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Abstract. In this paper, we investigate *-DMP elements in ∗-semigroups and ∗-rings. The notion of *-
DMP element was introduced by Patrı́cio and Puystjens in 2004. An element a is *-DMP if there exists a
positive integer m such that am is EP. We first characterize *-DMP elements in terms of the {1,3}-inverse,
Drazin inverse and pseudo core inverse, respectively. Then, we characterize the core-EP decomposition
utilizing the pseudo core inverse, which extends the core-EP decomposition introduced by Wang for
complex matrices to an arbitrary ∗-ring; and this decomposition turns to be a useful tool to characterize
*-DMP elements. Further, we extend Wang’s core-EP order from complex matrices to ∗-rings and use it to
investigate *-DMP elements. Finally, we give necessary and sufficient conditions for two elements a, b in
∗-rings to have aa D© = bb D©, which contribute to study *-DMP elements.

1. Introduction

Let S and R denote a semigroup and a ring with unit 1, respectively.
An element a ∈ S is Drazin invertible [5] if there exists the unique element aD

∈ S such that

amaDa = am for some positive integer m, aDaaD = aD and aaD = aDa.

The smallest positive integer m satisfying above equations is called the Drazin index of a, denoted by ind(a).
We denote by aDm the Drazin inverse of a with ind(a) = m. If the Drazin index of a equals one, then the
Drazin inverse of a is called the group inverse of a and is denoted by a#.

S is called a ∗-semigroup if S is a semigroup with involution ∗. R is called a ∗-ring if R is a ring with
involution ∗. In the following, unless otherwise indicated, S and R denote a ∗-semigroup and a ∗-ring,
respectively.

An element a ∈ S is Moore-Penrose invertible, if there exists x ∈ S such that

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax and (4) (xa)∗ = xa.
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If such an x exists, then it is unique, denoted by a†. x satisfying equations (1) and (3) is called a {1, 3}-inverse
of a, denoted by a(1,3). Such a {1, 3}-inverse of a is not unique if it exists. We use a{1, 3}, S{1,3} to denote the set
of all the {1, 3}-inverses of a and the set of all the {1, 3}-invertible elements in S, respectively.

An element a ∈ S is symmetric if a∗ = a. a ∈ S is *-gMP if a# and a† exist with a# = a† [19]. It should be
pointed out that *-gMP element is also known as EP element (see [9–11, 16]). As a matter of convenience,
we denote a *-gMP element as an EP element in this paper. a ∈ S is *-DMP with index m if m is the smallest
positive integer such that (am)# and (am)† exist with (am)# = (am)† [19]. In other words, a ∈ S is *-DMP with
index m if m is the smallest positive integer such that am is EP, which is equivalent to, aDm exists and am is
EP. We call a ∈ S a *-DMP element if there exists a positive integer m such that am is EP. The notion of *-DMP
element is different from the notion of m-EP element [12, 26, 29], in some sense, they are parallel, are both
generalizations of EP elements. Hence, it is of interest to investigate the notion of *-DMP element.

Baksalary and Trenkler [18] introduced the notion of core inverse for a complex matrix in 2010. This
notion is also known as core-EP generalized inverse (see [13]). Then, Rakić, Dinčić and Djordjević [21]
generalized the notion of core inverse to an arbitrary ∗-ring. Later, Xu, Chen and Zhang [28] characterized
the core invertible elements in ∗-rings in terms of three equations. The core inverse of a, denoted by a #©, is
the unique solution to equations

xa2 = a, ax2 = x, (ax)∗ = ax.

Recently, the notion of core inverse was extended to arbitrary index of elements in rings. The pseudo
core inverse [7] of a ∈ S, denoted by a D©, is the unique solution to equations

xam+1 = am for some positive integer m, ax2 = x and (ax)∗ = ax.

Also, the pseudo core inverse extends core-EP inverse [13] from complex matrices to ∗-semigroups, in terms
of equations. For consistency and convenience, we use the terminology pseudo core inverse throughout
this paper. The smallest positive integer m satisfying above equations is called the pseudo core index of a.
If a is pseudo core invertible, then it must be Drazin invertible, and the pseudo core index coincides with
the Drazin index [7]. So here and subsequently, we denote the pseudo core index of a by ind(a). The pseudo
core inverse is a kind of outer inverse. If the pseudo core index equals one, then the pseudo core inverse
of a is the core inverse of a. Dually, the dual pseudo core inverse [7] of a ∈ S is the unique element a D© ∈ S
satisfying the following three equations

am+1a D© = am for some positive integer m, (a D©)2a = a D© and (a D©a)∗ = a D©a.

The smallest positive integer m satisfying above equations is called the dual pseudo core index of a. We
denote by a D©m and a D©m the pseudo core inverse and dual pseudo core inverse of index m of a, respectively.
Note that (a∗) D©m exists if and only if a D©m exists with (a∗) D©m = (a D©m )∗.

Lots of work have been done on EP elements in ∗-semigroups and ∗-rings in recent years, (see, for
example, [3, 4, 15, 19, 21, 27]). In this paper, we use the setting of ∗-semigroups and ∗-rings, and our
main goal is to characterize *-DMP elements. The paper is organized as follows: In Section 2, several
characterizations of *-DMP elements are given in terms of generalized inverses: the {1,3}-inverse, Drazin
inverse and pseudo core inverse respectively. Then, *-DMP elements are characterized in terms of equations
and annihilators. After that, we consider conditions for the sum (resp. product) of two *-DMP elements to
be *-DMP. It is known that Wang [23] introduced the core-EP decomposition and core-EP order for complex
matrices. Core-EP decomposition was shown to be a useful tool in characterizing generalized inverses and
partial orders (see [23, 24]). In Section 3, we extend the core-EP decomposition from complex matrices to
an arbitrary ∗-ring, applying a purely algebraic technique. As applications, we use it to characterize *-DMP
elements. Core partial order could be used to characterize EP elements (see [25]). Similarly, core-EP order
can be used to investigate *-DMP elements. In Section 4, we obtain a characterization of *-DMP elements,
in terms of this pre-order. In the final section, we aim to give equivalent conditions for aa D© = bb D© in ∗-rings,
which contribute to investigate *-DMP elements.
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2. Characterizations of *-DMP Elements

In this section, several characterizations of *-DMP elements are given by conditions involving {1,3}-
inverse, Drazin inverse, pseudo core inverse and dual pseudo core inverse. We begin with some auxiliary
lemmas.

Lemma 2.1. [7] Let a ∈ S. Then we have the following facts:
(1) a D©m exists if and only if aDm exists and am

∈ S{1,3}. In this case a D©m = aDm am(am)(1,3).
(2) a D©m and a D©m exist if and only if aDm and (am)† exist. In this case, a D©m = aDm am(am)† and a D©m = (am)†amaDm .

Lemma 2.2. [11],[19] Let a ∈ S. Then the following conditions are equivalent:
(1) a is *-DMP with index m;
(2) aDm exists and aaDm is symmetric.

Lemma 2.3. Let a ∈ S. Then the following are equivalent:
(1) a is *-DMP with index m;
(2) aDm and (am)† exist with (aDm )m = (am)†;
(3) a D©m exists with a D©m = aDm ;
(4) a D©m and (am)† exist with (a D©m )m = (am)†.

Proof. (1)⇒ (2) is clear.
(2)⇒ (3). Suppose aDm and (am)† exist with (aDm )m = (am)†. By Lemma 2.1, a D©m exists with a D©m = aDm am(am)† =
aDm am(aDm )m = aDm .
(3) ⇒ (4). Applying Lemma 2.1, a D©m exists if and only if aDm exists and am

∈ S{1,3}, in which case,
a D©m = aDm am(am)(1,3). From a D©m = aDm , it follows that aDm am(am)(1,3) = aDm . Then, aaDm = am(am)(1,3). So, (am)†

exists with (am)† = (aDm )m = (a D©m )m.
(4)⇒ (1). Since (aDm )mam(am)(1,3) = (aDm am(am)(1,3))m = (a D©m )m = (am)†, then aaDm = (am)†am. Therefore aaDm is
symmetric. Hence a is *-DMP with index m by Lemma 2.2.

The following result characterizes *-DMP elements in terms of {1, 3}-inverses.

Theorem 2.4. Let a ∈ S. Then a is *-DMP with index m if and only if m is the smallest positive integer such that
am
∈ S{1,3} and one of the following equivalent conditions holds:

(1) a(am)(1,3) = (am)(1,3)a for some (am)(1,3)
∈ am
{1, 3};

(2) am(am)(1,3) = (am)(1,3)am for some (am)(1,3)
∈ am
{1, 3}.

Proof. If a is *-DMP with index m, then m is the smallest positive integer such that (am)† and (am)# exist with
(am)† = (am)#. So we may regard (am)# as one of the {1, 3}-inverses of am. Therefore (1) holds (see [5, Theorem
1]).

Conversely, we take (am)(1,3)
∈ am
{1, 3}.

(1)⇒ (2) is obvious.
(2). Equality am(am)(1,3) = (am)(1,3)am yields that (am)† = (am)(1,3)am(am)(1,3) = (am)#. So m is the smallest positive
integer such that (am)† = (am)#. Hence a is ∗-DMP with index m.

Corollary 2.5. Let a ∈ S. Then a is EP if and only if a ∈ S{1,3} and aa(1,3) = a(1,3)a for some a(1,3)
∈ a{1, 3}.

In [11, Theorem 7.3], Koliha and Patrı́cio characterized EP elements by using the group inverse. Similarly,
we characterize *-DMP elements in terms of the Drazin inverse.

Theorem 2.6. Let a ∈ S. Then a is *-DMP with index m if and only if aDm exists and one of the following equivalent
conditions holds:
(1) aDm = aDm (aaDm )∗;
(2) aDm = (aDm a)∗aDm .
If S is a ∗-ring, then (1)-(2) are equivalent to
(3) aDm (1 − aaDm )∗ = (1 − aaDm )(aDm )∗.
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Proof. If a is *-DMP with index m, then aDm exists and aaDm is symmetric by Lemma 2.2. It is not difficult to
verify that conditions (1)-(3) hold.

Conversely, we assume that aDm exists.
(1)⇒ (3). Since aDm = aDm (aaDm )∗, we have

aDm (1 − aaDm )∗ = aDm (aaDm )∗(1 − aaDm )∗ = aDm ((1 − aaDm )aaDm )∗ = 0.

Therefore aDm (1 − aaDm )∗ = 0 = (1 − aaDm )(aDm )∗.
(2)⇒ (3) is analogous to (1)⇒ (3).

Finally, we will prove a is *-DMP with index m under the assumption that aDm exists with aDm (1−aaDm )∗ =
(1 − aaDm )(aDm )∗. From aDm (1 − a∗(aDm )∗) = (1 − aDm a)(aDm )∗, we get (aDm )∗ = aDm (1 − a∗(aDm )∗ + a(aDm )∗). Post-
multiply this equality by (aDm )∗(a2)∗, then we have aaDm = aaDm (aaDm )∗. So aaDm is symmetric. Applying
Lemma 2.2, a is *-DMP with index m.

Let us recall that a ∈ S is normal if aa∗ = a∗a. It is known that an element a ∈ S is EP may not imply it
is normal (such as, take S = R2×2 with transpose as involution, a = ( 1 1

0 1 ). Then a is EP since aa† = a†a = 1,
but aa∗ = ( 2 1

1 1 ) , ( 1 1
1 2 ) = a∗a); a is normal may not imply it is EP (such as, take S = C2×2 with transpose as

involution, a = ( i 1
−1 i ). Then aa∗ = a∗a = 0, i.e., a is normal. But a is not Moore-Penrose invertible and hence a

is not EP). So we may be of interest to know when a is both EP and normal. Here we give a more extensive
case.

Theorem 2.7. Let a ∈ S. Then the following are equivalent:
(1) a is *-DMP with index m and a(a∗)m = (a∗)ma;
(2) m is the smallest positive integer such that (am)† exists and a(a∗)m = (a∗)ma;
(3) aDm exists and (am)∗ = ua = au for some group invertible element u ∈ S.

Proof. (1)⇒ (2) is clear.
(2)⇒ (1). The equality am(am)∗ = (am)∗am ensures that am(am)† = (am)†am (see [8, Theorem 5]). So a is *-DMP
with index m by Theorem 2.4.
(1)⇒ (3). Since a is *-DMP with index m, then aDm exists and aaDm is symmetric by Lemma 2.2. So,

(am)∗ = (amaDm a)∗ = aaDm (am)∗, and

(am)∗ = (aaDm am)∗ = (am)∗aaDm .

Since aDm exists and (am)∗a = a(am)∗, then we obtain aDm (am)∗ = (am)∗aDm (see [5, Theorem 1]). Take u = aDm (am)∗,
then au = ua = (am)∗. In what follows, we show u# = a((aDm )m)∗. In fact,

(i) ua((aDm )m)∗u = aDm (am)∗a((aDm )m)∗aDm (am)∗ = (am)∗aaDm ((aDm )m)∗aDm (am)∗

= (am)∗((aDm )m)∗aDm (am)∗ = (aaDm )∗aDm (am)∗ = aDm (am)∗ = u;

(ii) a((aDm )m)∗ua((aDm )m)∗ = a((aDm )m)∗aDm (am)∗a((aDm )m)∗

= a((aDm )m)∗(am)∗aDm a((aDm )m)∗

= a(aaDm )∗aDm a((aDm )m)∗ = a(aaDm )∗((aDm )m)∗

= a((aDm )m)∗;

(iii) a((aDm )m)∗u = a((aDm )m)∗aDm (am)∗ = a((aDm )m)∗(am)∗aDm = a(aaDm )∗aDm

= aaDm and

ua((aDm )m)∗ = aDm (am)∗a((aDm )m)∗ = aDm a(am)∗((aDm )m)∗ = aaDm ,

so, a((aDm )m)∗u = ua((aDm )m)∗.

Hence u# = a((aDm )m)∗.
(3)⇒ (1). Since u# and aDm exist with au = ua, then au# = u#a and (ua)D = u#aDm .
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So, (aaDm )∗ = (am(aDm )m)∗ = ((am)Dam)∗ = (am)∗((am)∗)D = ua(ua)D = uau#aDm

= uu#aaDm .
Therefore (aaDm )∗aaDm = uu#aaDm = (aaDm )∗. That is, aaDm is symmetric.
We thus have a is *-DMP with index m.

Corollary 2.8. Let a ∈ S. Then the following are equivalent:
(1) a is EP and normal;
(2) a† exists and a is normal;
(3) a# exists and a∗ = ua = au for some group invertible element u ∈ S.

In what follows, *-DMP elements are characterized in terms of the pseudo core inverse and dual pseudo
core inverse.

Theorem 2.9. Let a ∈ S. Then the following are equivalent:
(1) a is *-DMP with index m;
(2) a D©m and a D©m exist with a D©m = a D©m ;
(3) a D©m and a D©m exist with aa D©m = a D©m a.

Proof. (1)⇒ (2), (3). If a is *-DMP with index m, then by Lemma 2.3, aDm and (am)† exist with (am)† = (aDm )m.
Hence a D©m and a D©m exist by Lemma 2.1 (2). It is not difficult to verify that a D©m = a D©m and aa D©m = a D©m a.

(2)⇒ (1). If a D©m and a D©m exist, then aDm and (am)† exist with a D©m = aDm am(am)†, a D©m = (am)†amaDm . Equality
a D©m = a D©m would imply that aDm am(am)† = (am)†amaDm . Post-multiply this equality by am+1(aDm )m, then we
obtain aaDm = (am)†am. So aaDm is symmetric. According to Lemma 2.2, a is *-DMP with index m.

(3) ⇒ (1). By the hypothesis, we have aaDm am(am)† = (am)†amaDm a. That is, am(am)† = (am)†am. So
aaDm = am(aDm )m = am(am)†am(aDm )m = (am)†amam(aDm )m = (am)†am. Therefore aaDm is symmetric. Hence a is
*-DMP with index m.

The following result characterizes *-DMP elements merely in terms of the pseudo core inverse.

Theorem 2.10. Let a ∈ S. Then a is *-DMP with index m if and only if a D©m exists and one of the following equivalent
conditions holds:
(1) aa D©m = a D©m a;
(2) aDm a D©m = a D©m aDm ;
(3) a D©m = (am)(1,3)amaDm for some (am)(1,3)

∈ am
{1, 3};

(4) am+1a D©m = am;
(5) (a D©m )2a = a D©m ;
(6) a D©m a is symmetric;
(7) aa D©m commutes with a D©m a.

Proof. If a is *-DMP with index m, then (aDm )m = (am)†, a D©m = aDm by Lemma 2.3 and aaDm is symmetric by
Lemma 2.2. So (1)-(7) hold.

Conversely, we assume that a D©m exists.
(1). By the definition of the pseudo core inverse, we have a D©m am+1 = am, and we also have a D©m aa D©m = a D©m by
calculation. The equalities aa D©m = a D©m a, a D©m aa D©m = a D©m and a D©m am+1 = am yield that aDm = a D©m . Therefore a
is *-DMP with index m by Lemma 2.3.
(2). Since aDm a D©m = a D©m aDm , then (aDm )#a D©m = a D©m (aDm )# (see [5, Theorem 1]). Namely,

a2aDm a D©m = a D©m a2aDm .

So aa D©m = am(a D©m )m = aaDm am(a D©m )m = aaDm aa D©m = a2aDm a D©m = a D©m a2aDm

= a D©m am+1(aDm )m = am(aDm )m = aaDm .
Therefore aaDm is symmetric. Hence a is *-DMP with index m by Lemma 2.2.
(3). Since a D©m exists, then by Lemma 2.1 (1), aDm and (am)(1,3) exist. From equality (3) and a D©m = aDm am(am)(1,3),
it follows that aDm am(am)(1,3) = (am)(1,3)amaDm . Pre-multiply this equality by (aDm )m−1am, then we get

am(am)(1,3) = aaDm .
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So aaDm is symmetric. Hence a is *-DMP with index m by Lemma 2.2.
(4). The equalities am+1a D©m = am and a D©m am+1 = am yield that a is strongly π-regular and aDm = am(a D©m )m+1 =
a D©m (see [5, Theorem 4]). So a is *-DMP with index m by Lemma 2.3.
(5)⇒ (1). Pre-multiply (5) by a, then we get a(a D©m )2a = aa D©m . That is, a D©m a = aa D©m .
(6)⇒ (1). Pre-multiply (a D©m a)∗ = a D©m a by aa D©m , then we obtain

aa D©m (a D©m a)∗ = aa D©m a D©m a = a D©m a.

So,

aa D©m = am(a D©m )m = (am(a D©m )m)∗ = (a D©m am+1(a D©m )m)∗ = (a D©m aaa D©m )∗

= (aa D©m )∗(a D©m a)∗ = aa D©m (a D©m a)∗ = a D©m a.

(7) ⇒ (1). From aa D©m (a D©m a) = (a D©m a)aa D©m , aa D©m (a D©m a) = a D©m a and (a D©m a)aa D©m = a D©m am+1(a D©m )m = aa D©m , it
follows that aa D©m = a D©m a.

In [27], Xu and Chen characterized EP elements in terms of equations. Similarly, we utilize equations to
characterize *-DMP elements.

Theorem 2.11. Let a ∈ S. Then the following are equivalent:
(1) a is *-DMP with index m;
(2) m is the smallest positive integer such that xam+1 = am, ax2 = x and (xmam)∗ = xmam for some x ∈ S;
(3) m is the smallest positive integer such that xam+1 = am, ax = xa and (xmam)∗ = xmam for some x ∈ S.

Proof. (1)⇒ (2), (3). Suppose a is *-DMP with index m, then aDm exists and aDm a is symmetric by Lemma 2.2.
Take x = aDm , then (2) and (3) hold.
(2)⇒ (1). From xam+1 = am and am = xam+1 = (ax2)am+1 = (am+1xm+2)am+1 = am+1(xm+2am+1) = am+1(xm+1am) =
am+1xm+1am, it follows that a is strongly π-regular and aDm = xm+1am. So aaDm = axm+1am = xmam. Therefore
aDm exists and aaDm is symmetric. Hence a is *-DMP with index m by Lemma 2.2.
(3) ⇒ (1). Equalities xam+1 = am and am = am+1x yield that aDm = xm+1am. So aDm a = xm+1am+1 = xmam.
Therefore aDm exists and aaDm is symmetric. Hence a is *-DMP with index m.

Let S0 denote a ∗-semigroup with zero element 0. The left annihilator of a ∈ S0 is denoted by ◦a and is
defined by ◦a = {x ∈ S0 : xa = 0}. The following result characterizes *-DMP elements in S0 in terms of left
annihilators. We begin with an auxiliary lemma.

Lemma 2.12. [7] Let a, x ∈ S0. Then a D©m = x if and only if m is the smallest positive integer such that one of the
following equivalent conditions holds:
(1) xax = x and xS0 = x∗S0 = amS0;
(2) xax = x, ◦x = ◦(am) and ◦(x∗) ⊆ ◦(am).

Theorem 2.13. Let a ∈ S0. Then a is *-DMP with index m if and only if m is the smallest positive integer such that
one of the following equivalent conditions holds:
(1) xax = x, xS0 = x∗S0 = amS0 and xmS0 = (am)∗S0 for some x ∈ S0;
(2) xax = x, ◦x = ◦(am), ◦(x∗) ⊆ ◦(am) and ◦(am)∗ ⊆ ◦(xm) for some x ∈ S0.

Proof. Suppose a is *-DMP with index m. Then a D©m , (am)† exist with (a D©m )m = (am)† by Lemma 2.3. Take
x = a D©m , then xax = x, xS0 = x∗S0 = amS0 by Lemma 2.12. Further, from xm = (am)†, it follows that
xm = (xmam)∗xm = (am)∗(xm)∗xm

∈ (am)∗S0 and (am)∗ = (amxmam)∗ = xmam(am)∗ ∈ xmS0. Hence (1) holds.
(1)⇒ (2) is clear.
(2). From xax = x, ◦x = ◦(am) and ◦(x∗) ⊆ ◦(am), it follows that a D©m = x by Lemma 2.12. Then 1 − (xmam)∗ ∈
◦(am)∗ ⊆ ◦(xm) implies xm = (xmam)∗xm. So xmam = (xmam)∗xmam. Therefore (xmam)∗ = xmam, together with
xam+1 = am, ax2 = x, implies a is *-DMP with index m by Theorem 2.11.
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It is known that aD exists if and only if (ak)D exists for any positive integer k if and only if (ak)D exists for
some positive integer k [5]. We find this property is inherited by *-DMP.

Theorem 2.14. Let a ∈ S and k a positive integer, then a is *-DMP if and only if ak is *-DMP.

Proof. Observe that aD exists and aaD is symmetric if and only if (ak)D exists and ak(ak)D is symmetric. So a
is *-DMP if and only if ak is *-DMP by Lemma 2.2.

Given two *-DMP elements a and b, we may be of interest to consider conditions for the product ab
(resp. sum a + b) to be *-DMP.

Theorem 2.15. Let a, b ∈ S with ab = ba, ab∗ = b∗a. If both a and b are *-DMP, then ab is *-DMP.

Proof. Suppose that both a and b are *-DMP, then a D©, aD and b D©, bD exist with a D© = aD, b D© = bD by Lemma
2.3. Since a D© and b D© exist with ab = ba, ab∗ = b∗a, then (ab) D© exists with (ab) D© = a D©b D© (see [7, Theorem 4.3]).
Also, (ab)D exists with (ab)D = aDbD. So,

(ab) D© = a D©b D© = aDbD = (ab)D.

Hence ab is *-DMP by Lemma 2.3.

Theorem 2.16. Let a, b ∈ R with ab = ba = 0, a∗b = 0. If both a and b are *-DMP, then a + b is *-DMP.

Proof. If both a and b are *-DMP, then a D©, aD and b D©, bD exist with a D© = aD, b D© = bD by Lemma 2.3. Since
a D© and b D© exist with ab = ba = 0, a∗b = 0, then (a + b) D© exists with (a + b) D© = a D© + b D© (see [7, Theorem 4.4]).
Also, (a + b)D exists with (a + b)D = aD + bD (see [5, Corollary 1]). So we have

(a + b) D© = a D© + b D© = aD + bD = (a + b)D.

Hence a + b is *-DMP by Lemma 2.3.

Example 2.17. The condition ab = 0, a∗b = 0 (without ba = 0) is not sufficient to show that a + b is *-DMP,
although both a and b are *-DMP.

Let R = C2×2 with transpose as involution, a =

(
i 0
0 0

)
, b =

(
0 0
−1 0

)
, then ab = a∗b = 0, but ba , 0. Since

a D© = a #© = a#aa(1,3) =

(
−i 0
0 0

)
= a# = aD, a is *-DMP. It is clear that b is *-DMP. Observe that a + b =

(
i 0
−1 0

)
, by

calculation, we find that neither a+b nor (a+b)2 has any {1,3}-inverse. Since (a+b)m =

(−1)
m−1

2 (a + b) m is odd
(−1)

m
2 +1(a + b)2 m is even

,

we conclude that (a + b)m has no {1,3}-inverse for arbitrary positive integer m. Hence a + b is not *-DMP.

3. Core-EP Decomposition

Core-nilpotent decomposition was introduced in [2] for complex matrices. Later, Patrı́cio and Puystjens
[19] generalized this decomposition from complex matrices to rings. Let a ∈ R with aDm exists. The sum
a = ca+na is called the core-nilpotent decomposition of a, where ca = aaDm a is the core part of a, na = (1−aaDm )a
is the nilpotent part of a. This decomposition is unique and it brings nm

a = 0, cana = naca = 0, c#
a exists with

c#
a = aDm .

Wang [23] introduced the core-EP decomposition for a complex matrix, and proved its uniqueness by
using the rank of a matrix and matrix decomposition. Let A be a square complex matrix with index m, then
A = A1 + A2, where A#

1 exists, Am
2 = 0 and A∗1A2 = A2A1 = 0. In the following, we show that neither the rank

nor the matrix decomposition are necessary for the characterization of core-EP decomposition in rings.
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Theorem 3.1. Let a ∈ R with a D©m exists. Then a = a1 + a2, where
(1) a#

1 exists;
(2) am

2 = 0;
(3) a∗1a2 = a2a1 = 0.

Proof. Since a D©m exists. Take a1 = aa D©m a and a2 = a − aa D©m a, then am
2 = 0 and a∗1a2 = a2a1 = 0. Next, we will

prove that a#
1 exists. In fact,

a1 = aa D©m a = (aa D©m a)2(a D©m )2a ∈ a2
1R and a1 = aa D©m a = a D©m (aa D©m a)2

∈ Ra2
1.

Hence a#
1 exists with a#

1 = (a D©m )2a (see [9, Proposition 7]).

Theorem 3.2. The core-EP decomposition of an element in R is unique.

Proof. The proof is similar to [23, Theorem 2.4], the matrices case. We give the proof for completeness.
Let a = a1 + a2 be the core-EP decomposition of a ∈ R, where a1 = aa D©m a, a2 = a− aa D©m a. Let a = b1 + b2 be

another core-EP decomposition of a. Then am =
m∑

i=0
bi

1bm−i
2 . Since b∗1b2 = 0 and bm

2 = 0, then (am)∗b2 = 0. Since

b2b1 = 0, then amb1(bm
1 )# = b1. Therefore,

b1 − a1 = b1 − aa D©m a = b1 − aa D©m b1 − aa D©m b2 = b1 − am(a D©m )mb1 − [am(a D©m )m]∗b2

= b1 − am(a D©m )mamb1(bm
1 )# = b1 − amb1(bm

1 )# = 0.

Thus, b1 = a1. Hence the core-EP decomposition of a is unique.

Next, we exhibit two applications of the core-EP decomposition. On one hand, we give a characterization
of the pseudo core inverse by using the core-EP decomposition.

Theorem 3.3. Let a ∈ R with a D©m exists and let the core-EP decomposition of a be as in Theorem 3.1. Then a #©

1 = a D©m .

Proof. Suppose a D©m exists, then aDm and (am)(1,3) exist by Lemma 2.1, as well as
a D©m (a1)2 = a D©m (aa D©m a)2 = aa D©m a = a1; a1(a D©m )2 = aa D©m a(a D©m )2 = a D©m ;
a1a D©m = aa D©m aa D©m = aa D©m , which implies (a1a D©m )∗ = a1a D©m .

We thus get a #©

1 = a D©m .

On the other hand, we use core-EP decomposition to characterize *-DMP elements.

Theorem 3.4. Let a ∈ R with a D©m exists and let the core-EP decomposition of a be as in Theorem 3.1. Then the
following are equivalent:
(1) a is *-DMP with index m;
(2) a1 is EP.

Proof. (1) ⇔ (2). a is *-DMP with index m if and only if a D©m exists with aa D©m = a D©m a by Theorem 2.10 (1).
According to Theorem 3.3, a #©

1 = a D©m . By a simple calculation, a1a #©

1 = aa #©

1 = aa D©m , and a #©

1 a1 = a #©

1 a = a D©m a. So
aa D©m = a D©m a is equivalent to a1a #©

1 = a #©

1 a1, which is equivalent to, a1 is EP (see [21, Theorem 3.1]).

Remark 3.5. If a is *-DMP with index m. Then the core-EP decomposition of a coincides with its core-nilpotent
decomposition. In fact, if a is *-DMP with index m, then a D©m = aDm by Lemma 2.3. Hence the core-EP decomposition
and core-nilpotent decomposition coincide.



Y. Gao et al. / Filomat 32:9 (2018), 3073–3085 3081

4. Core-EP Order

In the following, R #© and R D© denote the sets of all core invertible and pseudo core invertible elements in
R, respectively. R D©m and R D©m denote the sets of all pseudo core invertible and dual pseudo core invertible
elements of index m, respectively.

Baksalary and Trenkler [1] introduced the core partial order for complex matrices of index one. Then,
Rakić and Djordjević [22] generalized the core partial order from complex matrices to ∗-rings. Let a, b ∈ R #©,

the core partial order a
#©

≤ b was defined as

a
#©

≤ b : a #©a = a #©b and aa #© = ba #©.

In [23], Wang introduced the core-EP order for complex matrices. Let A,B ∈ Cn×n, the core-EP order A
†©

≤ B
was defined as

A
†©

≤ B : A †©A = A †©B and AA †© = BA †©,

where A †© denotes the core-EP inverse [13] of A.
One can see [6], [14] for a deep study of the partial order.
In what follows, we generalize the core-EP order from complex matrices to ∗-rings and give some

properties.

Definition 4.1. Let a, b ∈ R D©. The core-EP order a
D©

≤ b is defined as

a
D©

≤ b : a D©a = a D©b and aa D© = ba D©. (4.1)

We extend some results of the core-EP order [23] from matrices to an arbitrary ∗-ring, using a different
method. First, we have the following result.

Theorem 4.2. The core-EP order is not a partial order but merely a pre-order.

Proof. It is clear that the core-EP order (4.1) is reflexive. Let a, b, c ∈ R D©, a
D©

≤ b and b
D©

≤ c. Next, we prove

a
D©

≤ c.
Suppose k = max{ind(a), ind(b)}. From aa D© = ba D© and bb D© = cb D©, it follows that

aa D© = ba D© = ba(a D©)2 = b2(a D©)2 = bk+1(a D©)k+1 = bb D©bk+1(a D©)k+1 = cb D©bk+1(a D©)k+1

= cbk(a D©)k+1 = cb(a D©)2 = ca D©.

Since aa D© = ba D©, then a D© = a D©(aa D©)∗ = a D©(ba D©)∗ = a D©[bk(a D©)k]∗ = a D©[bb D©bk(a D©)k]∗ = a D©[bk(a D©)k]∗bb D©.
Equalities a D©a = a D©b, b D©b = b D©c and a D© = a D©[bk(a D©)k]∗bb D© yield that a D©a = a D©b = a D©[bk(a D©)k]∗bb D©b =
a D©[bk(a D©)k]∗bb D©c = a D©c.

We thus have a
D©

≤ c.
However, the core-EP order is not anti-symmetric (see [23, Example 4.1]).

The following result give some characterizations of the core-EP order, generalizing [23, Theorem 4.2]
from matrices to an arbitrary ∗-ring without using matrix decomposition.

Theorem 4.3. Let a, b ∈ R D© with k = max{ind(a), ind(b)} and let a = a1 + a2 and b = b1 + b2 be the core-EP
decompositions. Then the following are equivalent:

(1) a
D©

≤ b;
(2) ak+1 = bak and a∗ak = b∗ak;

(3) a1
#©

≤ b1.
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Proof. (1)⇒ (2). Post-multiply aa D© = ba D© by ak+1, then we derive ak+1 = bak. From a D©a = a D©b, it follows that
a∗(a D©)∗ = b∗(a D©)∗. Post-multiply this equality by a∗ak, then a∗ak = b∗ak.
(2) ⇒ (1). Equality a∗ak = b∗ak yields that (ak)∗a = (ak)∗b. Pre-multiply this equality by a D©((a D©)k)∗, then
a D©a = a D©b. Post-multiply ak+1 = bak by (a D©)k+1, then aa D© = ba D©.
(1)⇒ (3). From Theorem 3.3 and aa D© = ba D©, it follows that

a1a #©

1 = aa #©

1 = aa D© = ba D© = ba(a D©)2 = b2(a D©)2 = · · · = bk(a D©)k = bb D©bk(a D©)k

= bb D©ba D© = b1a #©

1 .

Meanwhile, we have aa D© = aa D©bb D© by taking an involution on aa D© = bb D©ba D© = bb D©aa D©. So a D© = a D©bb D©.
Therefore a #©

1 a1 = a #©

1 a = a D©a = a D©b = a D©bb D©b = a #©

1 b1.
(3)⇒ (1). Since aa D© = a1a #©

1 = b1a #©

1 = bb D©ba D©, then

aa D© = bb D©baa D©a D© = (bb D©b)2(a D©)2 = bb D©bbk(b D©)kb(a D©)2 = b(bb D©ba D©)a D© = ba(a D©)2

= ba D©.

Equalities aa D© = bb D©ba D© and aa D© = ba D© yield that aa D© = aa D©bb D©. Therefore a D© = a D©bb D©. Hence a D©b =
a D©bb D©b = a #©

1 b1 = a #©

1 a1 = a D©a.

Wang and Chen [25] gave some equivalences to a
#©

≤ b under the assumption that a is EP. Similarly, we

give a characterization of a
D©

≤ b whenever a is *-DMP. In the following result, ca and cb are the core parts of
the core-nilpotent decompositions of a, b respectively.

Theorem 4.4. Let a, b ∈ R D©. If a is *-DMP, then the following are equivalent:

(1) a
D©

≤ b;

(2) ca
#©

≤ cb;
(3) a D©b D© = b D©a D© and a D©b = a D©a;

(4) a D©
D©

≤ b D© and a D©b = a D©a.

Proof. Let k =max{ind(a), ind(b)}. If a is *-DMP, then a D© = aD by Lemma 2.3 and aa D© = a D©a by Theorem 2.10.
(1) ⇒ (2). a D© = c #©

a (see [7, Theorem 2.9]) and a D©a = a D©b imply c #©
a a = c #©

a b. From a D©b = a D©a = aa D© = ba D©, we
have a D©bD = bDa D©. So, a D©bbDb = bbDba D© = bbDbk(a D©)k = bk(a D©)k = aa D©. Therefore c #©

a cb = cbc #©
a = cac #©

a = c #©
a ca.

(2) ⇒ (1). aa D© = cac #©
a = cbc #©

a = bbDba D© = (bbDb)2(a D©)2 = b2bDb(a D©)2 = b(bbDba D©)a D© = baa D©a D© = ba D©, and
a D©a = c #©

a ca = c #©
a cb = a D©bbDb = a D©a D©(bbDb)2 = a D©a D©ab = a D©b.

(1)⇒ (3). From a D©a = a D©b and aa D© = ba D©, it follows that

aa D©b = aa D©a = ba D©a = baa D©,

which forces, by [7, Proposition 4.2], aa D©b D© = b D©aa D© = b D©bk+1(a D©)k+1 = bk(a D©)k+1 = a D©. So a D©b D© = (a D©)2 =
b D©a D©.
(3) ⇒ (1). ba D© = b(a D©)2a = b(a D©)2b = b(a D©)k+1bk = b(a D©)k+1b D©bk+1 = bb D©(a D©)k+1bk+1 = bb D©aa D©, together with
aa D© = a D©a = a D©b = (a D©)kbk = (a D©)kb D©bk+1 = b D©(a D©)kbk+1 = bb D©aa D©, implies aa D© = ba D©.
(3)⇒ (4). From a D©b D© = b D©a D©, it follows that (1) holds and

(a D©) D©a D© = a2(a D©)2 = a2bk(a D©)k+2 = a2b D©bk+1(a D©)k+2 = a2b D©a(a D©)2

= a2b D©a D© = a2a D©b D© = (a D©) D©b D©,

a D©(a D©) D© = a D©a2a D© = aa D© = b D©a2a D© = b D©(a D©) D©.

(4) ⇒ (3). Since (a D©) D©a D© = (a D©) D©b D© and a D©(a D©) D© = b D©(a D©) D©, then we obtain aa D© = a2a D©b D© and aa D© =
b D©a2a D©. So b D©a D© = (a D©)2 = a D©b D©.
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Wang and Chen [25] proved that if a
∗

≤ b, a† exists, then b† exists if and only if [b(1−aa†)]† exists. Similarly,
we have the following result.

Theorem 4.5. Let a, b ∈ R D© with a
D©

≤ b. Suppose that a is *-DMP. Then b is *-DMP if and only if b(1 − aa D©) is
*-DMP.

Proof. From a D©a = a D©b and aa D© = ba D©, it follows that

aa D©b = aa D©a = ba D©a = baa D©.

Suppose that b is *-DMP, then bb D© = b D©b. Next, we prove [b(1−aa D©)] D© = b D©
−a D©. In fact, suppose ind(b) = k,

then

(b D©
− a D©)[b(1 − aa D©)]k+1 = (b D©

− a D©)bk+1(1 − aa D©) = bk(1 − aa D©) − a D©bk+1(1 − aa D©)

= bk(1 − aa D©) = [b(1 − aa D©)]k;

b(1 − aa D©)(b D©
− a D©) = bb D©

− aa D©;
b(1 − aa D©)(b D©

− a D©)2 = (bb D©
− aa D©)(b D©

− a D©) = b D©
− b D©aa D© = b D©

− a D©.
We thus have [b(1 − aa D©)] D© = b D©

− a D©.
So, b(1 − aa D©)[b(1 − aa D©)] D© = bb D©

− aa D© and [b(1 − aa D©)] D©b(1 − aa D©) = b D©b − b D©baa D© = bb D©
− aa D©.

Therefore, b(1 − aa D©)[b(1 − aa D©)] D© = [b(1 − aa D©)] D©b(1 − aa D©). Hence b(1 − aa D©) is *-DMP.
Conversely, suppose that b(1 − aa D©) is *-DMP. Then, [b(1 − aa D©)] D© = [b(1 − aa D©)]D. We can easily check

that
(baa D©) D© = (baa D©) #© = (baa D©)# = a D©.

Since b = b(1 − aa D©) + baa D©, [b(1 − aa D©)]baa D© = b(1 − aa D©)aa D©b = 0, baa D©[b(1 − aa D©)] = baa D©(1 − aa D©)b = 0,
and (baa D©)∗b(1 − aa D©) = b∗aa D©(1 − aa D©)b = 0, then b D© = [b(1 − aa D©)] D© + a D© (see [7, Theorem 4.4]) and
bD = [b(1 − aa D©)]D + (baa D©)# = [b(1 − aa D©)]D + a D©. Thus, b is *-DMP.

5. Characterizations for aa D© = bb D©

Let a, b ∈ R. If a� and b� are some kind of generalized inverses of a and b. It is very interesting to
discuss when aa� = bb�. Koliha et al. [11, Theorem 6.1], Mosić et al. [17, Theorem 3.7] and Patrı́cio et al.
[18, Theorem 2.3] gave some equivalences for generalized Drazin inverses, image-kernel (p, q)-inverses and
Moore-Penrose inverses, respectively. Here we give a characterization for aa D© = bb D©.

Proposition 5.1. Let a, b ∈ R D©. Then the following are equivalent:
(1) aa D© = bb D©aa D©;
(2) aa D© = aa D©bb D©;
(3) a D© = a D©bb D©;
(4) Ra D©

⊆ Ra D©bb D©.

Proof. (1)⇔ (2) by taking an involution.
(2)⇒ (3). Pre-multiply aa D© = aa D©bb D© by a D©, then we get a D© = a D©bb D©.
(3)⇒ (4) is clear.
(4) ⇒ (2). From Ra D©

⊆ Ra D©bb D©, it follows that a D© = xa D©bb D© for some x ∈ R. Then, aa D© = axa D©bb D© =
(axa D©bb D©)bb D© = aa D©bb D©.

The above proposition gives some equivalences to aa D© = bb D©aa D©, which enrich the following result. R−1

denotes the set of all invertible elements in R.
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Theorem 5.2. Let a, b ∈ R D© with ind(a) = m. Then the following are equivalent:
(1) aa D© = bb D©;
(2) aa D© = aa D©bb D© and u = aa D© + 1 − bb D©

∈ R−1;
(3) aa D© = aa D©bb D© and v = am + 1 − bb D©

∈ R−1;
(4) aa D© commutes with bb D©, u = aa D© + 1 − bb D©

∈ R−1 and s = bb D© + 1 − aa D©
∈ R−1;

(5) aa D© commutes with bb D© and w = 1 − (aa D©
− bb D©)2

∈ R−1;
(6) aa D© commutes with bb D© and b D©aa D©

− a D©bb D© = b D©
− a D©.

Proof. (1)⇒ (2)-(6) is clear.
(2)⇔(3). Since a D©m exists, then aDm exists by Lemma 2.1. So (am)# exists. Therefore am + 1 − aa D©m ∈ R−1 (see
[20, Theorem 1]). From aa D© = aa D©bb D©, it follows that aa D©bb D© = bb D©aa D© = aa D© by Proposition 5.1. Observe
that (aa D© + 1 − bb D©)(am + 1 − aa D©) = am + 1 − bb D©, and hence u ∈ R−1 if and only if v ∈ R−1.
(3)⇒(1). Notice that aa D©v = am + aa D©

− aa D©bb D© = am and bb D©v = bb D©am = bb D©aa D©am = aa D©am = am. Therefore
aa D© = bb D©.
(4)⇒(1). Since ubb D© = aa D©bb D© = uaa D©bb D©, saa D© = aa D©bb D© = saa D©bb D©. Hence aa D© = aa D©bb D© = bb D©.
(5)⇒(4). Note that 1− (aa D©

− bb D©)2 = (bb D© + 1− aa D©)(aa D© + 1− bb D©) = (aa D© + 1− bb D©)(bb D© + 1− aa D©). Hence
w ∈ R−1 implies u, s ∈ R−1.
(6)⇒(1). Post-multiply b D©aa D©

− a D©bb D© = b D©
− a D© by aa D©, then b D©aa D©

− a D©bb D©aa D© = b D©aa D©
− a D©. So,

a D© = a D©bb D©aa D© = a D©bb D©. Therefore, b D© = b D©aa D©. Hence aa D© = aa D©bb D© = bb D©aa D© = bb D©.

Take b = a∗ in Theorem 5.2, then we obtain a characterization of *-DMP elements by applying Theorem
2.9.

Corollary 5.3. Let a ∈ R D©m ∩ R D©m . Then the following are equivalent:
(1) a is *-DMP with index m;
(2) aa D©m = a D©m a;
(3) aa D©m = aa D©m a D©m a and u = aa D©m + 1 − a D©m a ∈ R−1;
(4) aa D©m = aa D©m a D©m a and v = am + 1 − a D©m a ∈ R−1;
(5) aa D©m commutes with a D©m a, u = aa D©m + 1 − a D©m a ∈ R−1 and s = a D©m a + 1 − aa D©m ∈ R−1;
(6) aa D©m commutes with a D©m a and w = 1 − (aa D©m − a D©m a)2

∈ R−1;
(7) aa D©m commutes with a D©m a and a∗D©m

aa D©m − a D©m a D©m a = a∗D©m
− a D©m .
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