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Abstract. In the present study, a new subclass of analytic and bi-univalent functions by means of Chebyshev
polynomials is introduced. Certain coefficient bounds for functions belong to this subclass are obtained.
Furthermore, the Fekete-Szegö problem in this subclass is solved.

1. Introduction

The classical Chebyshev polynomials of degree n of the first and second kinds, which are denoted
respectively by Tn(t) and Un(t), have generated a great deal of interest in recent years. These orthogonal
polynomials, in a real variable t and a complex variable z, have played an important role in applied
mathematics, numerical analysis and approximation theory. For this reason, Chebyshev polynomials have
been studied extensively, see [8, 10, 16]. In the study of differential equations, the Chebyshev polynomials
of the first and second kinds are the solution to the Chebyshev differential equations

(1 − t2)y′′ − ty′ + n2y = 0 (1)

and

(1 − t2)y′′ − 3ty′ + n(n + 2)y = 0, (2)

respectively. The roots of the Chebyshev polynomials of the first kind are used as nodes in polynomial
interpolation and the monic Chebyshev polynomials minimize all norms among monic polynomials of
a given degree. For a brief history of Chebyshev polynomials of the first and second kinds and their
applications, the reader is referred to [19, 22].

A classical result of Fekete and Szegö [13] determines the maximum value of |a3 − ηa2
2|, as a non-linear

functional of the real parameter η, for the class of normalized univalent functions

f (z) = z + a2z2 + a3z3 + · · · .
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Email addresses: fyousef@ju.edu.jo (Feras Yousef), bafrasin@yahoo.com (B. A. Frasin), tariq_amh@bau.edu.jo (Tariq

Al-Hawary)



Feras Yousef et al. / Filomat 32:9 (2018), 3229–3236 3230

There are now several results of this type in the literature, each of them dealing with |a3−ηa2
2| for various

classes of functions defined in terms of subordination (see e.g., [1, 20]). Motivated by the earlier work of
Dziok et al. [10], the main focus of this work is to utilize the Chebyshev polynomials expansions to solve
Fekete-Szegö problem for certain subclass of bi-univalent functions (see, for example, [5–7, 14]).

This paper is divided into three sections with this introduction being the first. In Section 2, we define
the class of analytic and bi-univalent functions BΣ(λ, µ, t) using the generating function for the Chebyshev
polynomials of the second kind, and we also discuss some other definitions and results. Section 3 is devoted
to solve problems concerning the coefficients of functions in the class BΣ(λ, µ, t). Section 4 is the main part
of the paper, we find the sharp bounds of functionals of Fekete-Szegö type.

2. Definitions and Preliminaries

Let A denote the class of functions of the form:

f (z) = z +

∞∑
n=2

anzn, (3)

which are analytic in the open unit diskU = {z ∈ C : |z| < 1}. Further, by S we shall denote the class of all
functions in A which are univalent inU.

Given two functions f , 1 ∈A . The function f (z) is said to be subordinate to 1(z) inU, written f (z) ≺ 1(z),
if there exists a Schwarz function ω(z), analytic inU, with

ω(0) = 0 and |ω(z)| < 1 for all z ∈ U,

such that f (z) = 1 (ω(z)) for all z ∈ U. Furthermore, if the function 1 is univalent in U, then we have the
following equivalence (see [17] and [23]):

f (z) ≺ 1(z)⇔ f (0) = 1(0) and f (U) ⊂ 1(U).

The Koebe one-quarter theorem [9] asserts that the image of U under each univalent function f in S
contains a disk of radius 1

4 . According to this, every function f ∈ S has an inverse map f−1, defined by

f−1( f (z)) = z (z ∈ U),

and

f
(

f−1(w)
)

= w
(
|w| < r0( f ); r0( f ) ≥ 1

4

)
.

In fact, the inverse function is given by

f−1(w) = w − a2w2 + (2a2
2 − a3)w3

− (5a3
2 − 5a2a3 + a4)w4 + · · · . (4)

A function f ∈ A is said to be bi-univalent inU if both f (z) and f−1(w) are univalent inU. Let Σ denote
the class of bi-univalent functions in U given by (3). For a brief history and some intriguing examples of
functions and characterization of the class Σ, see Srivastava et al. [21] and Frasin and Aouf [11], see also
[2–4, 12, 15, 18].

The Chebyshev polynomials of the first and second kinds are orthogonal for t ∈ [−1, 1] and defined as
follows:

Definition 2.1. The Chebyshev polynomials of the first kind are defined by the following three-terms recurrence
relation:

T0(t) = 1,
T1(t) = t,
Tn+1(t) := 2tTn(t) − Tn−1(t).
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The first few of the Chebyshev polynomials of the first kind are

T2(t) = 2t2
− 1, T3(t) = 4t3

− 3t, T4(t) = 8t4
− 8t2 + 1, · · · . (5)

The generating function for the Chebyshev polynomials of the first kind, Tn(t), is given by:

F(z, t) =
1 − tz

1 − 2tz + z2 =

∞∑
n=0

Tn(t)zn (z ∈ U).

Definition 2.2. The Chebyshev polynomials of the second kind are defined by the following three-terms recurrence
relation:

U0(t) = 1,
U1(t) = 2t,
Un+1(t) := 2tUn(t) −Un−1(t).

The first few of the Chebyshev polynomials of the second kind are

U2(t) = 4t2
− 1, U3(t) = 8t3

− 4t, U4(t) = 16t4
− 12t2 + 1, · · · . (6)

The generating function for the Chebyshev polynomials of the second kind, Un(t), is given by:

H(z, t) =
1

1 − 2tz + z2 =

∞∑
n=0

Un(t)zn (z ∈ U).

The Chebyshev polynomials of the first and second kinds are connected by the following relations:

dTn(t)
dt

= nUn−1(t); Tn(t) = Un(t) − tUn−1(t); 2Tn(t) = Un(t) −Un−2(t).

Definition 2.3. For λ ≥ 1, µ ≥ 0 and t ∈ (1/2, 1), a function f ∈ Σ given by (3) is said to be in the class BΣ(λ, µ, t)
if the following subordinations hold for all z,w ∈ U:

(1 − λ)
f (z)
z

+ λ f ′(z) + µz f ′′(z) ≺ H(z, t) :=
1

1 − 2tz + z2 (7)

and

(1 − λ)
1(w)

w
+ λ1′(w) + µw1′′(w) ≺ H(w, t) :=

1
1 − 2tw + w2 , (8)

where the function 1(w) = f−1(w) is defined by (4).

Remark 2.4. 1. For λ = 1 and µ = 0, we have the class BΣ(1, 0, t) := BΣ(t) of functions f ∈ Σ given by (3) and
satisfying the following subordination conditions for all z,w ∈ U:

f ′(z) ≺ H(z, t) =
1

1 − 2tz + z2

and

1′(w) ≺ H(w, t) =
1

1 − 2tw + w2 .

This class of functions have been introduced and studied by Altinkaya and Yalçin [5].
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2. For µ = 0, we have the class BΣ(λ, 0, t) := BΣ(λ, t) of functions f ∈ Σ given by (3) and satisfying the following
subordination conditions for all z,w ∈ U:

(1 − λ)
f (z)
z

+ λ f ′(z) ≺ H(z, t) =
1

1 − 2tz + z2

and

(1 − λ)
1(w)

w
+ λ1′(w) ≺ H(w, t) =

1
1 − 2tw + w2 .

This class of functions have been introduced and studied by Bulut et al. [7].

3. Coefficient Bounds for the Function Class BΣ(λ, µ, t)

We begin with the following result involving initial coefficient bounds for the function class BΣ
(
λ, µ, t

)
.

Theorem 3.1. Let the function f (z) given by (3) be in the class BΣ
(
λ, µ, t

)
. Then

|a2| ≤
2t
√

2t√∣∣∣(1 + λ + 2µ)2 − 4t2 [
(λ + 2µ)2 − 2µ

]∣∣∣ (9)

and

|a3| ≤
4t2

(1 + λ + 2µ)2 +
2t

1 + 2λ + 6µ
. (10)

Proof. Let f ∈ BΣ
(
λ, µ, t

)
. From (7) and (8), we have

(1 − λ)
f (z)
z

+ λ f ′(z) + µz f ′′(z) = 1 + U1(t)w(z) + U2(t)w2(z) + · · · (11)

and

(1 − λ)
1(w)

w
+ λ1′(w) + µw1′′(w) = 1 + U1(t)v(w) + U2(t)v2(w) + · · · , (12)

for some analytic functions

w(z) = c1z + c2z2 + c3z3 + · · · (z ∈ U),

and

v(w) = d1w + d2w2 + d3w3 + · · · (w ∈ U),

such that w(0) = v(0) = 0, |w(z)| < 1 (z ∈ U) and |v(w)| < 1 (w ∈ U).
It follows from (11) and (12) that

(1 − λ)
f (z)
z

+ λ f ′(z) + µz f ′′(z) = 1 + U1(t)c1z +
[
U1(t)c2 + U2(t)c2

1

]
z2 + · · ·

and

(1 − λ)
1(w)

w
+ λ1′(w) + µw1′′(w) = 1 + U1(t)d1w +

[
U1(t)d2 + U2(t)d2

1

]
)w2 + · · · .
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A short calculation shows that(
1 + λ + 2µ

)
a2 = U1(t)c1, (13)(

1 + 2λ + 6µ
)

a3 = U1(t)c2 + U2(t)c2
1, (14)

and

−
(
1 + λ + 2µ

)
a2 = U1(t)d1, (15)(

1 + 2λ + 6µ
)

(2a2
2 − a3) = U1(t)d2 + U2(t)d2

1. (16)

From (13) and (15), we have

c1 = −d1, (17)

and

2
(
1 + λ + 2µ

)2 a2
2 = U2

1(t)
(
c2

1 + d2
1

)
. (18)

By adding (14) to (16), we get

2
(
1 + 2λ + 6µ

)
a2

2 = U1(t) (c2 + d2) + U2(t)
(
c2

1 + d2
1

)
. (19)

By using (18) in (19), we obtain2 (
1 + 2λ + 6µ

)
−

2U2(t)
U2

1(t)
(1 + λ + 2µ)2

 a2
2 = U1(t) (c2 + d2) . (20)

It is fairly well known [9] that if |w(z)| < 1 and |v(w)| < 1, then

|c j| ≤ 1 and |d j| ≤ 1 for all j ∈N. (21)

By considering (6) and (21), we get from (20) the desired inequality (9).
Next, by subtracting (16) from (14), we have

2
(
1 + 2λ + 6µ

)
a3 − 2(1 + 2λ + 6µ)a2

2 = U1(t) (c2 − d2) + U2(t)
(
c2

1 − d2
1

)
. (22)

Further, in view of (17), it follows from (22) that

a3 = a2
2 +

U1(t)
2(1 + 2λ + 6µ)

(c2 − d2) . (23)

By considering (18) and (21), we get from (23) the desired inequality (10). This completes the proof of
Theorem 3.1.

Taking λ = 1 and µ = 0 in Theorem 3.1, we get the following corollary.

Corollary 3.2. [7] Let the function f (z) given by (3) be in the class BΣ (t). Then

|a2| ≤
t
√

2t
√

1 − t2
,

and

|a3| ≤ t2 +
2
3

t.
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For Corollary 3.2, it’s worthy to mention that Altinkaya and Yalçin [5] have obtained a remarkable result
for the coefficient |a2|, as shown in the following corollary.

Corollary 3.3. Let the function f (z) given by (3) be in the class BΣ (t). Then

|a2| ≤
t
√

2t
√

1 + 2t − t2
.

Taking µ = 0 in Theorem 3.1, we get the following corollary.

Corollary 3.4. [7] Let the function f (z) given by (3) be in the class BΣ (λ, t). Then

|a2| ≤
2t
√

2t√
|(1 + λ)2 − 4t2λ2|

and

|a3| ≤
4t2

(1 + λ)2 +
2t

1 + 2λ
.

4. Fekete-Szegö Inequality for the Function Class BΣ(λ, µ, t)

Now, we are ready to find the sharp bounds of Fekete-Szegö functional a3−ηa2
2 defined for f ∈ BΣ

(
λ, µ, t

)
given by (3).

Theorem 4.1. Let the function f (z) given by (3) be in the class BΣ
(
λ, µ, t

)
. Then for some η ∈ R,

|a3 − ηa2
2| ≤


2t

1+2λ+6µ , |η − 1| ≤M

8|η−1|t3

|(1+λ+2µ)2−4t2[(λ+2µ)2−2µ]| , |η − 1| ≥M
(24)

where

M :=

∣∣∣∣(1 + λ + 2µ)2
− 4t2

[
(λ + 2µ)2

− 2µ
]∣∣∣∣

4(1 + 2λ + 6µ)t2 .

Proof. Let f ∈ BΣ
(
λ, µ, t

)
. By using (20) and (23) for some η ∈ R, we get

a3 − ηa2
2 =

(
1 − η

)  U3
1(t) (c2 + d2)

2(1 + 2λ + 6µ)U2
1(t) − 2(1 + λ + 2µ)2U2(t)

 +
U1(t) (c2 − d2)
2(1 + 2λ + 6µ)

= U1(t)
[(

h(η) +
1

2(1 + 2λ + 6µ)

)
c2 +

(
h(η) −

1
2(1 + 2λ + 6µ)

)
d2

]
,

where

h(η) =
U2

1(t)
(
1 − η

)
2
[
(1 + 2λ + 6µ)U2

1(t) − (1 + λ + 2µ)2U2(t)
] .

Then, in view of (6), we easily conclude that

|a3 − ηa2
2| ≤


2t

1+2λ+6µ , |h(η)| ≤ 1
2(1+2λ+6µ)

4|h(η)|t, |h(η)| ≥ 1
2(1+2λ+6µ)

This proves Theorem 4.1.
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We end this section with some corollaries concerning the sharp bounds of Fekete-Szegö functional
a3 − ηa2

2 defined for f ∈ BΣ
(
λ, µ, t

)
given by (3).

Taking η = 1 in Theorem 4.1, we get the following corollary.

Corollary 4.2. Let the function f (z) given by (3) be in the class BΣ
(
λ, µ, t

)
. Then

|a3 − a2
2| ≤

2t
1 + 2λ + 6µ

.

Taking λ = 1 and µ = 0 in Theorem 4.1, we get the following corollary.

Corollary 4.3. Let the function f (z) given by (3) be in the class BΣ (t). Then for some η ∈ R,

|a3 − ηa2
2| ≤


2
3 t, |η − 1| ≤ 1−t2

3t2

2|η−1|t3

1−t2 , |η − 1| ≥ 1−t2

3t2

Taking η = 1 in Corollary 4.3, we get the following corollary.

Corollary 4.4. Let the function f (z) given be (3) be in the class BΣ (t). Then

|a3 − a2
2| ≤

2
3

t.

Taking µ = 0 in Theorem 4.1, we get the following corollary.

Corollary 4.5. Let the function f (z) given by (3) be in the class BΣ (λ, t). Then for some η ∈ R,

|a3 − ηa2
2| ≤


2t

1+2λ , |η − 1| ≤ |
(1+λ)2

−4t2λ2|
4(1+2λ)t2

8|η−1|t3

|(1+λ)2−4t2λ2|
, |η − 1| ≥ |

(1+λ)2
−4t2λ2|

4(1+2λ)t2

(25)

Taking η = 1 in Corollary 4.5, we get the following corollary.

Corollary 4.6. Let the function f (z) given by (3) be in the class BΣ (λ, t). Then

|a3 − a2
2| ≤

2t
1 + 2λ

.
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[2] Ş. Altinkaya, S. Yalçin, Initial coefficient bounds for a general class of bi-univalent functions, International Journal of Analysis,
Article ID 867871 (2014), 4 pages.
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Variables and Elliptic Equations 44.2 (2001) 145–163.
[21] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23

(2010) 1188-1192.
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