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Abstract. In the present study, a new subclass of analytic and bi-univalent functions by means of Chebyshev
polynomials is introduced. Certain coefficient bounds for functions belong to this subclass are obtained.
Furthermore, the Fekete-Szeg6 problem in this subclass is solved.

1. Introduction

The classical Chebyshev polynomials of degree n of the first and second kinds, which are denoted
respectively by T,(t) and U,(t), have generated a great deal of interest in recent years. These orthogonal
polynomials, in a real variable t and a complex variable z, have played an important role in applied
mathematics, numerical analysis and approximation theory. For this reason, Chebyshev polynomials have
been studied extensively, see [8, 10, 16]. In the study of differential equations, the Chebyshev polynomials
of the first and second kinds are the solution to the Chebyshev differential equations

A=)y —ty +n*y =0 (1)
and
1- tz)y" -3ty +n(n+2)y =0, 2)

respectively. The roots of the Chebyshev polynomials of the first kind are used as nodes in polynomial
interpolation and the monic Chebyshev polynomials minimize all norms among monic polynomials of
a given degree. For a brief history of Chebyshev polynomials of the first and second kinds and their
applications, the reader is referred to [19, 22].

A classical result of Fekete and Szegé [13] determines the maximum value of |a; — na%l, as a non-linear
functional of the real parameter 7, for the class of normalized univalent functions

f@) =z+amz +a2® +---.
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There are now several results of this type in the literature, each of them dealing with |a3 —na3| for various
classes of functions defined in terms of subordination (see e.g., [1, 20]). Motivated by the earlier work of
Dziok et al. [10], the main focus of this work is to utilize the Chebyshev polynomials expansions to solve
Fekete-Szego problem for certain subclass of bi-univalent functions (see, for example, [5-7, 14]).

This paper is divided into three sections with this introduction being the first. In Section 2, we define
the class of analytic and bi-univalent functions %x (A, y, t) using the generating function for the Chebyshev
polynomials of the second kind, and we also discuss some other definitions and results. Section 3 is devoted
to solve problems concerning the coefficients of functions in the class %z (A, y, ). Section 4 is the main part
of the paper, we find the sharp bounds of functionals of Fekete-Szegé type.

2. Definitions and Preliminaries

Let o/ denote the class of functions of the form:

fz)=z+ i a,z", 3)

n=2

which are analytic in the open unit disk U = {z € C : |z| < 1}. Further, by . we shall denote the class of all
functions in &/ which are univalent in U.

Given two functions f, g € 7. The function f(z) is said to be subordinate to g(z) in U, written f(z) < g(2),
if there exists a Schwarz function w(z), analytic in U, with

w(0) =0and |w(z)| < 1forallz e U,

such that f(z) = g (w(z)) for all z € U. Furthermore, if the function g is univalent in U, then we have the
following equivalence (see [17] and [23]):

f(z) <g(z) & f(0) = g(0) and f(U) c g(U).

The Koebe one-quarter theorem [9] asserts that the image of U under each univalent function f in .%
contains a disk of radius 1. According to this, every function f € . has an inverse map f~!, defined by

fif@) =z (ze),

and
F(F @) =w (lwl<r(fin(f) = 1)
In fact, the inverse function is given by
FH(w) = w - apw® + (211% - a3)w’ - (5{13 — Bagaz + ag)wt + - . 4)

A function f € <7 is said to be bi-univalent in U if both f(z) and f~!(w) are univalent in U. Let X denote
the class of bi-univalent functions in U given by (3). For a brief history and some intriguing examples of
functions and characterization of the class L, see Srivastava et al. [21] and Frasin and Aouf [11], see also
[2-4,12, 15, 18].

The Chebyshev polynomials of the first and second kinds are orthogonal for t € [-1, 1] and defined as
follows:

Definition 2.1. The Chebyshev polynomials of the first kind are defined by the following three-terms recurrence
relation:

To(t) =1,

Ti(t) = ¢,

Tpi1(t) := 2tT,(t) = Tyoa (t).
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The first few of the Chebyshev polynomials of the first kind are
To(t) = 28> — 1, Ta(t) = 48> — 3t, Ty(t) = 8t* — 82 +1,--- . (5)
The generating function for the Chebyshev polynomials of the first kind, T,(¢), is given by:

1-1tz _
1-2tz+22

Z T.(HZ" (z € U).

n=0

F(z,t) =

Definition 2.2. The Chebyshev polynomials of the second kind are defined by the following three-terms recurrence
relation:

Uo() =1,
Ui (t) =2,
Up1(t) := 2¢U () — U1 (H).
The first few of the Chebyshev polynomials of the second kind are
Us(t) = 412 — 1, Us(t) = 83 — 4t, Uy(t) = 16t* =122 +1,-- - . (6)
The generating function for the Chebyshev polynomials of the second kind, U,(t), is given by:

1t
1-2tz+ 22

= Z U,(Hz" (z € U).

n=0

H(z,t) =

The Chebyshev polynomials of the first and second kinds are connected by the following relations:
dT,(t)
t

Definition 2.3. For A >1,u > 0and t € (1/2,1), a function f € L given by (3) is said to be in the class %x(A, i, t)
if the following subordinations hold for all z, w € U:

Jg +Af'(2) + uzf"(2) < H(z t) := ﬁ

nUy—1(t); Tu(t) = Un(t) — tUp-1(t); 2T, (1) = Un(t) — Up-2(t).

(1-2) )

and

gw) ) o1
- + Ag'(w) + pwg” (w) < H(w, t) := T

1-4)
where the function g(w) = f~1(w) is defined by (4).

Remark 2.4. 1. For A = 1and y = 0, we have the class %5 (1,0, t) := PBx(t) of functions f € L given by (3) and
satisfying the following subordination conditions for all z,w € U:

, _ 1
f@<HeD= 151
and
() < H(w, t) = ———
g T = 2tw + w?’

This class of functions have been introduced and studied by Altinkaya and Yalgin [5].
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2. For u = 0, we have the class #x(A, 0, t) := Bx(A, t) of functions f € L given by (3) and satisfying the following
subordination conditions for all z,w € U:

1@ ap 1
z

(1—A) +Af(Z)<H(Z,t):m

and

9() 1

(1—A) +/\g (W)<H(w,t)=m

This class of functions have been introduced and studied by Bulut et al. [7].
3. Coefficient Bounds for the Function Class #x(A, y, t)

We begin with the following result involving initial coefficient bounds for the function class %y, (A, y, t).

Theorem 3.1. Let the function f(z) given by (3) be in the class Bx. (A, u, t). Then

ol < 2 N2t ©)
I+ 24202 - 482 [+ 2002 - 2]
and
4¢2 2t

R T W o ey pware {10
Proof. Let f € Ay (A, u, t). From (7) and (8), we have

1-A) f( 2) +Af(2) + pzf’(z) = 1 + Ui (H)w(z) + U (Hw?(z) + - - - 11
and

1-A) M + Ag'(w) + pwg”’ (w) =1 + Uy (H)o(w) + U (H)v*(w) + -+, (12)

for some analytic functions

w(z) = 12 + €222 + 032° + -+ - (ze ),
and

v(w) = diw + dow?® + dsw® + -+ (w e V),

such that w(0) = v(0) =0, |w(z)| < 1 (z € U) and |[v(w)| < 1 (w € U).
It follows from (11) and (12) that

f()

1-2 +Af'(z) + pzf”(z) =1 + Ui (t)cr1z + [U1 Hep + Uz(t)cl]

and

(1-2) M + Ag' (@) + pwg” (@) = 1+ Uy()dyw + [Ur (D2 + Ua(Od [y + - .
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A short calculation shows that

(1+ A +2u)ay = Us(t)cy, (13)

(1+2A +6p)as = Uy (t)cr + Ua(t)c2, (14)
and

—(1+A+2u)a; = Uy(tdy, (15)

(1421 +6p) (245 — a) = Uy (tdy + Us(t)d>. (16)

From (13) and (15), we have

c1 = —dy, 17)
and

201+ A+2p) a3 =W (G + ). (18)

By adding (14) to (16), we get
2(1+2A +6) a2 = Us(t) (cz + do) + Un(t) ( + ). (19)
By using (18) in (19), we obtain

2(1+2A +6p) - ZLIUZ—"’(?;)(1+A+2#)2 ay = Ur(t) (c2 + da). (20)
1

It is fairly well known [9] that if [w(z)| < 1 and |v(w)| < 1, then
lcjl <1and |d;| < 1forall j € N. (21)

By considering (6) and (21), we get from (20) the desired inequality (9).
Next, by subtracting (16) from (14), we have

2(1+ 24 +6p)as = 2(1 + 24 + 61)a3 = Un(t) (c2 — ) + Un(t) (6} = ). (22)
Further, in view of (17), it follows from (22) that

_ U (t)
az = a% + m (C2 - dz) . (23)

By considering (18) and (21), we get from (23) the desired inequality (10). This completes the proof of
Theorem 3.1. O

Taking A = 1 and u = 0 in Theorem 3.1, we get the following corollary.
Corollary 3.2. [7] Let the function f(z) given by (3) be in the class Hx (t). Then

and
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For Corollary 3.2, it’s worthy to mention that Altinkaya and Yalgin [5] have obtained a remarkable result
for the coefficient |a;|, as shown in the following corollary.

Corollary 3.3. Let the function f(z) given by (3) be in the class Py, (t). Then

tV2t
Vit2t—£2

Taking u = 0 in Theorem 3.1, we get the following corollary.
Corollary 3.4. [7] Let the function f(z) given by (3) be in the class $Bx (A, t). Then

|as| <

2t V2t
1+ A)2 — 4272

laz| <

and

] < 412 N 2t
A2 T1e2n

4. Fekete-Szego Inequality for the Function Class %x(A, u, t)

Now, we are ready to find the sharp bounds of Fekete-Szegt functional a3 —1a? defined for f € %z (A, i, t)
given by (3).

Theorem 4.1. Let the function f(z) given by (3) be in the class %s. (A, u, t). Then for some 1 € R,

e n-1<M
|ﬂ3 - T]ﬂ§| < o (24)
[A+A+2u2 -4 (A+2u2-2u]]” In-11=M
where
'(1 + A+ 207 — 4R (A 4+ 2 - 2y]|
M =

4(1 + 24 + 6u)t?
Proof. Let f € Ay (A, u, t). By using (20) and (23) for some n € R, we get

Ui (t) (2 + da) RACICED
201+ 24 + 6p)U2(E) = 2(1 + A+ 2u)2Us(t) | 2(1+ 21 + 6p)

ﬂs—ﬂﬂ§:(1—n)[

1 1
=mmWw+ﬁjg:@%ﬁ@W—mTﬁ:@V+
where
Uz () (1 - 1)
2[(1+24 + 6p)UR(H) — (1 + A +2p)2Un(t)]

h(n) =

Then, in view of (6), we easily conclude that

1+2%\t+6p’ Ih(ml < 2(1+21/\+6,u)
las — na3) <
4h(nlt, |h(m)l = Z(H;Té”)

This proves Theorem 4.1. [J



Feras Yousef et al. / Filomat 32:9 (2018), 3229-3236 3235

We end this section with some corollaries concerning the sharp bounds of Fekete-Szego functional
as — a3 defined for f € %y (A, u, t) given by (3).
Taking 7 = 1 in Theorem 4.1, we get the following corollary.

Corollary 4.2. Let the function f(z) given by (3) be in the class By (A, u, t). Then

2t
o3 —ad] € ————.
1+2A+6u

Taking A =1 and u = 0 in Theorem 4.1, we get the following corollary.

Corollary 4.3. Let the function f(z) given by (3) be in the class Py, (t). Then for some n € R,

2
2t, In-1]< &
2
las — nas| <
2|1)71|t3
1-12

1-#
»In=11= 5z

Taking 1 = 1 in Corollary 4.3, we get the following corollary.

Corollary 4.4. Let the function f(z) given be (3) be in the class By (t). Then

2
2
|El3 — 012| < gt.

Taking p = 0 in Theorem 4.1, we get the following corollary.

Corollary 4.5. Let the function f(z) given by (3) be in the class Bs. (A, t). Then for some n € R,

o [a+2)2-4222|
Ti2A” In=1< gz
las — na3| < (25)
8in-11r | 1> [(1+2)2-4£212|
[arap—azaz)s M~ H = —aaeane

Taking 1 = 1 in Corollary 4.5, we get the following corollary.

Corollary 4.6. Let the function f(z) given by (3) be in the class By, (A, t). Then

2t

2
_ < .
a3 — a1 < 757
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