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Abstract. In this note we give a connection between the closure of the range of block Hankel operators
acting on the vector-valued Hardy space H2, and the left coprime factorization of its symbol. Given a

subset F C Hf:,, , we also consider the smallest invariant subspace S;. of the backward shift S* that contains F.

1. Introduction

Let H and K be separable complex Hilbert spaces, and let B(H, K) be the set of all bounded linear
operators from H to K. B(H,H) is denoted simply by B(H). A closed subspace L C H is called
an invariant subspace for the operator T € B(H) if TL ¢ L. The theory of invariant subspaces of the
backward shift operator has enabled important contributions to numerous applications in operator theory

and function theory ([6],[13]). Given a subset F C Hé,,, the subspace

Sp = \/IS"f: feE n>0),

is the smallest invariant subspace of the backward shift S* that contains F. If S} # HZ, then by the
Beurling-Lax-Halmos Theorem, there is an inner matrix function © € Hy, ., such that

S; = Hg, © OHE,. (1)
The purpose of this note is to determine the inner matrix function ® € Hyj;  satisfying (1).

Let us recall the basic properties of unbounded operators ([2]). If A : H — K is a linear operator, then
A is also a linear operator from the closure of the domain of A, denoted by cl[dom A], into K. So we will
only consider A such that dom A is dense in H. Then, such an operator A is said to be densely defined. If
A : H — K is densely defined, we write ker A and ran A for the kernel and range of A, respectively. For a
set M, cLM and M* respectively denote the closure and orthogonal complement of M. Let A : H — K be
densely defined, and let

domA* = {k € K : (Ah, k) is a bounded linear functional on domA}.
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Then for each k € domA*, there exists a unique f € K such that (Ah, k) = (h, f) for all h € domA. Denote
this unique vector f as f = A*k. Thus (Ah, k) = (h, A*k) for h in domA and k in domA".

We review a few essential facts for Toeplitz operators and Hankel operators, and for that we will use
[3], [4], [5], [11] and [12]. For E a Hilbert space, let L% = L%("IF) be the set of all E-valued square-integrable
measurable functions on the unit circle T and H} be the corresponding Hardy space. For f,g € L%, the
inner product (f, g) is defined by

S, g = fT (), 92 edm(),

where m denotes the normalized Lebesgue measure on the unit circle T. Let M,, denote the set of n X n
complex matrices, and let Pc» be the set of all polynomials p with value in C", which is dense in H2,. For

(ONS L12v1n/ the (unbounded) Hankel operator He, on H2, and (unbounded) Toeplitz operator Tg on H2, are
defined by
Hop := JPX(®p) and Top:=P(®p) (p€Pc),

where P and P* denote the orthogonal projections that map from LZ, onto Hg, and (Hén)l, respectively,
and | denotes the unitary operator from L2, onto Lé,,, given by (Jg)(z) := zl,g(z) for g € Lé” (I, :==thenXxmn
identity matrix). For @ € LIZVI,,X,,,’ we write

D(z) = D).
A matrix-valued function © € H;anm is called an inner if © is an isometric a.e. on T. The following basic
relations can be easily derived from the definition:

Ty =Te, Hy = Ha (D€ L;jfn); 2)
HoTy = How, Hyo = TgHo (P €Ly ,WeHy ) 3)
HiyHo — HywHeo = HyHo Hy Hy  (© € HY, is inner, @ € L3 ). @)

The shift operator S on H2, is defined by
S:= TZI,,-

The following fundamental result known as the Beurling-Lax-Halmos theorem is useful in the sequel.

The Beurling-Lax-Halmos Theorem. ([7], [11]) A nonzero subspace M of H2, is invariant for the shift
operator S on H2, if and only if M = ®H02:m, where © is an inner matrix function in H](’;’Iw. Furthermore, ®

is unique up to a unitary constant right factor. That is, if M = AHZ, (for A an inner function in Hy; ), then
m =rand © = AW, where W is a unitary matrix mapping C" onto C".

As is customarily done, we say that two matrix functions A and B are equal if they are equal up to a
unitary constant right factor. If ® € Ly} , then by (3), kerHo is an invariant subspace of the shift operators

on Hf:”. Thus, if kerHg # {0}, then the Beurling-Lax-Halmos Theorem,

kerHg = @thEm

for some inner matrix function © € Hy

nxm

A function ¢ € L? is said to be of a bounded type if there are functions 1,1, € H* such that ¢ = % a.e.

on T. For a matrix-valued function ® = [d),']] € L%Aw, we say that @ is of bounded type if each entry ¢;; is of
bounded type. For a matrix-valued function ® € HIZVInxy’ we say that A € HIZVIM is a left inner divisor of @ if
A is an inner matrix function such that ® = AA for some A € HI%AM. We also say that two matrix functions
de HIZVI,,X, and W € HIZVInxm are left coprime if the only common left inner divisor of both ® and W is a unitary
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constant and that ® € H3, ,andWe H;, , are right coprime if @ and W are left coprime. We would remark
that if ® € H2, is such that det® is not identically zero, then any left inner divisor A of @ is square, i.e.,
A € Hy, . If ® € H3, is such that det® is not identically zero, then we say that A € H3, is a right inner

divisor of @ if A is a left inner divisor of @ ([31, [7D)-

From now on, for notational convenience, we write
I, = wl, (v € H?).
Let® € LZZVL, with @ be of bounded type. Then it is well known ([9]) that ® can be represented as
®=IA  (A€H;,, 0isinner). (5)

In (5), Ip and A need not be left coprime. If Q = left-g.c.d. {Iy, A}, then Iy = QQ, and A = QA for some
inner matrix QQ; and A; in levI . Therefore we can write

® =,A;, where Ay and Q; are left coprime. (6)
In this case, ;A is called the left coprime factorization of ®, and we write
® = A, (left coprime).
Similarly, we can write
® = A,Q;, where A, and (), are right coprime. (7)
In this case, A,Q); is called the right coprime factorization of ®, and we write
® = A,Q; (right coprime).
Our main theorem is now stated as:
Theorem 1.1. Let F € HI%,I” be such that F* is of a bounded type. Then in view of (6), we may write
F =0'A (left coprime).
Then _
cl ran Hp- = H(©).
2. The Proof of Main Theorem

In this section we give a proof of Theorem 1.1. We recall the inner-outer factorization of vector-valued
functions. Let D and E be Hilbert spaces. If F is a function with values in B(E, D) such that F(-)e € H2 for
each e € E, then F is called a strong H>-function. The strong H>-function F is called an inner function if F(-)
is an isometric operator from D into E. Write Pk for the set of all polynomials with values in E. Then the
function Fp = Yi_, Fp(k)z" belongs to H3. The strong H>-function F is called outer if cIF - Pz = H2. We
then have an analogue of the scalar inner-outer factorization Theorem. Note that every F € HIZ\/I,, is a strong

H>-function.
Lemma 2.1. ([11]) Every strong H*-function F with values in B(E, D) can be expressed in the form
F = FiF,,

where F, is an outer function with values in B(E, D’) and F; is an inner function with values in B(D’, D), for some
Hilbert space D’.
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For ¢ = [qbl,qbz, e ,(Pn]t € LZ,, we write
— S — qt o = = =1t
¢:=[bndy 0] and $:=[g,6,.3,]
Then it is easy to show that
SG=J5 ifge(HE)" (8)
Lemma 2.2. Let f = [fi, fo,--+, ful' € HE,. Then,
St = clranH;.
Proof. For each n € N, it follows from (8) that
Ss{-nf — S*(P(Zn—lf))
= S((1 - P)z"1))
= JI-P)E"f)
= Ef'Zn.
Thus,
Sy = \/(S"f :n >0} = cl ranH,
which gives the result. [0

For an inner matrix function © € Hy; L we write H(®) := Hén ©OH?2,. Itis easy to show that [11]:

cm*

feH®) — O f € (H2)™ . )

We now recall the notion of the reduced minimum modulus([1], [10]). The reduced minimum modulus
of operators measures the closedness for the range of operators. If T € B(H) then the reduced minimum
modulus of T is defined by

inf{||Tx|| : dist(x, kerT) =1 ifT#0
y(T) = { } e
0 if T=0.

It is easy to see that y(T) > 0 if and only if T(H)) is closed for each closed subspace Hj of H. If T € B(H)
is a nonzero operator, then we can see that y(T) = inf(a(ITl) \ {0}), where |T| denotes (T*T)%. Thus we have

that y(T) = y(T*) ([8]). For X a closed subspace of Hf:,,,
X.

P denotes the orthogonal projection from H2, onto
Lemma 2.3. ([9]) For @ € Ly, , the following statements are equivalent:
(i) D is of bounded type;
(ii) ker Hp = ®H2, for some square inner matrix function ©;
(iii) @ = A®" (right coprime).

Lemma?24. Let®, A€ H12\/1 be inner functions. Then

(1) He-(AH?,) is closed.
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(b) If © and A are left coprime, then He-(AHZ,) = H (@).

Proof. 1f © € M,, then ® is a unitary matrix, and hence @c M, is a unitary matrix. Thus, He (AHQZZ,[) ={0} =
H(®). This gives the result. Let ® ¢ M,,. Since © is an inner function, by (4), we have Hg, He: = Pyyg), SO
that |He| = Pye) # 0. Thus y(He) = inf(o(|He-)) \ {0}) = 1, and hence Ho-(AH2,) is closed. This proves
(a). Suppose © and A are left coprime inner functions. Then ®HZ, \/ AHg, = Hg,. Thus,

A= {®h1 + Al’lz : hl,hz S Hzn}

is dense in Héy,. On the other hand, it follows from Lemma 2.3 that ker Hg- = (H)quj,,, and hence cl Ho(A) =
He (AH2,). Since H(®) = (ker Hy.) = ran He, it follows that
H(®) = He: (clA) € cl He:(A) = He-(AH2,) C ran Ho: = H(O),
which gives (b). O
Proof of Theorem 1.1. Let p € Pc: be arbitrary. Write p; = Py g Ap. Then it follows from (9) that
Hr.p = J(~ PX@"Ap) = J(©'p1) = 26,

which implies that (:)*pr € (H2,)*. Thus, by again (9), Hp-p € H ((:)), so that

clranHp- € H(O).
For the converse inclusion, let i € kerHj}. be arbitrary. Since A € H}VI“ is a strong H?-function, by Lemma

2.1, we can write
A=A A,

where A; € HIZVIy,xm is inner and A, € wamxn is outer. Then we have that (cf. [11, p.44])
clAPen = AH?,. (10)
For each p € Per, we have
0= (p, Hp.t) = (J(L - P)O" Ap, h) = (&' Ap, Jh).
Thus, it follows from (10) that
(Hor(Aif), 1Y = (©"Aif, Jh) =0 forall f € HZ,. (11)

On the other hand, since ® and A are left coprime, ® and A; are left coprime. Thus, it follows from Lemma
2.4 and (11) that ker Hy. C (He (AiH?)) = ®H2,, so that

H(©) C (ker H;)l = cl ran Hp-.
This completes the proof. O
For F={fi, f, f3,"** , fm} C Hf:n (m < n), let
®r =z[f1, fo, -+ s fu, 0, ,01 € Hyy .

We then have:
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Corollary 2.5. Let F = {fi, fo,--- , fu} C HZ,
of (6), we may write
O = O*A  (left coprime).

Then _
Sy = H(®).

Proof. 1t follows from Lemma 2.2 and Theorem 1.1 that

Sy = \/ ranH;; = clranHo, = H(O).
k=1

This completes the proof. O

Remark 2.6. Suppose F = {f, f»,-+- , fn} C H>

Cﬂ
A f fn
1o o - 0
Or=z|. . . |=0'A€ HIZVIN (left coprime).
0 0 --- 0

Then, it follows from Corollary 2.5 that
S+ P Olevr = H(®).

Example 2.7. Let a and ¢ be nonzero complex numbers and f = [az, cb,]' (ba(z) := £

iz 0
O=|_" _ .
[czba(z) O]
Observe that for x,y € H?,
[x} € ker Hy & ab,x + czy € z°b,H*
Y

_ {?ba(O)x(O) =0
cay(a) = 0.

{x = zx1 for some x; € H?

y = bays for some y1 € H>.
By (12), we have that x = zx1 and y = b,y for some x1,y1 € H?2. We thus have
m € ker Hy &= @x1(0) +cy1(0) = 0
— x1(0) = yy1(0) (y = —;).
Put

1 z 0 z Y
0=— — .
VIt P [0 ba] [‘VZ 1]

(N > n) be such that ?i is of a bounded type for each i. Let

0 < |a| <1). Put

3242

(m < n) be such that fi is of bounded type for each i. Then in view

(12)

(13)
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Then © is inner, and it follows from (13) that
— O
ker Hy = ©H,.

Thus by Lemma 2.3, we have D = AG" (right coprime) and hence ® = A (left coprime). It thus follows from
Corollary 2.5 that

Corollary 2.8. Let f € H>.
(a) f is not of bounded type if and only if S} = H2.

(b) If f is of bounded type of the form
f =0a (left coprime),

then
_ H(z0) ifa(0) #0

SF = \w0) if a(0) = 0.

Proof. Note that ? is of a bounded type if and only if Zf is of a bounded type. Thus, it follows from
Corollary 2.5 that f is of a bounded type if and only if S} # H2. This proves (a). For (b), leta(0) # 0. Then,

z and 4 are coprime so that z6 and a are coprime. Thus

Zf = z0)a  (left coprime).

It follows from Corollary 2.5 that S} = H(z6). If instead a(0) = 0, then we may write a = za’ for some
a’ € H? so that _
z f = 00 (left coprime).

Thus, again by Corollary 2.5, we have S} = H(0). This completes the proof. O
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