then, we have from (28)
that

‖T(t)T(tn)xn − T(t)xn‖ ≤ L(t)‖T(tn)xn − xn‖

≤ sup
t≥0
{L(t)}‖T(tn)xn − xn‖ → 0 as n→∞.

Again, since JE1
p is uniformly continuous on bounded subsets of E1. Then, we also have

lim
n→∞
‖JE1

p

(
T(t)T(tn)xn

)
− JE1

p

(
T(t)xn

)
‖ = 0. (30)

For each t ≥ 0, we note that

‖JE1
p (xn) − JE1

p

(
T(t)xn

)
‖ ≤ ‖JE1

p (xn) − JE1
p

(
T(tn)xn

)
‖ + ‖JE1

p

(
T(tn)xn

)
− JE1

p

(
T(t)T(tn)xn

)
‖

+‖JE1
p

(
T(t)T(tn)xn

)
− JE1

p

(
T(t)xn

)
‖

≤ ‖JE1
p (xn) − JE1

p

(
T(tn)xn

)
‖ + ‖JE1

p

(
T(t)T(tn)xn

)
− JE1

p

(
T(t)xn

)
‖

+ sup
x∈{xn}

‖JE1
p

(
T(tn)x

)
− JE1

p

(
T(t)T(tn)x

)
‖.

Since {T(t)}t≥0 is a u.a.r. Bregman relatively nonexpansive semigroup with limn→∞ tn = ∞, from (27) and
(30), we get

lim
n→∞
‖JE1

p (xn) − JE1
p

(
T(t)xn

)
‖ = 0.

Since JE∗1
q is uniformly norm-to-norm continuous on bounded subsets of E∗1. Then, we get that

lim
n→∞
‖xn − T(t)xn‖ = 0, ∀t ≥ 0. (31)

By the reflexivity of a Banach space and the boundedness of {xn}, without loss of generality, we may assume
that xni ⇀ z ∈ C as i→ ∞. From (30), we obtain z ∈ F(S) = F̂(S). Next, we show that z ∈ Γ. From (21) and
(C2), we have

0 ≤ c
(
1 −

κqdq−1
‖A‖q

q

)
‖Aun − PQ(Aun)‖p

≤

(
λn −

κq(λn‖A‖)q

q

)
‖Aun − PQ(Aun)‖p

≤ ∆p(un, x∗) − ∆p(xn, x∗)
≤ αn−1∆p(u, x∗) + ∆p(xn−1, x∗) − ∆p(xn, x∗),

which implies that

lim
n→∞
‖Aun − PQ(Aun)‖ = 0. (32)

Since vn = JE∗1
q

(
JE1
p (un) − λnA∗ JE2

p (Aun − PQ(Aun))
)

for all n ≥ 1, it follows that

0 ≤ ‖JE1
p (vn) − JE1

p (un)‖ ≤ λn‖A∗‖‖JE2
p (Aun − PQ(Aun))‖

≤

( q
κq‖A‖q

) 1
q−1

‖A∗‖‖Aun − PQ(Aun)‖p−1,
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which implies that

lim
n→∞
‖JE1

p (vn) − JE1
p (un)‖ = 0. (33)

Since JE∗1
q is norm-to-norm uniformly continuous on bounded subsets of E∗1, then

lim
n→∞
‖vn − un‖ = 0. (34)

By Lemma 2.10 (ii) and (24), we have

∆p(vn, xn) = ∆p(vn,ΠCvn) ≤ ∆p(vn, x∗) − ∆p(xn, x∗)
≤ ∆p(un, x∗) − ∆p(xn, x∗)
≤ αn−1∆p(u, x∗) + ∆p(xn−1, x∗) − ∆p(xn, x∗)→ 0 as n→∞.

By Lemma 2.17, we get that

lim
n→∞
‖vn − xn‖ = 0. (35)

From (33) and (35), we obtain that

‖xn − un‖ ≤ ‖vn − un‖ + ‖vn − xn‖ → 0 as n→∞. (36)

Since xni ⇀ z ∈ C and from (36), we also get that uni ⇀ z ∈ C. From (16), we have

‖(I − PQ)Az‖p = 〈JE2
p (Az − PQ(Az)),Az − PQ(Az)〉

= 〈JE2
p (Az − PQ(Az)),Az − Auni〉 + 〈J

E2
p (Az − PQ(Az)),Auni − PQ(Auni )〉

+〈JE2
p (Az − PQ(Az)),PQ(Auni ) − PQ(Az)〉

≤ 〈JE2
p (Az − PQ(Az)),Az − Auni〉 + 〈J

E2
p (Az − PQ(Az)),Auni − PQ(Auni )〉. (37)

Since A is continuous, we have Auni ⇀ Az as i→∞. From (32), we obtain

‖(I − PQ)Az‖ = 0,

that is Az = PQ(Az), this shows that Az ∈ Q. Hence, we get z ∈ Ω := F(S) ∩ Γ.
Next, we show that {xn} converges strongly to ΠF(S)∩Γu. From Lemma 2.14 and (29), we have

∆p(yn, xn) = ∆p(JE∗1
q (βn JE1

p (xn) + (1 − βn)JE1
p (T(tn)xn)), xn)

≤ βn∆p(xn, xn) + (1 − βn)∆p(T(tn)xn, xn)→ 0 as n→∞.

It follows that

∆p(zn, xn) = ∆p(JE∗1
q (αn JE1

p (u) + (1 − αn)JE1
p (yn)), xn)

≤ αn∆p(u, xn) + (1 − αn)∆p(yn, xn)→ 0 as n→∞,

and hence

lim
n→∞
‖xn − zn‖ = 0. (38)

Now, let x∗ := ΠF(S)∩Γu. Since {xn} is bounded, also we can obtain

lim sup
n→∞

〈JE1
p (u) − JE1

p (x∗), xn − x∗〉 = lim
i→∞
〈JE1

p (u) − JE1
p (x∗), xni − x∗〉.

From (38) and Lemma 2.10, we get that

lim sup
n→∞

〈JE1
p (u) − JE1

p (x∗), zn − x∗〉 = lim sup
n→∞

〈JE1
p (u) − JE1

p (x∗), xn − x∗〉

= lim
i→∞
〈JE1

p (u) − JE1
p (x∗), xni − x∗〉

= 〈JE1
p (u) − JE1

p (x∗), z − x∗〉 ≤ 0. (39)
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Using (C1), (26) and (39), we can conclude that ∆p(xn, x∗)→ 0 as n→ ∞ by Lemma 2.18. Hence xn → x∗ as
n→∞.
Case 2. Suppose that there exists a subsequence {ni} of {n} such that ∆p(xni , x∗) < ∆p(xni+1, x∗) for all i ∈ N.
By Lemma 2.19, Then there exists an increasing sequence {mk} ⊂ N such that mk → ∞ and the following
properties are satisfied by all numbers k ∈N:

∆p(xmk , x
∗) ≤ ∆p(xmk+1, x∗) and ∆p(xk, x∗) ≤ ∆p(xmk+1, x∗).

Then we have

0 ≤ lim
k→∞

(
∆p(xmk+1, x∗) − ∆p(xmk , x

∗)
)

≤ lim sup
n→∞

(
∆p(xn+1, x∗) − ∆p(xn, x∗)

)
≤ lim sup

n→∞

(
∆p(u, x∗) + (1 − αn)∆p(xn, x∗) − ∆p(xn, x∗)

)
= lim sup

n→∞
αn

(
∆p(u, x∗) − ∆p(xn, x∗)

)
= 0,

which implies that

lim
k→∞

(
∆p(xmk+1, x∗) − ∆p(xmk , x

∗)
)

= 0. (40)

By following the method of proof line as in Case 1, we can show that

lim
k→∞
‖xmk − T(t)xmk‖ = 0, ∀t ≥ 0.

and

lim
k→∞
‖Aumk − PQ(Aumk )‖ = 0.

Furthermore, we can show that

lim sup
k→∞

〈JE1
p (u) − JE1

p (x∗), zmk − x∗〉 ≤ 0.

Again from (26), we have

∆p(xmk+1, x∗) ≤ (1 − αmk )∆p(xmk , x
∗) + αmk〈J

E1
p (u) − JE1

p (x∗), zmk − x∗〉,

which implies that

αmk∆p(xmk , x
∗) ≤ ∆p(xmk , x

∗) − ∆p(xmk+1, x∗) + αmk〈J
E1
p (u) − JE1

p (x∗), zmk − x∗〉.

Since ∆p(xmk , x
∗) ≤ ∆p(xmk+1, x∗) and αmk > 0, we get that

∆p(xmk , x
∗) ≤ 〈JE1

p (u) − JE1
p (x∗), zmk − x∗〉.

Hence, limk→∞ ∆p(xmk , x
∗) = 0. From (40), we also have limk→∞ ∆p(xmk+1, x∗) = 0 and hence

lim sup
k→∞

∆p(xk, x∗) ≤ lim
k→∞

∆p(xmk+1, x∗) = 0.

It follows that xk → x∗ as k → ∞. Therefore, from the above two cases, we conclude that {xn} and {un}

converge strongly to x∗ = ΠF(S)∩Γu. This completes the proof. �
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4. Convergence Theorems for a Family of Mappings

In this section, we apply our main result to a countable family of nonexpasive mappings.

Definition 4.1. ([6]) Let C be a subset of a real p-uniformly convex Banach space E. Let {Tn}
∞

n=1 be a sequence of
mappings of C into E such that

⋂
∞

n=1 F(Tn) , ∅. Then {Tn}
∞

n=1 is said to satisfy the AKTT-condition if, for any
bounded subset B of C,

∞∑
n=1

sup
z∈B
{‖JE

p (Tn+1z) − JE
p (Tnz)‖} < ∞.

As in [30], we can prove the following Proposition.

Proposition 4.2. Let C be a nonempty, closed and convex subset of a real p-uniformly convex Banach space E.
Let {Tn}

∞

n=1 be a sequence of mappings of C into E such that
⋂
∞

n=1 F(Tn) , ∅. Suppose that {Tn}
∞

n=1 satisfies the
AKTT-condition. Suppose that for any bounded subset B of C. Then there exists the mapping T : B→ E such that

Tx = lim
n→∞

Tnx, ∀x ∈ B, (41)

and

lim
n→∞

sup
z∈B
‖JE

p (Tz) − JE
p (Tnz)‖ = 0.

In the sequel, we say that ({Tn},T) satisfies the AKTT-condition if {Tn}
∞

n=1 satisfies the AKTT-condition
and T is defined by (41) with

⋂
∞

n=1 F(Tn) = F(T).

Theorem 4.3. Let E1 and E2 be two real p-uniformly convex and uniformly smooth Banach spaces and let C and Q
be nonempty, closed and convex subsets of E1 and E2, respectively. Let A : E1 → E2 be a bounded linear operator and
A∗ : E∗2 → E∗1 be the adjoint of A. Let {Tn}

∞

n=1 be a sequence of Bregman relatively nonexpansive mappings on C into
E1 such that F(Tn) = F̂(Tn) for all n ≥ 1. Suppose that

⋂
∞

n=1 F(Tn) ∩ Γ , ∅. For given u ∈ E1, let {un} be a sequence
generated by u1 ∈ C and xn = ΠC JE∗1

q

(
JE1
p (un) − λnA∗ JE2

p (I − PQ)Aun

)
un+1 = ΠC JE∗1

q

[
αn JE1

p (u) + (1 − αn)JE1
p

(
Tnxn

)]
, ∀n ≥ 1,

(42)

where {αn} is sequence in (0, 1) and {λn} is real positive sequence which satisfy the following conditions:

(C1) limn→∞ αn = 0 and
∑
∞

n=1 αn = ∞;

(C2) 0 < a ≤ λn ≤ b <
( q
κq‖A‖q

) 1
q−1 .

In addition, if ({Tn},T) satisfies the AKTT-condition. Then, the sequences {xn} and {un} converge strongly to an
element x∗ = Π⋂

∞

n=1 F(Tn)∩Γu.

Proof. By following the method of proof in Theorem 3.1, we can prove that {xn} is bounded and limn→∞ ‖xn−

Tnxn‖ = 0. To this end, it suffices to show that limn→∞ ‖xn − Txn‖ = 0. Since JE1
p is uniformly continuous on

bounded subsets of E1. Then, we have

lim
n→∞
‖JE1

p (xn) − JE1
p (Tnxn)‖ = 0.

By Proposition 4.2, we observe that

‖JE1
p (xn) − JE1

p (Txn)‖ ≤ ‖JE1
p (xn) − JE1

p (Tnxn)‖ + ‖JE1
p (Tnxn) − JE1

p (Txn)‖

≤ ‖JE1
p (xn) − JE1

p (Tnxn)‖ + sup
x∈{xn}

‖JE1
p (Tnx) − JE1

p (Tx)‖ → 0 as n→∞.

Since JE∗1
q is norm-to-norm uniformly continuous on bounded subsets of E∗1, it follows that

lim
n→∞
‖xn − Txn‖ = 0.

This completes the proof. �



P. Cholamjiak, P. Sunthrayuth / Filomat 32:9 (2018), 3211–3227 3225

4.1. Some applications

In this section, we give an application of Theorem 3.1 to the convexly constrained linear inverse problem
in the framework of p-uniformly convex and uniformly smooth Banach spaces.

Let E1 and E2 be two real p-uniformly convex and uniformly smooth Banach spaces and let C and Q be
a nonempty, closed and convex subsets of E1 and E2, respectively. Let A : E1 → E2 be a bounded linear
operator and k ∈ E2. The convexly constrained linear inverse problem [18] is to find

x̂ ∈ C such that Ax̂ = k. (43)

It is well known that the problem (43) is equivalent to the following minimization problem:

min
x∈C

1
2
‖Ax − k‖2.

The set of solutions of problem (43) is denoted by Γ = {x ∈ C : x = A−1k}. A classical method for solving
problem (43) the well-known projected Landweber method (see [19]) which is defined by the following
iteration:

xn+1 = PC(xn − λA∗(Axn − k)), (44)

where A∗ is the adjoint operator of A and 0 < λ < 2
‖A‖2 . It is proved that the projected Landweber iteration

(44) converges weakly to a solution of problem (43). To obtain strong convergence, Eicke [18] introduced
the so-called damped projection method. In what follows, we present an iterative algorithm with strong
convergence, for approximating solutions of problem (43) which is also a fixed point problem of a Bregman
relatively nonexpansive semigroup.

Setting PQ(Aun) = k in Theorem 3.1, we obtain the following result.

Theorem 4.4. Let E1 and E2 be two real p-uniformly convex and uniformly smooth Banach spaces and let C and Q
be a nonempty, closed and convex subsets of E1 and E2, respectively. Let A : E1 → E2 be a bounded linear operator
and A∗ : E∗2 → E∗1 be adjoint of A. Let S = {T(t)}t≥0 be a u.a.r. Bregman relatively nonexpansive semigroup and
uniformly of Lipschitzian mappings on C into E1 with a bounded measurable function L(t) : (0,∞) → [0,∞) such
that F(S) :=

⋂
h≥0 F(T(h)) , ∅. Suppose that F(S) = F̂(S) and F(S) ∩ Γ , ∅. For given u ∈ E1, let {xn}

∞

n=1 and
{un}

∞

n=1 be sequences generated by u1 ∈ E1 and xn = ΠC JE∗1
q

(
JE1
p (un) − λnA∗ JE2

p (Aun − k)
)

un+1 = ΠC JE∗1
q

[
αn JE1

p (u) + (1 − αn)
(
βn JE1

p (xn) + (1 − βn)T(tn)xn

)]
, ∀n ≥ 1,

(45)

where {αn} and {βn} are sequences in (0, 1), {tn} is a real positive divergent sequence and {λn} is real positive sequence
which satisfy the following conditions:

(C1) limn→∞ αn = 0 and
∑
∞

n=1 αn = ∞;

(C2) 0 < a ≤ βn ≤ b < 1;

(C3) 0 < c ≤ λn ≤ d <
( q
κq‖A‖q

) 1
q−1 .

Then, the sequences {xn} and {un} converge strongly to an element x∗ = ΠF(S)∩Γu.

5. Numerical Examples

In this section, we present some numerical experiments to support our main Theorem 3.1.
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Example 5.1. Let E1 = E2 = R3, C = {x = (a, b, c)T
∈ R3 : a2 + b2 + c2

≤ 1} and Q = {y = (p, q, r)T
∈ R3 :

2p + q − r ≥ −1}. For each t ≥ 0, let T(t) : C→ R3 be defined by T(t)x = e−t

1 0 0
0 cos 2t − sin 2t
0 sin 2t cos 2t

 x, where x ∈ C.

We can check that T(t) is a u.a.r. Bregman relatively nonexpansive semigroup and uniformly Lipschitzian mapping

with ∆p(x, y) = ‖x − y‖2. We aim to find x∗ ∈ C such that Ax∗ ∈ Q, where A =

 1 2 −1
0 1 2
−1 3 4

 and also x∗ is a

common fixed point of T(t).

Choose αn = 1
n+1 , βn = 0.1, λn = 0.5 and tn = n for all n ∈ N. The stopping criterion is defined by

En = ‖un+1 − un‖ < 10−4. For points u and u1 randomly, the numerical experiment is reported in Table 1 and
the error En is demonstrated in Figure 1, respectively.

Choice 1 u = (0.5, 0.5, 0.5)T No. of Iter. 162
u1 = (1,−2, 1)T cpu (Time) 0.096795

Choice 2 u = (0.6, 0, 0.8)T No. of Iter. 121
u1 = (0.5, 0.7, 1)T cpu (Time) 0.067907

Choice 3 u = (1, 0, 0)T No. of Iter. 180
u1 = (−2, 2, 1)T cpu (Time) 0.099143

Choice 4 u = (−0.2, 0.1,−0.2)T No. of Iter. 187
u1 = (−1, 3, 0)T cpu (Time) 0.108388

Table 1: The numerical experiment in Example 5.1
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Figure 1: The convergence behavior of En in Example 5.1
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