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Abstract. Our aim in this paper is to consider some new characterizations for the boundedness of the
integral-type operator T1Cϕ acting from BMOA(VMOA) into Bloch-type spaces and give a brief expression
for its essential norm.

1. Introduction

The set of positive integers without the element zero is denoted by N. Let D be the unit disk in the
complex plane C, H(D) be the space of holomorphic functions on D and S(D) be the set of holomorphic

self-maps ofD. For f ∈ H(D) with Taylor expansion f (z) =
∞∑

i=0
aizi, the Cesáro operator acting on f is

C[ f ](z) =

∞∑
i=0

 1
i + 1

i∑
k=0

ak

 zk.

There are many papers studied the operator C[.] acting on various spaces of analytic functions including
the Hardy space [20] and Bloch space [12, 25]. Now the extended Cesáro operator T1 is defined by

T1( f )(z) =

∫ z

0
f (t)1′(t)dt

acting on function f ∈ H(D). When 1(z) = z or 1(z) = log
(

1
1−z

)
, T1 is the integral operator or the Cesáro

operator, respectively.
For ϕ ∈ S(D), the composition operator Cϕ is defined as Cϕ( f ) = f ◦ ϕ, f ∈ H(D). The study of

composition operators is a fairly active field. For general references on the theory of composition operators,
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see the two books [6] and [22]. In this paper, we consider the integral-type operator

T1Cϕ( f )(z) =

∫ z

0
( f ◦ ϕ)(ζ)1′(ζ)dζ, f ∈ H(D), ϕ ∈ S(D).

We refer the interested readers to the paper [16] to know more about the operator.
The weighted Banach spaces of analytic functions is defined by

H∞να := { f ∈ H(D) : ‖ f ‖να := sup
z∈D

(1 − |z|2)α| f (z)| < ∞}

endowed with the norm ‖.‖να . For a weight ν the associated weight ν̃(z) is defined by

ν̃(z) :=
(

sup{| f (z)| : f ∈ H∞ν , ‖ f ‖ν ≤ 1}
)−1
, z ∈ D.

For the standard weights να, it is well known that its associated weight is ν̃α(z) = να(z). We also need the

weight vlog =
(
log 2

1−|z|2

)−1
satisfying ṽlog = vlog, too. We refer the interested readers to [14, P39]. Moreover,

a weight ν is called radial if ν(z) = ν(|z|), z ∈ D.
For 0 < α < ∞, an f ∈ H(D) is said to be in the Bloch-type space Bα, if

‖ f ‖α = sup
z∈D

(1 − |z|2)α| f ′(z)| < ∞,

endowed with the norm

‖ f ‖Bα = | f (0)| + ‖ f ‖α.

Then the Bloch space B consists of analytic functions f onD such that

‖ f ‖1 := sup
z∈D

(1 − |z|2)| f ′(z)| < ∞.

For 1 ≤ p < ∞, let Hp be the classical Hardy space consisting of all functions f ∈ H(D) such that

‖ f ‖pHp = sup
r∈(0,1)

∫ 2π

0
| f (reiθ)|p

dθ
2π

< ∞.

The space BMOA consists of all functions f ∈ H2 such that

‖ f ‖∗ = sup
a∈D
‖ f ◦ La − f (a)‖H2 < ∞,

where La(z) = a−z
1−āz for z ∈ D. The corresponding f → ‖ f ‖∗ is a seminorm and ‖ f ‖BMOA = | f (0)| + ‖ f ‖∗ yields

a Banach space structure on BMOA. As we all know the set of all bounded analytic functions space H∞ is
properly contained in BMOA, which is in turn a proper subset of B. That is,

H∞ ⊂ BMOA ⊂ B.

In fact, ‖ f ‖B ≤ ‖ f ‖BMOA. Thus the inclusion of BMOA into B is continuous. Furthermore, ‖ f ‖B ≤ ‖ f ‖∞ and
‖ f ‖∗ ≤ 2‖ f ‖∞ for f ∈ H∞, where ‖ f ‖∞ denotes the supremum norm of f . Moreover, if f ∈ BMOA, then

| f (z)| ≤ | f (0)| +
1
2

log
1 + |z|
1 − |z|

‖ f ‖1 ≤ | f (0)| +
1
2

log
1 + |z|
1 − |z|

‖ f ‖BMOA (1)

The closed subspace VMOA consists of those f ∈ BMOA such that lim
|a|→1
‖ f ◦ La − f (a)‖H2 = 0. For more

information on the spaces BMOA, VMOA and B, we suggest [1, 2, 10].
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Very recently, there are many papers about the operators on the space BMOA, such as [5], which gives
the new characterization for the boundedness of weighted composition operator Wψ,ϕ : H∞ → BMOA as
follows:

Theorem A Let ψ ∈ H(D) and ϕ ∈ S(D). The following statements are equivalent:
(a) The operator Wψ,ϕ : H∞ → BMOA is bounded.
(b) M := sup

n∈N∪{0}
‖ψϕn

‖BMOA < ∞.

(c) ψ ∈ BMOA and sup
a∈D
|ψ(a)|‖Lϕ(a) ◦ ϕ ◦ La‖H2 < ∞.

In particular, it has been shown in [24] that Cϕ is compact on BMOA if and only if the single condition
lim
n→∞
‖ϕn
‖ = 0 holds. And it has been proved in [15] that this condition is equivalent with lim sup

|ϕ(z)|→1
‖La‖H2 = 0.

In a recent paper [9], it complements the above results by proving estimates for the essential norm ‖Cϕ‖e,BMOA
as following:

Theorem B For ϕ ∈ S(D), we have ‖Cϕ‖e,BMOA � lim sup
n→∞

‖ϕn
‖.

Recently, there have been an increasing interest in new characterizations for the boundedness and
compactness of operators, one can refer to [3, 4, 7, 8, 14, 17, 18, 23]. Based on the above results, we continue
to investigate the new characterizations for the integral-type operator T1Cϕ acting from BMOA(VMOA) to
B
α. The organization of the paper is as follows: section 2 devotes to some lemmas. The boundedness and

the estimates for the essential norm of the operator T1Cϕ acting from BMOA(VMOA) to Bα are given in
section 3.

Throughout the remainder of this paper, C will denote a positive constant, the exact value of which will
vary from one appearance to the next. The notations A � B, A � B, A � B mean that there maybe different
positive constants C such that B/C ≤ A ≤ CB, A ≤ CB, A ≥ CB.

2. Some Lemmas

We will make extensive use of the following lemma when proving our main theorems. This lemma is
due to Montes-Rodrı́guez [21, Theorem 2.1] and Hyvärinen, et al. [13, Theorem 2.4]. For u ∈ H(D) and
ϕ ∈ S(D), the weighted composition operator is defined as uCϕ( f )(z) = u(z) f (ϕ(z)), f ∈ H(D). Then we
have

Lemma 1. Let ν and w be radial, non-increasing weights tending to zero at the boundary ofD. Then
(i) the weighted composition operator uCϕ maps H∞ν into H∞w if and only if

sup
n≥0

‖uϕn
‖w

‖zn‖ν
� sup

z∈D

w(z)|u(z)|
ν̃(ϕ(z))

< ∞,

with norm comparable to the above supremum.
(ii) ‖uCϕ‖e,H∞ν →H∞w = lim sup

n→∞

‖uϕn
‖w

‖zn‖ν
= lim sup
|ϕ(z)|→1

w(z)|u(z)|
ν̃(ϕ(z)) .

Lemma 2. [14, Lemma 2.1] lim
n→∞

(log n)‖zn
‖νlog = 1.

The following lemma is an easy result from (1).

Lemma 3. For f ∈ BMOA,

| f (z)| � log
2

1 − |z|2
‖ f ‖BMOA.

The following lemma for compactness follows similarly from [6, Proposition 3.11].

Lemma 4. The operator T1Cϕ : BMOA → Bα (uCϕ : BMOA → H∞να ) is compact if and only if T1Cϕ : BMOA →
B
α (uCϕ : BMOA→ H∞να ) is bounded and ‖T1Cϕ fn‖Bα → 0 (‖uCϕ fn‖να → 0), as n→∞, for any bounded sequence
{ fn}n∈N in BMOA converging to zero uniformly on compact subsets ofD.
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3. Main Results

3.1. Boundedness

In this part, we give a new characterization for the boundedness of T1Cϕ : BMOA(VMOA)→ Bα.

Theorem 1. For α > 0, ϕ ∈ S(D) and 1 ∈ H(D). Then the following statements are equivalent:
(a) T1Cϕ : BMOA→ Bα is bounded.
(b) T1Cϕ : VMOA→ Bα is bounded.
(c)

sup
n≥0

log(n + 1)‖1′ϕn
‖να � sup

z∈D
(1 − |z|2)α|1′(z)| log

2
1 − |ϕ(z)|2

< ∞. (2)

In each case the norm ‖T1Cϕ‖ comparable to (2).

Proof. (a)⇒(b). This implication is obvious.
(b)⇒(c). For w ∈ D, define the function

fw(z) = log
2

1 − ϕ(w)z
. (3)

It is well known that ‖ fw‖∗ ≤
∥∥∥log 2

1−z

∥∥∥
∗
≤ C < ∞ and fw ∈ VMOA. Since T1Cϕ fw(0) = 0, thus

‖T1Cϕ fw‖Bα = sup
z∈D

(1 − |z|2)α|(T1Cϕ fw)′(z)|

≥ (1 − |w|2)α| fw(ϕ(w))1′(w)|

= (1 − |w|2)α|1′(w)| log
2

1 − |ϕ(w)|2
. (4)

From (4) we obtain

sup
z∈D

(1 − |z|2)α|1′(z)| log
2

1 − |ϕ(z)|2
< ∞.

By Lemma 1 (i) and above inequality it follows that 1′Cϕ : H∞νlog
→ H∞να is bounded. Then by Lemma 2 and

Lemma 1 (i), it follows that

sup
n≥0

log(n + 1)‖1′ϕn
‖να � sup

n≥0

log(n + 1)
log n

log n‖1′ϕn
‖να

≤ sup
n≥0

log n‖1′ϕn
‖να

� sup
n≥0

‖1′ϕn
‖να

‖zn‖νlog

� sup
z∈D

(1 − |z|2)α|1′(z)| log
2

1 − |ϕ(z)|2
< ∞.

(c)⇒ (a). For every f ∈ BMOA, T1Cϕ f (0) = 0, by Lemma 3 we have that

‖T1Cϕ f ‖Bα = sup
z∈D

(1 − |z|2)α| f (ϕ(z))1′(z)|

≤ sup
z∈D

(1 − |z|2)α|1′(z)| log
2

1 − |ϕ(z)|2
‖ f ‖BMOA

< ∞.

From which it follows the boundedness of T1Cϕ : BMOA→ Bα. This completes the proof.
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3.2. Essential norm
The essential norm of a continuous linear operator T is the distance from T to the compact operators K,

that is, ‖T‖e = inf{‖T − K‖ : K is compact }. Notice that ‖T‖e = 0 if and only if T is compact, so estimates on
‖T‖e lead to conditions for T to be compact. There are lots of papers concerning this topic, the interested
readers can refer to [7, 11, 13, 14, 19, 26, 27].

In this part, we estimate the essential norms of the integral-type operator T1Cϕ acting from BMOA(VMOA)
to Bα. Since (T1Cϕ f )′ = 1′ f ◦ ϕ, then

‖T1Cϕ‖e,BMOA→Bα ≤ ‖1
′Cϕ‖e,BMOA→H∞να . (5)

The following lemma characterizes the essential norms of the weighted composition operator uCϕ from
BMOA to H∞να .

Lemma 5. Let 0 < α < ∞, the weighted composition operator 1′Cϕ : BMOA→ H∞να is bounded. Then

‖1′Cϕ‖e,BMOA→H∞να � lim sup
n→∞

(log n)‖1′ϕn
‖να .

Proof. The upper estimate. Let ( fn)n∈N be a bounded sequence in BMOA, then it has a subsequence denoting
by ( fnk )k∈N which converges uniformly on compact subsets ofD. We can assume, without loss of generality,
that ( fn)n∈N converges to zero uniformly on compact subsets of D. Fix 0 < δ < 1 and let (rm)m∈N be an
increasing sequence in (0, 1) converging to 1. We can easily obtain that 1′Crmϕ is a compact operator by the
boundedness of 1′Cϕ and Lemma 4. Thus

‖1′Cϕ‖e,BMOA→H∞να ≤ ‖1′Cϕ − 1′Crmϕ‖BMOA→H∞να

= sup
z∈D

sup
‖ f ‖BMOA≤1

(1 − |z|2)α|1′(z)|| f (ϕ(z)) − f (rmϕ(z))|

≤ sup
|ϕ(z)|<δ

sup
‖ f ‖BMOA≤1

(1 − |z|2)α|1′(z)|| f (ϕ(z)) − f (rmϕ(z))| (6)

+ sup
|ϕ(z)|≥δ

sup
‖ f ‖BMOA≤1

(1 − |z|2)α|1′(z)|| f (ϕ(z)) − f (rmϕ(z))|. (7)

Case i |ϕ(z)| < δ. since f ∈ B, when f ∈ BMOA, thus | f ′(z)| ≤ 1
1−|z|2 ‖ f ‖BMOA.

| f (ϕ(z)) − f (rmϕ(z))| ≤
∫ 1

rm

|ϕ(z)|| f ′(tϕ(z))|dt

≤ ‖ f ‖BMOA

∫ 1

rm

|ϕ(z)|
1

1 − |tϕ(z)|2
dt

≤ ‖ f ‖BMOA
|ϕ(z)|

1 − |ϕ(z)|
(1 − rm).

Since |ϕ(z)|
1−|ϕ(z)| <

δ
1−δ , then we have

sup
‖ f ‖BMOA≤1

| f (ϕ(z)) − f (rmϕ(z))| ≤
δ

1 − δ
(1 − rm).

Furthermore, ‖1′Cϕ(1)‖vα is finite by the boundness of 1′Cϕ : BMOA→ H∞να . Thus

sup
|ϕ(z)|<δ

sup
‖ f ‖BMOA≤1

(1 − |z|2)α|1′(z)|| f (ϕ(z)) − f (rmϕ(z))|

≤
δ

1 − δ
(1 − rm) sup

|ϕ(z)|<δ
(1 − |z|2)α|1′(z)|

≤
δ

1 − δ
(1 − rm)‖1′Cϕ(1)‖vα .
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From which it follows that (6) tends to zero as m→∞.
Case ii |ϕ(z)| ≥ δ. Given f ∈ BMOA with ‖ f ‖BMOA ≤ 1,

| f (ϕ(z)) − f (rmϕ(z))| ≤
∫ 1

rm

|ϕ(z)|| f ′(tϕ(z))|dt

≤

∫ 1

rm

|ϕ(z)|
1 − |tϕ(z)|2

dt‖ f ‖BMOA

≤

∫ 1

rm

1
1 − |tϕ(z)|

d(t|ϕ(z)|)

= log
1 − |ϕ(z)|

1 − rm|ϕ(z)|

≤ log
2

1 − rm|ϕ(z)|
.

Therefore

lim
m→∞

sup
‖ f ‖BMOA≤1

| f (ϕ(z)) − f (rmϕ(z))| ≤ log
2

1 − |ϕ(z)|
,

and letting δ→ 1, from (7) it follows that

‖1′Cϕ‖e,BMOA→H∞να � lim sup
|ϕ(z)|→1

(1 − |z|2)α|1′(z)| log
2

1 − |ϕ(z)|2
. (8)

The lower estimate. Let (zn)n∈N be a sequence inD such that |ϕ(zn)| → 1 as n→∞. Define the sequence

fn(z) =

(
log

2
1 − |ϕ(zn)|2

)−1 log
2

1 − ϕ(zn)z

2

, z ∈ D. (9)

Then fn ∈ VMOA and sup
n∈N
‖ fn‖BMOA < ∞.Moreover, ( fn)n∈N converges to zero unifromly on compact subsets

ofD as n→∞. Then for every compact operator T by Lemma 4 it follows that

‖1′Cϕ‖e,BMOA→H∞να � lim sup
n→∞

‖(1′Cϕ − T) fn‖να

� lim sup
n→∞

‖1′Cϕ fn‖να

= lim sup
n→∞

sup
z∈D

(1 − |z|2)α|1′(z)|| fn(ϕ(z))|

≥ lim sup
n→∞

(1 − |zn|
2)α|1′(zn)|| fn(ϕ(zn))|

= lim sup
|ϕ(z)|→1

(1 − |z|2)α|1′(z)| log
2

1 − |ϕ(z)|2
. (10)

Combining (8) and (10) it follows that

‖1′Cϕ‖e,BMOA→H∞να � lim sup
|ϕ(z)|→1

(1 − |z|2)α|1′(z)| log
2

1 − |ϕ(z)|2
.

Further by Lemma 1 (ii) and Lemma 2,

‖1′Cϕ‖e,BMOA→H∞να � lim sup
n→∞

(log n)‖1′ϕn
‖να .

This completes the proof.
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Theorem 2. For α > 0, ϕ ∈ S(D) and 1 ∈ H(D). If T1Cϕ : BMOA→ Bα is bounded, then

‖T1Cϕ‖e,BMOA→Bα � ‖T1Cϕ‖e,VMOA→Bα � lim sup
n→∞

(log n)‖1′ϕn
‖να .

Proof. It is obvious that ‖T1Cϕ‖e,BMOA→Bα � ‖T1Cϕ‖e,VMOA→Bα .
By (5) we obtain that ‖T1Cϕ‖e,BMOA→Bα ≤ ‖1

′Cϕ‖e,BMOA→Hνα
. Further by Lemma 5, we have that

‖T1Cϕ‖e,BMOA→Bα � lim sup
n→∞

(log n)‖1′ϕn
‖να . (11)

On the other hand, let (zn)n∈N be a sequence in D such that |ϕ(zn)| → 1 as n → ∞. Take the function
sequence defined in (9). Then we have

‖T1Cϕ‖e,VMOA→Bα � lim sup
n→∞

‖T1Cϕ fn‖Bα

≥ lim sup
n→∞

(1 − |zn|
2)α|1′(zn)| log

2
1 − |ϕ(zn)|2

= lim sup
|ϕ(z)|→1

(1 − |z|2)α|1′(z)| log
2

1 − |ϕ(z)|2

� lim sup
n→∞

(log n)‖1′ϕn
‖να . (12)

Combining (11) and (12) we obtain that

lim sup
n→∞

(log n)‖1′ϕn
‖να � ‖T1Cϕ‖e,BMOA→Bα

≥ ‖T1Cϕ‖e,VMOA→Bα

� lim sup
n→∞

(log n)‖1′ϕn
‖να .

From the above we obtain the desired results. This completes the proof.

The following corollary is an immediate consequence of Theorem 2.

Corollary 1. For α > 0, ϕ ∈ S(D) and 1 ∈ H(D). If T1Cϕ : BMOA → Bα is bounded, then the following are
equivalent:

(i) T1Cϕ : BMOA→ Bα is compact.
(ii) T1Cϕ : VMOA→ Bα is compact.
(iii) lim sup

n→∞
(log n)‖1′ϕn

‖να = 0.

(iv) lim sup
|ϕ(z)→1

(1 − |z|2)α|1′(z)| log 2
1−|ϕ(z)|2 = 0.
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