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Abstract. An automorphism o of a finite simple graph I'is a shift, if for every vertex v € V(I'), ov is adjacent
to v in I'. The graph I is shift-transitive, if for every pair of vertices u,v € V(T) there exists a sequence
of shifts 1,0, ...,0¢r € Aut(T') such that 010;...0¢u = v. If, in addition, for every pair of adjacent vertices
u,v € V(I') there exists exactly one shift 0 € Aut(I') sending u to v, then I’ is uniquely shift-transitive. The
purpose of this paper is to prove that, if I is a uniquely shift-transitive graph of valency 5 and Sr is the set
of shifts of I then (Sr), the subgroup generated by Sr is an Abelian regular subgroup of Aut(I').

1. Introduction

Throughout this paper, groups are finite and graphs are simple, finite, connected and undirected. For
graph and group-theoretic concepts not defined here, we refer the reader to [1] and [4]. We start by recalling
some notations and definitions from [2] and [5]: If u and v are two adjacent vertices in graph I', we write
u ~v. Let G be a group and S a subset of G that is closed under inverses and does not contain the identity.
The Cayley graph I = Cay(G, S) with connection set S is the graph whose vertex set is G, two vertices u, v
being joined by an edge if uv™! € S. A quasi-Abelian Cayley graph is a Cayley graph T = Cay(G, S), where S is
the union of conjugacy classes in G. An automorphism o of a graph I' is a shift, if for every vertex v € V(I'),
we have 0v ~ v.

We call a graph I shift-transitive if for every pair of vertices u,v € V(I'), there exists a sequence of
shifts 01,09, ...,0r € Aut(I'), such that g107...00¢ = v. If, in addition, for every pair of adjacent vertices
u,v € V(I') there exists exactly one (respectively, at least one) shift 0 € Aut(I') sending u to v, then I is
uniquely shift-transitive (respectively, strongly shift-transitive).

Since uniquely shift-transitive graphs are strongly shift-transitive and strongly shift-transitivity implies
vertex transitivity, we find that if I' is a uniquely shift-transitive graph, then it is vertex-transitive. So I’ is
regular and the size of Sr, which is the set of shifts of I, and the valency of I are equal.

In [3] the authors investigate these concepts in some standard graph products and the following two
questions are posed in [2].

Question 1.1. Is every uniquely shift-transitive Cayley graph isomorphic with a Cayley graph of an Abelian group?

Question 1.2. Does there exist a uniquely shift-transitive non-Cayley graph?
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Our motivation for this paper is to give an answer to the Question 1.1 without assuming that I is a
Cayley graph, and a partial answer to the Question 1.2.

In Section 2 we give some propositions that will be used in Section 3 and finally in Section 3 we prove
the following main result.

Theorem 1.3. Every uniquely shift-transitive graph T of valency 5 is isomorphic with a Cayley graph of an Abelian
group.

2. Preliminaries

In this section we prove some propositions to show that in a uniquely shift-transitive graph of valency
5 the shifts commute with each other.

Remark 2.1. If T is a uniquely shift-transitive graph and o, f € Aut(I') are two shifts such that av = Bv for some
v e V(I), then a = B. Also if I is a uniquely shift-transitive graph of valency 5 and Sr = {a, B, y, 6, 1} is the set of
shifts of T then |V(T')| > 8 and since (Sr) acts transitively on V(T'), so |(Sr)| = 8.

Proposition 2.2. ([2, Proposition 4.1]) Let I = Cay(G, S) be a quasi-Abelian Cayley graph of a non-Abelian group
G, Then T is not uniquely shift-transitive.

Proposition 2.3. Let I be a uniquely shift-transitive graph of valency 5 and Sr = {a, B, v, 6, 1} be the set of shifts
of T. Moreover assume that a* = g = y? = % = n* = id, where by id we mean the identity permutation. Then

(1) If aBa =y and Baf =y then ada # 0.
(2) If apa = y and Bap = 0 then Byp # y.
(3) Ifapa =y, Bap = 6 and pyp = 1 then ada # 1.

Proof. (1) : Suppose, in contrary, that ada = 0. Since afa = y, we have ana = 1. Now consider the shift
BoB. If pOp = n, then we have

1N =ana = apdpa = yaday = yody = ypnpy = panap = pnp = o,

which is a contradiction. Thus 68 = 6 and so 1 = n. Therefore we have the following equalities:

apa =y, adba =06, ana =n,pa =y, PO =96, pnp =n,0nd6 = 1. (2.1)

Let G =(Sr), H=Xa, B, 7, , n | a®> =p> =92 =86 =1n* =id, afa = y, ada = 6, ana =
n, pap =y, pop =06, pnp =1, ond =), M =(a, , yla* = p*> =y*> =1id, apa =y, ap = y) and
N =(6, n16*> =n*=1id, 61 = nd). Then by Equation 2.1 we have M <H, N<H, MNN = {id} and H = MN.
Thus H = M x N. Since M = Sz and N = C}, so H = 53 x C; and G is isomorphic to a quotient of S3 X C;.
Since |V(I')| divides |G| and |G| divides |H| = 24, we find that |G| = 8 or 12 or 24. If G has order 8 or 12
we have |V(I')| = |G| which means that G acts regularly on V(I'). So I is a quasi-Abelian Cayley graph of a
non-Abelian group G with connection set Sr. By Proposition 2.2, I' is not uniquely shift-transitive, which is
a contradiction. If |G| = 24 then G = S3 x C3 and

G=1{id, a, B, vB, v, By, 6, ad, n, an, 6, ypo, o, Byo,
no, and, pn, yBn, yna, yn, npod, ynpsd, anpd, ynd}.

Now note that the stabiliser of a vertex v in G is a core-free subgroup of S3 X C2, which has order 1 or 2.
Recall that a subgroup H of a group G is called core-free if (), H? = 1. Moreover if H is a core-free subgroup
of G then the largest normal subgroup of G which is contained in H is 1. If G, has order 2 then G, = {id, 0}
where 6% = id. Thus,

0ela, B, v, 0, n, ao, an, o, pn, yo, yn, no, and, pnd, yno}.
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Since the shifts fix no vertices so 0 ¢ {«, B, ¥, 9, 1}. Also if O = ad then adv = v. Thus av = 6v which implies
a = 6, a contradiction. So 0 ¢ {ao, an, po, pn, y0, yn, nd}. Therefore G, is one of {id, anod}, {id, pnoé} or {id, yno}
and I' has order 12. Without loss of generality we may assume that G, = {id, ané}. Thus andév = v and so
nov = av. Therefore by Equation 2.1 we find that I has vertex set,

V() = {v, av, pv, yBv, yv, Byv, dv, adv, ydv, Bydv, Bov, yROU).

In this graph,
0 = on = (v av)(Bo ypo)(yv fyv)(dv adv)(ydv fyov)(dv ypov),

is a shift different from «, B, y, 6 and 7. This is a contradiction with the unique shift-transitivity of I'.
Assume that G, has order 1. Then I' has order 24 and G acts regularly on V(I'). Hence I' is a quasi-
Abelian Cayley graph of a non-Abelian group G with connection set Sr. By Proposition 2.2, I is not uniquely
shift-transitive, which is a contradiction.
So in the above cases, we obtain a contradiction. Therefore the proof of Part (1) is complete.

(2) : Suppose, to the contrary, that g = y. Thus pnp = n. Since faf = 6 and afa = y so ada = afapa =
yBa = Bya = Baf = 6 and ana = 1. Therefore we have the following relations between the shifts of I":

apa =y, ada =06, ana =1, pap =0, Byp =1y, pnp =1. (2.2)

Let G=<(St), H=4a, B, 7, 6, nla? = =1y2=6 =n*=1id, aa = y, ada = 6, ana = 1, faf =
o Byp =y, pnp=m, M=(a, By, 0la’>=p*=)> =06 =id, apa =y, ada = 5, pap = 6,fyp = y) and
N = (nn? =id), then by Equation 2.2 we have M <H, N<H, MNN = {id} and H = MN. SoH = M X N.
Since M = Dg and N = C; thus H = Dg X C; and G is isomorphic to a quotient of Dg X Cs.

By Remark 2.1, we find that |G| = 8 or 16. If |G| = 8, then |[V(I')| = 8 and G acts regularly on V(I'). So in
this case I is a quasi-Abelian Cayley graph of a non-Abelian group G with connection set Sr. By Proposition
2.2, T is not uniquely shift-transitive, which is a contradiction. If |G| = 16 then G = Dg x C; and

G=1{d, B, a, ya, y, By, 6, yo, n, pn, ny, Py, an, yan, on, yon).
Now the stabiliser of a vertex v in G is a core-free subgroup of Dg X C,, and so it has order 1 or 2. If G, has
order 2 then G, = {id, 6}, where 62 = id. Thus,

O €la, B, v, 6,0, Py, an, pn, yn, on, ad, py}.

By a similar argument as Part(1), 0 ¢ {a,3,7,6,n,By,an, pn, yn,on,ad}. If 0 = By then G, < G, which is a
contradiction because G, is a core-free subgroup of G.

If G, has order 1 then, G acts regularly on V(I'). So I is a quasi-Abelian Cayley graph of a non-Abelian
group G with connection set Sr. By Proposition 2.2, I is not uniquely shift-transitive, which is a contradiction.
Therefore the proof of Part (2) is complete.

(3) : Suppose, by way of contradiction, that ada = 1. We have the following relations between the shifts of
I':

apa =y, adba =n,paf =96, By =1, (2.3)
Let G = (Sr), a = a and b = a. Then by Equation 2.3, we have a® = b* = (ba)* = id. Thus G = Dy and,
G=1{id, a, B, Ba, v, ya, 6, da, 1, na}.

Now the stabiliser of a vertex in G is a core-free subgroup of Dy, so it has order 1 or 2. If it has order 2 then
I' has order 5 which is impossible. If it has order 1 then I" has order 10 and G acts regularly on V(I'). So I is
a quasi-Abelian Cayley graph of non-Abelian group G with connection set Sr. By Proposition 2.2 I is not
uniquely shift-transitive which is a contradiction. O

Proposition 2.4. Let T be a uniquely shift-transitive graph of valency 5 and Sr = {a, B,7,6, 671} be the set of shifts
of T, such that o* = p> = y* = id. Then
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(1) Ifapa =y, ada = 6 and Bap =y, then BOS # 6.
(2) Ifapa =y,ada =671, Bap =y and BB = 671, then 6 1ad # B.
(3) If apa = B,aya =y and Byp =y, then 6 'ad # .
Proof. (1) : Suppose as a contradiction that 6 = 6. We number the equalities as follows:
apa =y, adba =9, pap =y, pOp =0 (2.4)

LetG=(Sr), I6l=n>3 H=(a, B, y,6la>=p*=y*>=08"=id, apa =y, ada =6, fap =7y, POP =
o), M=<a, B, yla®>=p>=y*=1d, apa =y, Bap = yyand N = (6 | 6" = id). Then by Equation 2.4, we
have M <H, N<H, MNN = {id} and H = MN. So H = M x N.

But M = Sz and N = C,,. Thus H = S3 X C,, and G is isomorphic to a quotient of S3 X C,. Since 0 € G so
n divides |G|. Thus |G| = n,2n,3n or 6n. If |G| = n then G = (0) is a cyclic group, which is a contradiction. If
|G| = 6n then G = S3 X C,, and

G={id, o, B, v, yB, By, 6, ad, po, yBo, yo, pyd,---,
6”_1, aén_l, ﬁén—ll Vﬁén_lr Vén_l/ ﬁ]/én_l}-
Here, a core-free subgroup has order at most 3. The stabiliser of a vertex v in G is a core-free subgroup of
S3 X C,, so it has order at most 3. Note that the shifts fix no vertices. If G, has order 3 then G, is one of
{id, &5, 6%} or {id, yBo*, By} where 3k = n.
If G, = {id, 6%, %} then G, < G, which is a contradiction, because G, is a core-free subgroup of G.
Let G, = {id, yBo¥, Byo*} then 6¥v = Bywv. In this case,
V() = {v, av, pv, ypv, yv, Byv, dv, adv, Bov, ypdv, yov, Bydv, ---
L0510, adk o, ,86"‘10, yﬁék‘lv, yék‘lv, ﬁyék‘lv}
and
o = adk = (v pv ypv av fyv yv)(dv BV YOV adv Bydv ydv)- - -
(1o B0 ypo* v ask v pysttv yoklo)
is a shift notin {a, B, v, o, 671}, which contradicts the unique shift-transitivity of I'.
If G, has order 2 then G, is one of {id, 6'}, {id, as*}, {id, B5*} or {id, y6*} where 2k = n. If G, = {id, 5"} then
G, < G which is a contradiction. Without loss of generality we may assume that G, = {id, a6"}. By using
Equation 2.4, we obtain:
V() = {v, av, pv, ypv, yv, Byv, dv, adv, Bov, ypodv, yov, Bydv,- -
, 01, ad o, p5* 1o, yo 1o, yoklo, ool
In this case
o = 6 = (0 av)(Bo yo)(yo Byo)(6v abv)(BSD yBSV)(ySu By50) -
(6o ad o) (B0 B o) (8" v Byst1o)
is a shift notin {a, g, v, 6, 671}, which is a contradiction.
Now assume G, has order 1. Then G acts regularly on V(I'), and I' is a quasi-Abelian Cayley graph of a
non-Abelian group G with connection set Sr. By Proposition 2.2 I" is not uniquely shift-transitive which is

a contradiction. Hence in the above two cases, we obtain a contradiction.
If |G| = 2n then G = H/R where R < H and |R| = 3. Since

H={x8'|xelid,a,B,y,78,py,0<t<n-1},

so the elements of order 3 in H are y, By, 6%, %, ypo, By sk, ypo*, By5* where 3k = n. Note that the last six
elements are exist whenever 3 divides . This implies that Ris one of A; = {id, By, yB}, A» = {id, &, 6%, As =
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{id, ypsk, pyo®} or Ay = {id, Byd*, yBo*}. 1t is easy to see that only A; and A, are normal subgroups of
H. Suppose first that R = A;. Then H/R = {R,aR,6R, adR, - -- ,0" 1R, @8" 'R}. In this case G = H/R is an
Abelian group which is a contradiction. If R = A,, then

H/R = (x&'R | x € lid, a, B,y, B, By}, 0 < t <k —1}.

Let M; = {R,aR,BR, YR, ByR,ypR}and N; = {R,6R,8°R, -+ ,5*'R}. Then M; < H/R,N; < H/RM;NN; = {R}
and M{N; = H/R. Hence H/R = M; X Nj. Since M1 = S3 and Ny = C, we conclude that G = H/R = 53 X C;.
Now by a similar argument as in case |G| = 6n we obtain that I" is not uniquely shift-transitive which is a
contradiction.

Let |G| = 3n. Then G = H/R where R < H and |R| = 2. An easy calculation shows elements of order 2 in
Hare a,B,y,0", ad™,p0™,y8" where n = 2m. Thus the only normal subgroup of order 2 in H is {id, 5"}. In
this case we have:

H/R = {x6'R | x € {id,a,B,7,yB,By}, 0 <t <m—1}

Let M = {R,aR,BR, ¥R, yBR,ByR}and N = {6'R |0 <i <m —1}. Then M < H/R, N < H/RM NN = {R} and
MN = H/R. Hence H/R = M X N. Since M = Sz and N = C,,, we have G = H/R = S3 X C,,. Now a similar
argument as in case |G| = 61 we shows that I is not uniquely shift-transitive which is a contradiction. This
complete the proof of (1).

(2) Assume, to the contrary, that 6~'ad = B. Since I' is uniquely shift-transitive, we have the following
relations between the shifts of I':

apa =y,ada=06",pap =y, =0",6"tad =B,671p5 =y,071y6 = a. (2.5)

Let G = (Sr),a = 6 and b = B. Then by Equation 2.5, we have a® = b = (ba)* = id. So G is a quotient of Ds».
Since |G| > 8 we conclude that G = D1, = S35 X C; and

G=1id, a, B, 7, 6, vB, By, v, 671, Bo71, o, apd},

Here, a core-free subgroup has order at most 2. The stabiliser of a vertex in G is a core-free subgroup of
S3 X Cy, so it has order 1 or 2. It follows that I' has order 6 or 12. If I' has order 6 then I is a complete
graph, which is not uniquely shift-transitive. When I has order 12, I is a quasi-Abelian Cayley graph of a
non-Abelian group G with connection set Sr. By Proposition 2.2 I is not uniquely shift-transitive, which is
a contradiction.

(3) : Suppose, for a proof by contradiction, that 6*ad = B. Since T is uniquely shift-transitive, we have the
following equalities:

apa=p,aya=y,ada=05",pyp=y,pp=0",
otad=B,6"1p5=0a,67y5 = 7.

A similar argument as in Part (2) of Proposition 2.3 shows that G = Dg X C; and we find again a contradic-
tion. O

Proposition 2.5. Suppose that T is a uniquely shift-transitive graph of valency 5 and Sy = {a, B, B, v, y~'} be
the set of shifts of T. If & = id, afa = B, aya =y and B~1yf = y71, then y 1By # .

Proof. Suppose that the statement is not true, i.e. y'fy = 7. Let G = (Sr)and H = («, B, y| a® = id, afa =
Boaya=y, plyp=y7", y7Ipy =p7"). Set M =B, yIplyp=7"", y'py=p")and N =(a | a® = id).
Then these relations imply, M <G, NG, MNN = {id} and H = MN. Thus H = M X N. But H = Qg, N = C,.
So H = Qg X C; and G is a quotient of Qg X C,. Since |G| > 8 s0 |G| = 8 or 16. If |G| = 8 then |[V(I')| = 8 and G
acts regularly on V(I'). So I' is a quasi-Abelian Cayley graph of a non-Abelian group G with connection set
Sr. By Proposition 2.2 T is not uniquely shift-transitive, which is a contradiction.

If |G| = 16 then G = Qg X C; and

G=fid, o, B, v, ap, B, B B~ v v B ap, ap?ay”, ay'B, ay, aypl.
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The only core-free subgroup of this group is the identity, so I' is a quasi-Abelian Cayley graph on G with
the connection set Sr. By Proposition 2.2 I is not uniquely shift-transitive which is a contradiction. [J

3. Uniquely Shift-Transitive Graphs of Valency 5

Theorem 3.1. Let T be a uniquely shift-transitive graph of valency 5 and Sr = {a, B,7,06,n} be the set of distinct
shifts of I'. Then (Sr), is an Abelian group.

Proof. Since the inverse of a shift is a shift, we must only consider the three following cases:
1): a?2=p2=y?=6*=n*=id.
(2): a? =g =y2=6n=id.
(3): a® =By =6n=id.
First we consider Case (1). In this case it is enough to prove that af = fa. We will prove this by

contradiction. Suppose af # fpa. It is obvious that the conjugate of a shift is also a shift, so afa # « is a shift
of I'. Since afa # f so afa € {y,6,n}. Let

a‘Ba =y (31)
Consider the shift faf. Then pap € {y, §, n}. First assume that
pag =y (32)

then consider the shift ada # a, §,y. By Part(1) of Proposition 2.3, ada = 6, which is impossible. Therefore
ada = 1. (3.3)
By Equations 3.1, 3.2 and 3.3 we have:
Bop =n. (34

Now consider the shift 0ad which is neither a nor 6.
If 6a6 = B, then by Equations 3.1, 3.2, 3.3 and 3.4 we have:
0y6 = 6(Bap)d = (6f)a(pd) = adada = a(dad)a = afa =y.So ydy = 6.
On the other hand Y0y = apadafa = apnpfa = ada = 1. Thus 6 = n which is a contradiction.
If 6ad = y, then by Equations 3.1, 3.2 and 3.4 we have:
0po = 6(aya)d = (0a)y(ad) = yéydy = yay = afy = aaf = B. 5o 6 = 6 = n, which is another contradiction.
If dad = n, then 0p0 € {B,y}. If 66 = B then by Equation 3.4 we obtain 6 = 0 = 1, which is a
contradiction. Finally if 680 = y then by Equations 3.1, 3.3 and 3.4 we have:
n = oad = (ana)ad = and = a(BOP)d = afy = aaf = p which is another contradiction.
So in either case we have a contradiction and consequently Equation 3.2 can not arise.
Now let we have:

Bap =o. (3.5)
Then Byp € {y, n}. By Part(2) of Proposition 2.3, the equation Sy = y can not arise.
Therefore
Byp =n. (3.6)

Now consider the shift ada € {6, n}.

If ada = 6 then ana = n and by these equalities and Equations 3.1, 3.5 and 3.6 we obtain
0 = Bap = Bnanp = pn(Bop)np = (BnP)o(Bnp) = Yoy = (apa)d(apfa) = ap(ada)pa = apopa = aaa = a which
is a contradiction. The second case cannot arise by Part(3) of Proposition 2.3. So we find that Equation 3.5
can not occur.
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By a similar argument we can show that the equality fa = 1 is impossible. So the Equation 3.1 can not
occur. (For cases afa = 6 or afa = 1) the proof is similar). Thus fa = af and the proof is complete.

Proof of theorem in Case (2): In this case Sr = {«, ,7, 0, 571}, Tt is sufficient to prove afp = fa and ad = da.

First we prove afp = pa: Consider the shift afa. Since afa is of order two so afa = for y. If afa = f8
then the proof is complete. So we suppose

apa =y. (37)
Therefore
pap=7y. (3.8)

Since ada and 6 have the same order, we have ada = 6 or 67!
First assume that

ada = 0. (3.9)

Then Bop € {6,671}
If BoB = 67! then yoy € {5,671}
If 0y = 0 then by Equations 3.8 and 3.9 we conclude that
6 =6y = (apa)d(apa) = ap(ada)Ba = apdpa = ad a = 671, which is a contradiction.
If y&y = 67! then by Equations 3.8 and 3.9 we obtain
671 = yoy = (Bap)o(BapB) = Pa(BOP)aB = Pad~ ap = B6~1B = 6, which is again a contradiction.
The second case cannot arise by Part(1) of Proposition 2.4. From these contradictions, we conclude that
Equation 3.9 can not occur.
Now assume that

ada =67, (3.10)

Consider the shift 68. This shift can be & or 671. If 6 = 6 then Y6y = 6 or 6L If y&y = § then by
Equations 3.9 and 3.10 we have 6 = ydy = (Bap)d(Bap) = Ba(Bop)ap = padaf = B6~'f = 67! a contradiction.
If y&y = 67! then by Equations 3.7 and 3.10 we have
671 = yoy = (apa)d(aBa) = ap(ada)pa = afd~'fa = ad~ta = §, which is a contradiction. So B6p = 6.

Since a and 6~'ad have the same order, then 6~'ad = a,B or y. If 67 'ad = a then 6 = ada = 6~ which
is a contradiction. Indeed by Part(2) of Proposition 2.4 the case 6"'ad = f is impossible (for case 6~'ad = y
the proof is similar). Thus af = Ba. A similar argument shows that ay = ya and yp = y.

By using Part(3) of Proposition 2.4, we find that 6 'ad # f,y. Hence ad = 6« and the proof in Case(2) is
complete.

Proof of theorem in Case(3): In this case St = {a, 8, 71,,77!}, and it is enough to prove that af = fa and
By = yB. Since a and B~'ap have the same order, we have f~'af = @ and a8 = fa. Hence either 1y = y or
B~lyp =y~L. If B~1yB = y then yB = By and the proof is complete. So assume that g~y = y~1. In this case
y~1By = 7! and by Proposition 2.5, such a graph can not exist.
Since we have proved in all cases that the shifts commute with each other, so (Sr) is an Abelian subgroup
of Aut(l). O

Lemma 3.2. ([1, Lemma 16.3]): Let I be a connected graph. The automorphism group Aut(I') has a subgroup H
which acts regularly on V(') if and only if T is a Cayley graph, Cay(H, Q), for some set Q generating H.

Theorem 3.3. (Main Theorem) Every uniquely shift-transitive graph I' of valency 5 is isomorphic with a Cayley
graph of an Abelian group.

Proof. By Theorem 3.1, (Sr) is an Abelian group. Now by [4, Proposition 4.4], (Sr) is regular on V(I') and
by Lemma 3.2, I is isomorphic with Cay({Sr), Sr). So I is isomorphic with a Cayley graph of an Abelian
group. [
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Remark 3.4. The converse of Theorem 3.3 is not true, because if I is isomorphic with C4 or K, then T is a Cayley
graph of an Abelian group, but T is not uniquely shift-transitive graph. Moreover the converse of Theorem 3.1 is true
whenever I is a strongly shift-transitive graph by the next proposition.

Proposition 3.5. Let I' be a strongly shift-transitive graph and Sr be the set of shifts of I'. If (Sr) is an Abelian group,
then I is uniquely shift-transitive.

Proof. Suppose I' is not uniquely shift-transitive, so there exist adjacent vertices u and v and distinct shifts
a and B of T, such that au = v = fu. Since @ # f so there exists vertex x # u of I such that ax # fx. But T’
is shift-transitive, so there exists a sequence of shifts 01,07, -+, 0x € Aut('), such that 0107 - - - oxv = x. Now
we have:

ax = a010y -+ 0k0 = Q0107 -+ OkfU = afo102 -+ - Ol
Bx = fo102 -+ 0xv = 0102 -+ - OkaU = Af0107 -+ * OkU.

Thus ax = px which is a contradiction. [
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