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Abstract. In this paper, we investigate *-DMP elements in *-semigroups and *-rings. The notion of *-
DMP element was introduced by Patricio and Puystjens in 2004. An element a is *-DMP if there exists a
positive integer m such that a” is EP. We first characterize *-DMP elements in terms of the {1,3}-inverse,
Drazin inverse and pseudo core inverse, respectively. Then, we characterize the core-EP decomposition
utilizing the pseudo core inverse, which extends the core-EP decomposition introduced by Wang for
complex matrices to an arbitrary *ring; and this decomposition turns to be a useful tool to characterize
*-DMP elements. Further, we extend Wang’s core-EP order from complex matrices to *-rings and use it to

investigate *-DMP elements. Finally, we give necessary and sufficient conditions for two elements a, b in
+-rings to have aa® = bb®, which contribute to study *-DMP elements.

1. Introduction

Let S and R denote a semigroup and a ring with unit 1, respectively.
An element a € S is Drazin invertible [5] if there exists the unique element aP € S such that
a"aPa = a" for some positive integer m, a’aa” =a" and aa® = aPa.
The smallest positive integer m satisfying above equations is called the Drazin index of a, denoted by ind(a).
We denote by aP» the Drazin inverse of a with ind(a) = m. If the Drazin index of a equals one, then the
Drazin inverse of 4 is called the group inverse of 4 and is denoted by a*.
S is called a *semigroup if S is a semigroup with involution #. R is called a *ring if R is a ring with

involution *. In the following, unless otherwise indicated, S and R denote a *-semigroup and a *-ring,
respectively.

An element a € S is Moore-Penrose invertible, if there exists x € S such that

D axa=a, 2)xax=x, (3)(ax)" =ax and (4) (xa)’ = xa.
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If such an x exists, then it is unique, denoted by a'. x satisfying equations (1) and (3) is called a {1, 3}-inverse
of a, denoted by a¥. Such a {1, 3}-inverse of a is not unique if it exists. We use a{1, 3}, 5" to denote the set
of all the {1, 3}-inverses of a and the set of all the {1, 3}-invertible elements in S, respectively.

An element a € S is symmetric if a* = a. a € S is *-gMP if a* and a' exist with a* = 4" [19]. It should be
pointed out that *-gMP element is also known as EP element (see [9-11, 16]). As a matter of convenience,
we denote a *-gMP element as an EP element in this paper. a € S is *-DMP with index m if m is the smallest
positive integer such that (a")* and (a™)" exist with (a")* = (a™)' [19]. In other words, a € S is *-DMP with
index m if m is the smallest positive integer such that 4™ is EP, which is equivalent to, aPr exists and a™ is
EP. We call a € S a *-DMP element if there exists a positive integer m such that 4™ is EP. The notion of *-DMP
element is different from the notion of m-EP element [12, 26, 29], in some sense, they are parallel, are both
generalizations of EP elements. Hence, it is of interest to investigate the notion of *-DMP element.

Baksalary and Trenkler [18] introduced the notion of core inverse for a complex matrix in 2010. This
notion is also known as core-EP generalized inverse (see [13]). Then, Raki¢, Din¢i¢ and Djordjevi¢ [21]
generalized the notion of core inverse to an arbitrary *-ring. Later, Xu, Chen and Zhang [28] characterized
the core invertible elements in *-rings in terms of three equations. The core inverse of a, denoted by 42, is
the unique solution to equations

xa* =a, ax* =x, (ax)* = ax.

Recently, the notion of core inverse was extended to arbitrary index of elements in rings. The pseudo
core inverse [7] of a € S, denoted by a®, is the unique solution to equations

xa™*! = a" for some positive integer m, ax* = x and (ax)* = ax.

Also, the pseudo core inverse extends core-EP inverse [13] from complex matrices to *-semigroups, in terms
of equations. For consistency and convenience, we use the terminology pseudo core inverse throughout
this paper. The smallest positive integer m satisfying above equations is called the pseudo core index of a.
If a is pseudo core invertible, then it must be Drazin invertible, and the pseudo core index coincides with
the Drazin index [7]. So here and subsequently, we denote the pseudo core index of a by ind(a). The pseudo
core inverse is a kind of outer inverse. If the pseudo core index equals one, then the pseudo core inverse
of a is the core inverse of a. Dually, the dual pseudo core inverse [7] of a € S is the unique element ag € S
satisfying the following three equations

a"*lag = a™ for some positive integer m, (1g)*a = ap and (apa)* = apa.

The smallest positive integer m satisfying above equations is called the dual pseudo core index of 2. We
denote by a®» and ag,, the pseudo core inverse and dual pseudo core inverse of index m of a, respectively.
Note that (a)© exists if and only if ag, exists with (2@ = (ag, )*.

Lots of work have been done on EP elements in *-semigroups and #rings in recent years, (see, for
example, [3, 4, 15, 19, 21, 27]). In this paper, we use the setting of *-semigroups and *-rings, and our
main goal is to characterize *-DMP elements. The paper is organized as follows: In Section 2, several
characterizations of *-DMP elements are given in terms of generalized inverses: the {1,3}-inverse, Drazin
inverse and pseudo core inverse respectively. Then, *-DMP elements are characterized in terms of equations
and annihilators. After that, we consider conditions for the sum (resp. product) of two *-DMP elements to
be *-DMP. It is known that Wang [23] introduced the core-EP decomposition and core-EP order for complex
matrices. Core-EP decomposition was shown to be a useful tool in characterizing generalized inverses and
partial orders (see [23, 24]). In Section 3, we extend the core-EP decomposition from complex matrices to
an arbitrary *-ring, applying a purely algebraic technique. As applications, we use it to characterize *-DMP
elements. Core partial order could be used to characterize EP elements (see [25]). Similarly, core-EP order
can be used to investigate *-DMP elements. In Section 4, we obtain a characterization of *-DMP elements,
in terms of this pre-order. In the final section, we aim to give equivalent conditions for aa® = bb® in *-rings,
which contribute to investigate *-DMP elements.
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2. Characterizations of *-DMP Elements

In this section, several characterizations of *-DMP elements are given by conditions involving {1,3}-
inverse, Drazin inverse, pseudo core inverse and dual pseudo core inverse. We begin with some auxiliary
lemmas.

Lemma 2.1. [7] Let a € S. Then we have the following facts:
(1) a®n exists if and only if aP» exists and a™ € SU3). In this case a®» = aPra™(@™) 13,
(2) a®» and ag,, exist if and only if aP» and (a™)" exist. In this case, a®» = aPra™(a™)" and ag, = (™) a™aPr.

Lemma 2.2. [11],[19] Let a € S. Then the following conditions are equivalent:
(1) a is *-DMP with index m;
(2) aPr exists and aaP is symmetric.

Lemma 2.3. Leta € S. Then the following are equivalent:
(1) a is *-DMP with index m;

(2) aP» and (a™)t exist with (aP»)" = (@™)*;

(3) a®n exists with a®» = aPr;

(4) a®n and (a™)t exist with (a®)" = (a™)*.

Proof. (1) = (2) is clear.

(2) = (3). Suppose aP» and (a™)" exist with (aP»)" = (a™)!. By Lemma 2.1, a®» exists with a®» = aPrg"(a™)" =
aPrg™(@Prym = gPn

(3) = (4). Applying Lemma 2.1, a® exists if and only if aP» exists and a” € S'¥, in which case,
a®n = gPrg" (@13, From a®r = aPr, it follows that aPa™(@™)® = aPn. Then, aaP» = a"(@")13). So, (a™)*
exists with (@)t = (aP»)" = (a®n)™.

(4) = (1). Since (@P)"a"(@™)3 = (@P»a™ (@)Y = (@@n)" = (a™)!, then aaP» = (a™)a™. Therefore aaP is
symmetric. Hence 4 is *-DMP with index m by Lemma 2.2. [J

The following result characterizes *-DMP elements in terms of {1, 3}-inverses.

Theorem 2.4. Leta € S. Then a is *-DMP with index m if and only if m is the smallest positive integer such that
a™ € S and one of the following equivalent conditions holds:

(1) @) = (@m)a for some (a™)® € a™{1,3};

(2) a™(@m 1 = (@) 3a™ for some (a™) 2 € a™{1,3}.

Proof. 1fais*-DMP with index m, then m is the smallest positive integer such that (a™)" and (a™)* exist with
(@Mt = (a™)*. So we may regard (a™)* as one of the {1, 3}-inverses of a". Therefore (1) holds (see [5, Theorem
1.

Conversely, we take (a")3) € a™{1,3}.
(1) = (2) is obvious.
(2). Equality a™(a™)3) = (a™) 9™ yields that (a™)t = (@)3am (@)1 = (a™)*. So m is the smallest positive
integer such that (@™ = (a™)*. Hence a is »-DMP with index m. [

Corollary 2.5. Leta € S. Then ais EP if and only if a € S and aa®® = a1a for some ) € a1, 3}.

In[11, Theorem 7.3], Koliha and Patricio characterized EP elements by using the group inverse. Similarly,
we characterize *-DMP elements in terms of the Drazin inverse.

Theorem 2.6. Leta € S. Then a is *-DMP with index m if and only if aP» exists and one of the following equivalent
conditions holds:

(1) aPr = aPn(aaPry*;

(2) aP» = (aPra)*alr.

If S is a +-ring, then (1)-(2) are equivalent to

(3) aP(1 — aaPmy* = (1 — aaPn)(aPm).
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Proof. 1f ais *-DMP with index m, then aP» exists and aa”" is symmetric by Lemma 2.2. It is not difficult to
verify that conditions (1)-(3) hold.

Conversely, we assume that aPm exists.
(1) = (3). Since aP» = aP»(aaP)*, we have

aDm(l — aaDm)* - aDm (aaDm)*(l — aaDm)* — aDm((l — aaDm)aqu)* - O‘

Therefore aP»(1 — aaP»)* = 0 = (1 — aaP)(@P)*.
(2) = (3) is analogous to (1) = (3).

Finally, we will prove a is *-DMP with index m under the assumption that a”» exists with aP»(1 —aaPn)* =
(1 — aaPm)(@Pn)*. From aP»(1 — a*(aP)*) = (1 — aPra)(aPr)*, we get (aP»)* = aP(1 — a*(@P»)* + a(aPr)"). Post-
multiply this equality by (aP7)*(a?)*, then we have aaP» = aaP(aaP)*. So aaPn is symmetric. Applying
Lemma 2.2, a is *-DMP with index m. [

Let us recall that a € S is normal if ag* = a*a. It is known that an element a € S is EP may not imply it
is normal (such as, take S = R*? with transpose as involution, 2 = (} }). Then a is EP since aa" = a'a = 1,
butaa* = (31) # (11) = a*a); a is normal may not imply it is EP (such as, take S = C>*? with transpose as
involution, a = ( jl } ). Thenaa* = a*a = 0, i.e., a is normal. But a is not Moore-Penrose invertible and hence a
is not EP). So we may be of interest to know when a is both EP and normal. Here we give a more extensive
case.

Theorem 2.7. Let a € S. Then the following are equivalent:

(1) a is *-DMP with index m and a(a*)"™ = (a*)"a;

(2) m is the smallest positive integer such that (a™) exists and a(a*)™ = (a*)"a;
(3) aPr exists and (a™)* = ua = au for some group invertible element u € S.

Proof. (1) = (2) is clear.
(2) = (1). The equality a™(a™)* = (a™)*a™ ensures that a"(a™)" = (a™)a™ (see [8, Theorem 5]). So a is *-DMP
with index m by Theorem 2.4.
(1) = (3). Since a is *-DMP with index m, then aP exists and aaP» is symmetric by Lemma 2.2. So,
@) = (@"aP"a)* = aaP(a™)", and
@) = (aara™)y* = (@") aa"".
Since aPr existsand (a)*a = a(a™)*, then we obtain aP(a™)* = (a™)*aP" (see[5, Theorem 1]). Take u = aP»(a™)*,
then au = ua = (@")*. In what follows, we show u* = a((aP»)")*. In fact,
(i) ua((@)"y'u = aP(@"y'a((@")"ya® @")" = (@"yaa ((@")"ya @"y
= @) (@)@ @) = @ @) = ") =
(ii) a((@”")"y ua(@”y"y" = a((@")"y'a" @") a(@"y"y
= a((@)"y @y @ ()"
= a(aa® Y aPa((@*)")" = a(aa®) (@)
= a((@)"y;
(iif) a((a™)")"u = a((@”)")'a” (@")" = a((@”*)") (@")'a"" = a(aa®")'a®
= aa”" and
ua((@”)"y" = aP@"ya(@"y"y" = aPra@"y (@>")")" = aa®r,
so, a((@®)™y'u = ua((a®)"™y.

Hence u* = a((aP")™)*.
(3) = (1). Since u* and aP» exist with au = ua, then au® = u*a and (ua)® = u#aPr.
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So, (aaPr)* = (@™ @)™y = ((@™)Pa")" = @") ((@")")° = ua(ua)® = uau*ar
= uu*aaPr.

Therefore (aaP")*aaP» = uu*aa (aaP)*. That is, aaP» is symmetric.

We thus have g is *-DMP with index m. O

Dy, =

Corollary 2.8. Let a € S. Then the following are equivalent:

(1) a is EP and normal;

(2) a* exists and a is normal;

(3) a* exists and a* = ua = au for some group invertible element u € S.

In what follows, *-DMP elements are characterized in terms of the pseudo core inverse and dual pseudo
core inverse.

Theorem 2.9. Let a € S. Then the following are equivalent:
(1) a is *-DMP with index m;

(2) a®n and ag,, exist with a® = ag, ;

(3) a® and ag,, exist with aa® = ag, a.

Proof. (1) = (2), (3). If ais *-DMP with index m, then by Lemma 2.3, aP» and (a™)" exist with (a™)" = (aP»)™".
Hence a®» and agp, exist by Lemma 2.1 (2). It is not difficult to verify that ag, = a®" and aa®" = ag a.

(2) = (1). Ifa®» and ag),, exist, then aP» and (a™)" exist with a® = aPra™(@™)t, ag = (a™)'a™aPr. Equality
ap, = a®" would imply that aP»a™(@™)" = (a™)ta™aP». Post-multiply this equality by a"*1(aP")", then we
obtain aaP» = (a™)ta™. So aaPn is symmetric. According to Lemma 2.2, a is *-DMP with index m.

(3) = (1). By the hypothesis, we have aaP»a" (@™’ = (a")'a"aP»a. That is, a™(@")" = (@™)'a". So
aaPr = g"(@Pnym = g"(@™)fam @) = (a™) ama"(@P)" = (a™)'a™. Therefore aaP» is symmetric. Hence a is
*-DMP with index m. [

The following result characterizes *-DMP elements merely in terms of the pseudo core inverse.

Theorem 2.10. Leta € S. Then a is *-DMP with index m if and only if a®» exists and one of the following equivalent
conditions holds:

(1) aa®n = gOng;

) aPmgOn = gOngDn.

(3) a®n = (™) IDamaPn for some (a™)1P € a™{1,3};

(4) A" 10n = am.

(5) (a®)?a = a®r;

(6) a®na is symmetric;

(7) aa®» commutes with a®na.

Proof. 1f a is *-DMP with index m, then (aP»)" = (a™)t, a®» = aP» by Lemma 2.3 and aaP" is symmetric by
Lemma 2.2. So (1)-(7) hold.

Conversely, we assume that a®n exists.
(1). By the definition of the pseudo core inverse, we have a®a a", and we also have a®»aa®» = g®» by
calculation. The equalities aa®» = a®a, a®»qa®» = @ and a®»a™*! = g™ yield that aP» = a®». Therefore a
is *-DMP with index m by Lemma 2.3.
(2). Since aPna®n = g®ngPn then (aPr)*a®n = a®@n(aPr)* (see [5, Theorem 1]). Namely,

azaDﬂl a@l}’l = a@l” azaDm .

m+1l _

So aa@m = ﬂm(ﬂ(@’")m = aaDmam(a©m)m = aaDmaa®m = azaDma@m = ﬂ®"'ﬂ2ﬂD"’
— a@mam"'l(aDm)m — am(aDm)m — aaDm‘

Therefore aaP» is symmetric. Hence a is *-DMP with index m by Lemma 2.2.

(3). Since a®» exists, then by Lemma 2.1 (1), aP» and (a™)*®) exist. From equality (3) and a®» = aPng™(a™)13),

it follows that aP=a"(a")1) = (a")13g"aPn . Pre-multiply this equality by (aP)"~1a™, then we get

am(am)(l,S) — aaDm .
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So aaP" is symmetric. Hence a is *-DMP with index m by Lemma 2.2.

(4). The equalities a*1a®» = g™ and a®»a™*! = a™ yield that a is strongly nt-regular and aP» = g™ (a®»)"+1 =
a®» (see [5, Theorem 4]). So 4 is *-DMP with index m by Lemma 2.3.

(5) = (1). Pre-multiply (5) by a, then we get a(a®»)?a = aa®». That is, a®a = aa®».

(6) = (1). Pre-multiply (a®»a)* = a®»a by aa®», then we obtain

aa@m (a@ma)* frd aa@!ﬂa@ma frd a@ma'
So,
aa®n = am(a(@m)m — (am(a@n)m)* — (a®mam+1(a®m)m)* - (a@naaa@m)*
— (aa©m)*(a®ma)* = qq®n (a@ma)* = gOng.

(7) = (1) From aﬂ®m(ﬂ®’"ﬂ) = (a@ma)aa@m, ua@m(a@ma) = a@ma and (a@ma)aa@m = (l®"’ﬂm+1((l®"’)m — aa@nx, it
follows that aa®» = a®rq. [

In [27], Xu and Chen characterized EP elements in terms of equations. Similarly, we utilize equations to
characterize *-DMP elements.

Theorem 2.11. Let a € S. Then the following are equivalent:

(1) a is *-DMP with index m;

(2) m is the smallest positive integer such that xa™! = a™, ax* = x and (x"a™)* = x"a™ for some x € S;
(3) m is the smallest positive integer such that xa™! = a™, ax = xa and (x"a™)* = x™a™ for some x € S.

m+1

Proof. (1) = (2), (3). Suppose a is *-DMP with index 11, then aP» exists and aP»a is symmetric by Lemma 2.2.
Take x = aP», then (2) and (3) hold.

(2) = (1) From xa™t! = g" and " = xg™*! = (ax2)am+1 — (am+1xm+2)am+1 — am+1(xm+2am+1) — am+1(xm+1am) —
a™xmigm it follows that a is strongly m-regular and aP» = x"*1g™. So aaPn = ax™*1g™ = x"a™. Therefore
aPn exists and aaP is symmetric. Hence a is *-DMP with index m by Lemma 2.2.

(3) = (1). Equalities xa”*! = " and a™ = a"*lx yield that aP» = x"*1g™. So aPra = x"lgm+l = x"g™.
Therefore aP» exists and aaP is symmetric. Hence a is *-DMP with index m. [

Let S° denote a *-semigroup with zero element 0. The left annihilator of 2 € S° is denoted by °a and is
defined by °a = {x € S%: xa = 0}. The following result characterizes *-DMP elements in S% in terms of left
annihilators. We begin with an auxiliary lemma.

Lemma 2.12. [7] Let a, x € S°. Then a®» = x if and only if m is the smallest positive integer such that one of the
following equivalent conditions holds:

(1) xax = x and xS° = x*S? = 4" S0;

(2) xax = x, °x =°(@™) and °(x*) C°(@™).

Theorem 2.13. Let a € S°. Then a is *-DMP with index m if and only if m is the smallest positive integer such that
one of the following equivalent conditions holds:

(1) xax = x, xS° = x*S° = 4™ S° and x™S° = (a™)*S° for some x € S°;

(2) xax = x, °x =°(a™), °(x*) C°(@™) and °(@")* C°(x™) for some x € S°.

Proof. Suppose a is *-DMP with index m. Then a®», (a™) exist with (a®)" = (a™)' by Lemma 2.3. Take
x = a®, then xax = x, xS° = x*S® = ¢"S? by Lemma 2.12. Further, from x" = (a™)', it follows that
X" = (x™a"y " = (@) (") x™ € (@)'SY and (@™)* = (@"x"a™)* = x"a"(a")* € x"S°. Hence (1) holds.

(1) = (2) is clear.

(2). From xax = x, °x = °(a™) and °(x*) C °(a™), it follows that a®» = x by Lemma 2.12. Then 1 — (x"a™)* €
°(@™)y* € °(x™) implies x™ = (x™a™)*x™. So x™a™ = (x™a™)x™a™. Therefore (x™a™)* = x™a", together with
xa™! = g™, ax? = x, implies a is *-DMP with index m by Theorem 2.11. [J
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It is known that a® exists if and only if (a¥)P exists for any positive integer k if and only if (a*)P exists for

some positive integer k [5]. We find this property is inherited by *-DMP.

Theorem 2.14. Let a € S and k a positive integer, then a is *-DMP if and only if a* is *-DMP.

Proof. Observe that aP exists and aaP is symmetric if and only if (a°) exists and a*(a¥)P is symmetric. So a

is *-DMP if and only if a* is *-DMP by Lemma 2.2. []

Given two *-DMP elements a and b, we may be of interest to consider conditions for the product ab
(resp. sum a + b) to be *-DMP.

Theorem 2.15. Let a, b € S with ab = ba, ab* = b*a. If both a and b are *-DMP, then ab is *-DMP.

Proof. Suppose that both a and b are *-DMP, then a®, aP and b®, bP exist with a® = 4P, b® = bP by Lemma
2.3. Since a® and b® exist with ab = ba, ab* = b*a, then (ab)® exists with (ab)® = a®b® (see [7, Theorem 4.3]).
Also, (ab)P exists with (ab)? = aPbP. So,

(ab)® = a®b® = 4PpP = (ab)P.
Hence ab is *-DMP by Lemma 2.3. [
Theorem 2.16. Leta, b € Rwithab=ba =0, a'b = 0. If both a and b are *-DMP, then a + b is *-DMP.

Proof. 1f both a and b are *-DMP, then a®, aP and b®@, bP exist with a® = aP, b® = bP by Lemma 2.3. Since
a® and b® exist with ab = ba = 0, a*b = 0, then (a + b)® exists with (2 + b)© = a® + b (see [7, Theorem 4.4]).
Also, (a + b)P exists with (a + b)P = aP + b (see [5, Corollary 1]). So we have

(@a+b)° =a®+1° =4 +1° = (a + b)P.
Hence a + b is *-DMP by Lemma 2.3. [J

Example 2.17. The condition ab = 0, a*b = 0 (without ba = 0) is not sufficient to show that a + b is *-DMP,
although both a and b are *-DMP.

Let R = C*2 with transpose as involution, a = ((l) 0), b= (_1 0

0 0), then ab = a*b = 0, but ba # 0. Since

0

© = 4o = gt70d = [
a a a‘aa (0 0

=a" =aP, ais **DMP. It is clear that b is *-DMP. Observe that a + b = (_11 8), by

m=1

-1z (@a+b) misodd
(=D Y a +b)> mis even’
we conclude that (a + b)™ has no {1,3}-inverse for arbitrary positive integer m. Hence a + b is not *-DMP.

calculation, we find that neither a+b nor (a+b)? has any {1,3}-inverse. Since (a+b)" =

3. Core-EP Decomposition

Core-nilpotent decomposition was introduced in [2] for complex matrices. Later, Patricio and Puystjens
[19] generalized this decomposition from complex matrices to rings. Let a € R with aP» exists. The sum
a = ¢, +n,is called the core-nilpotent decomposition of 2, where c, = aaPrais the core partofa,n, = (1 —aaPm)a
is the nilpotent part of 4. This decomposition is unique and it brings n} = 0, c,n, = n,c, = 0, c* exists with
ct =aPn,

Wang [23] introduced the core-EP decomposition for a complex matrix, and proved its uniqueness by
using the rank of a matrix and matrix decomposition. Let A be a square complex matrix with index m, then
A = A1+ Ay, where A*lae exists, A7’ = 0 and A]A; = A2A; = 0. In the following, we show that neither the rank
nor the matrix decomposition are necessary for the characterization of core-EP decomposition in rings.
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Theorem 3.1. Let a € R with a®n exists. Then a = a1 + ay, where
(1) a exists;

(2)al =0;

(3) ajaz = azay = 0.

Proof. Since a®» exists. Take a; = aa®»a and a, = a — aa®ra, then a)' = 0 and a}a, = ara; = 0. Next, we will
prove that a’f exists. In fact,

a = aa®ng = (aa®ma)2(a®m)2a = a%R and gy = aa®@ng = gOn (aa®ma)2 c Ra%'

#

Hence aj

exists with a = (a®)%a (see [9, Proposition 7]). [
Theorem 3.2. The core-EP decomposition of an element in R is unique.

Proof. The proof is similar to [23, Theorem 2.4], the matrices case. We give the proof for completeness.
Leta = a; +a, be the core-EP decomposition of a € R, where a1 = aa®ra, a, = a—aa®»a. Leta = by + b, be
m . .
another core-EP decomposition of a. Then a™ = }, b’lb;"‘l. Since b’ibz =0and bT = 0, then (a™)*b, = 0. Since
i=0
boby = 0, then a"by (b]")* = by. Therefore,

by —a; = by —aa®»a = by — aa®"by — aa®b, = by — 2" (@®)"by — [a"(@®")" by
= by — " (@®)"a"by (b)) = by —a™ by (b})" = 0.

Thus, b; = a;. Hence the core-EP decomposition of a is unique. [

Next, we exhibit two applications of the core-EP decomposition. On one hand, we give a characterization
of the pseudo core inverse by using the core-EP decomposition.

Theorem 3.3. Leta € Rwitha®n exists and let the core-EP decomposition of a be as in Theorem 3.1. Then aj = a®n.

Proof. Suppose a®» exists, then aP» and (a™)") exist by Lemma 2.1, as well as
a®n(a;)? = a®n(aa®na)? = aa®ra = ay; a,(a®")? = aa®na(a®n)? = aOn;
1109 = a®ngg®n = aa®n, which implies (a;a%7)* = a1a®n.

We thus geta? = a®. O

On the other hand, we use core-EP decomposition to characterize *-DMP elements.

Theorem 3.4. Let a € R with a®» exists and let the core-EP decomposition of a be as in Theorem 3.1. Then the
following are equivalent:

(1) a is *-DMP with index m;

(2) aq is EP.

Proof. (1) & (2). a is *-DMP with index m if and only if a®» exists with aa®" = a®»a by Theorem 2.10 (1).
According to Theorem 3.3, a7 = a®». By a simple calculation, 4140 = aa} = aa®», and aa; = aja = a®»a. So
aa®n = gOng is equivalent to ala? = aPay, which is equivalent to, 41 is EP (see [21, Theorem 3.1]). [

1
Remark 3.5. If a is *-DMP with index m. Then the core-EP decomposition of a coincides with its core-nilpotent
decomposition. In fact, if a is *-DMP with index m, then a®» = aPn by Lemma 2.3. Hence the core-EP decomposition
and core-nilpotent decomposition coincide.
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4. Core-EP Order

In the following, R® and R? denote the sets of all core invertible and pseudo core invertible elements in
R, respectively. R and Rg, denote the sets of all pseudo core invertible and dual pseudo core invertible
elements of index m, respectively.

Baksalary and Trenkler [1] introduced the core partial order for complex matrices of index one. Then,
Raki¢ and Djordjevi¢ [22] generalized the core partial order from complex matrices to *-rings. Leta, b € R?,

®
the core partial order a < b was defined as
®
a<b: a®a=a% and aa® = ba®.

®
In [23], Wang introduced the core-EP order for complex matrices. Let A, B € C"™", the core-EP order A < B
was defined as

®
A<B: A9A = A9Band AA® = BA®,

where A® denotes the core-EP inverse [13] of A.

One can see [6], [14] for a deep study of the partial order.

In what follows, we generalize the core-EP order from complex matrices to *-rings and give some
properties.

©
Definition 4.1. Let a,b € R®. The core-EP order a < b is defined as

©
a<b: a®a=a®band aa® = ba®. (4.1)

We extend some results of the core-EP order [23] from matrices to an arbitrary *ring, using a different
method. First, we have the following result.

Theorem 4.2. The core-EP order is not a partial order but merely a pre-order.

© ©
Proof. 1t is clear that the core-EP order (4.1) is reflexive. Leta,b,c € R®, g <bandb < c. Next, we prove

©
a<c.

Suppose k = max{ind(a), ind(b)}. From aa® = ba® and bb® = cb®, it follows that

aa@ — ba® — ba(a®)2 — bZ(a®)2 — bk+1(ﬂ®)k+1 — bb®bk+1(a®)k+l — Cb®bk+1(a®)k+l
= cbF(a®)*! = cb(a®)? = ca®.
Since aa® = ba®, then a® = a®@a®)* = a®Ba®) = a®P[PF@AC) " = a@[LbOV (@) ] = aC[b*(a®) ] b1®.

Equalities a®a = a®b, bPb = bOc and a® = aP[K*(@Q) ] bb? yield that a®a = a®b = a®[bF(@a®) bbb =
aC[b*(a®) ]'bb®@c = a®c.

We thus havea <c.
However, the core-EP order is not anti-symmetric (see [23, Example 4.1]). O

The following result give some characterizations of the core-EP order, generalizing [23, Theorem 4.2]
from matrices to an arbitrary *-ring without using matrix decomposition.

Theorem 4.3. Let a,b € R® with k = max{ind(a), ind(b)} and let a = a; + a, and b = by + b, be the core-EP
decompositions. Then the following are equivalent:

©
M)a<b
(2) @' = ba* and a*a* = b*d;

(3) m 2 b.
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Proof. (1) = (2). Post-multiply aa® = ba® by a**!, then we derive a**! = ba*. From a®a = a®b, it follows that
a*(a®)* = b*(a®)*. Post-multiply this equality by a*a*, then a*a* = b*a*.
(2) = (1). Equality a*a* = b*a* yields that (a*)'a = (a)'b. Pre-multiply this equality by a®((a®)*), then
a®a = a®b. Post-multiply a**! = ba* by (a®)**!, then aa® = ba®.
(1) = (3). From Theorem 3.3 and aa® = ba®, it follows that
maj = aa; = aa® = ba® = ba(a®)? = ¥ (a®)? = - - - = BF@@®)* = bbPH (@)
= bb®ba® = bya?.

Meanwhile, we have aa® = aa®bb® by taking an involution on aa® = bb®ba® = bb®aa®. So a® = a®bbP®.

Therefore a%a; = a®a = a®a = a®b = a®bb®b = a®p;.
1 1

(3) = (1). Since 2a® = mal = bya = bb®ba®, then
aa® = bb®baa®a® = (bb®b)?(a®)? = bLObb* HP)b(a®)? = b(LL®ha®)a® = ba(a®)?
= ba®.

Equalities 2a® = bb®ba® and aa® = ba® yield that aa® = aa®bb®. Therefore a® = a®bb®. Hence a®b =
a®bb®Pb = afby = alay = a®a. O

Wang and Chen [25] gave some equivalences to a 2 b under the assumption that a is EP. Similarly, we

©
give a characterization of a < b whenever 4 is *-DMP. In the following result, ¢, and ¢; are the core parts of
the core-nilpotent decompositions of a, b respectively.

Theorem 4.4. Leta, b € R®. Ifais *-DMP, then the following are equivalent:
1)a g b;

(2) ca < Cp;

(3) a®b® = b®a® and a®b = a®u;

(4) a® @g b® and a®b = a®a.

Proof. Letk =max{ind(a), ind(b)}. If a is *-DMP, then a® = a® by Lemma 2.3 and aa® = 4®a by Theorem 2.10.
(1) = (2). a® = ? (see [7, Theorem 2.9]) and a®a = a®b imply ?a = c?b. From a®b = a®a = aa® = ba®, we
have a®bP = bPa®. So, a®bbPb = bbPba® = bbPH ()< = V¥ (a®)F = aa®. Therefore cc;, = cpc? = c,c? = 2c,.
(2 = (1). aa® = c,c? = cpc? = bbPba® = (bbPb)*(a®)? = b*bPbh(a®)? = b(bb"ba®)a® = baa®a® = ba®, and
a®a = ¢, = c?c;, = a®bbPb = a®a®(bbPb)? = a®a®ab = a®b.

(1) = (3). From a®a = a®b and aa® = ba®, it follows that

aa®b = aa®a = ba®a = baa®,

which forces, by [7, Proposition 4.2], aa®b® = bPag® = pOP*1(@)k+1 = pr @)+l = 4O, So g@H0 = (4@)? =
b@a®.
(3) = (1). ba® = b(a®)%a = b(a®)?b = bE@®) 1Pk = (@)1 HCH*! = PpP (@) H1pk1 = pb®aa®, together with
aa® = a®a = a®b = (aP)V* = (W@)FLOK*! = PO (P! = pb®aa®, implies aa® = ba®.
(3) = (4). From a®b® = b®4®, it follows that (1) holds and

(ﬂ®)®ﬂ® — a2(a®)2 — a2bk(a®)k+2 — a2b®bk+1(a®)k+2 — a2b®a(a®)2

= 2*bPa® = 22aCp° = (1®)Op°,
1®u®)® = 4®a%® = 3a® = p®p%® = VP (4®)°.

(4) = (3). Since (a®)Pa® = (1®)®1® and a®(@®)® = bP(u®)?, then we obtain aa® = a%a®b® and aa® =
b@a2a®. So bPa® = (a®)? = a®°. O
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Wang and Chen [25] proved thatif a < b, a® exists, then b' exists if and only if [b(1—aa")]" exists. Similarly,
we have the following result.

©
Theorem 4.5. Let a, b € R® with a < b. Suppose that a is *-DMP. Then b is *-DMP if and only if b(1 — aa®) is
*-DMP.

Proof. From a®a = a®b and aa® = ba®, it follows that
aa®b = aa®a = ba®a = baa®.

Suppose that b is *-DMP, then bb® = b®b. Next, we prove [b(1 —aa®)]® = b® —4®. In fact, suppose ind(b) = k,
then

(1® - a®)[b(1 — aa®)*! = B° - a®)p (1 - 2a®) = b*(1 - 2a®) - @V (1 - aa®)
= bk (1 - aa®) = [b(1 — aa®)]5;

b(1 — aa®)(V® — a®) = bb® — 4a®;

b(1 — aa®@)(b® — @) = (bb® — aa®)(H® — 4®) = HO — [Paa® = b© — 4O,
We thus have [b(1 — aa®)]® = b® — 40,
So, b(1 — aa®)[b(1 — aa®)]® = bb® — 4a® and [b(1 — aa®)]®b(1 — aa®) = b®b — b®baa® = bb® — aa®.
Therefore, b(1 — aa®)[b(1 — aa®)]® = [b(1 — aa®)]®b(1 — aa®). Hence b(1 — aa®) is *-DMP.

Conversely, suppose that b(1 — aa®) is *-DMP. Then, [b(1 — aa®)]® = [b(1 — aa®)]P. We can easily check
that

(baa®)® = (baa®)® = (baa®)* = 4®.

Since b = b(1 — aa®) + baa®, [b(1 — a®)]baa® = b(1 — aa®)aa®b = 0, baa®[b(1 — aa®)] = baa®(1 - aa®)b = 0,
and (baa®)*b(1 — aa®) = b*aa®(1 — aa®)b = 0, then b® = [b(1 — 2a®)]® + a® (see [7, Theorem 4.4]) and
BP = [b(1 — aa®)]? + (baa®)* = [b(1 — aa®)]P + a®. Thus, bis *DMP. [

5. Characterizations for aa® = bb®

Leta, b € R. If a° and b® are some kind of generalized inverses of a and b. It is very interesting to
discuss when aa® = bb®. Koliha et al. [11, Theorem 6.1], Mosi¢ et al. [17, Theorem 3.7] and Patricio et al.
[18, Theorem 2.3] gave some equivalences for generalized Drazin inverses, image-kernel (p, )-inverses and
Moore-Penrose inverses, respectively. Here we give a characterization for aa® = bb®.

Proposition 5.1. Let a, b € RC. Then the following are equivalent:
(1) aa® = bb®aa®;

(2) 2a® = aa®bb®;

(3) a® = a®hp©;

(4) Ra® C Ra®hpO.

Proof. (1) & (2) by taking an involution.

(2) = (3). Pre-multiply aa® = aa®bb® by a®, then we get a® = a®bb®.

(3) = (4) is clear.

(4) = (2). From Ra® c Ra®bbP, it follows that a® = xa®bb® for some x € R. Then, aa® = axa®bb® =
(axa®bhb®)bb® = aa®bb®. 0O

The above proposition gives some equivalences to aa® = bb®aa®, which enrich the following result. R™!
denotes the set of all invertible elements in R.
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Theorem 5.2. Leta, b € R® with ind(a) = m. Then the following are equivalent:
(1) aa® = bb®;

(2) 2a® = aa®bb® and u = aa® + 1 - bb® € R7;

(3) aa® = aa®bb® and v = a™ + 1 - bb® € R7Y;

(4) aa® commutes with bb®, u = aa® +1 - bb® € RV and s = bb® + 1 —aa® € R71;
(5) aa® commutes with bb® and w = 1 — (aa® — bb®)? € R71;

(6) aa® commutes with bb® and b®aa® — a®bb® = b® — 4O,

Proof. (1) = (2)-(6) is clear.

(2)(3). Since a® exists, then aP» exists by Lemma 2.1. So (a™)* exists. Therefore a™ + 1 — aa®» € R™! (see
[20, Theorem 1]). From aa® = aa®bb®, it follows that aa®bb® = bb®aa® = aa® by Proposition 5.1. Observe
that (aa® + 1 - bb®)(@" + 1 — aa®) = a” + 1 — bb®, and hence u € R™! if and only if v € R7L.

(3)=(1). Notice that 2a®v = a™ + 2a® — aa®bb® = 2™ and bb®v = bb®a™ = bb®aa®a™ = aa®a™ = a". Therefore
aa® = bbO.

(4)=(1). Since ubb® = aa®bb® = uaa®bb®, saa® = aa®bb® = saa®bb®. Hence aa® = aa®bb® = bb©®.

(5)=(4). Note that 1 — (2a® — bb®)? = (bb® + 1 — 2a®)(aa® + 1 — bb®) = (aa® + 1 — bb®)(bb® + 1 — aa®). Hence
w € R™! implies u, s € R71.

(6)=(1). Post-multiply b%aa® — a®bb® = b® — 4° by aa®, then b®aa® — a®bbCaa® = b®aa® — 4®. So,
a® = g®pbh0ag® = zOppO. Therefore, bO = bPua®. Hence aa® = aa®@bb® = bb@ua® = h®. O

Take b = a" in Theorem 5.2, then we obtain a characterization of *-DMP elements by applying Theorem
2.9.

Corollary 5.3. Let a € R®" N Rg, . Then the following are equivalent:

(1) a is *-DMP with index m;

(2) aa®r = ag,a;

(3) aa®n = aa®rag, a and u = aa® +1-ag a € R7Y;

(4) aa®» = aa®rag aandv =a" +1-ag a € R7Y;

(5) aa®n commutes with ag, a, u =aa® +1-ag a € R ands =ag a+1—-aa® € R7Y;
(6) aa®n commutes with ag, a and w =1 — (aa® — ag a)* € R7L;

(7) aa®» commutes with ag, a and ag, aa®» —a®rag, a = afy —a®n,
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