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Abstract. We introduce the Bairamov-Kotz-Becki-Farlie-Gumble-Morgenstern (BKB-FGM) type bivariate-
generalized exponential distribution. Some distributional properties of concomitants of order statistics as
well as record values for this family are studied. Recurrence relations between the moments of concomitants
are obtained, some of these recurrence relations were not publishes before for Morgenstern type bivariate
distributions. Moreover, most of the paper results are extended to arbitrary distributions (see Remark 3.1).

1. Introduction

The generalized exponential distribution (GE), a most attractive generalization of the exponential dis-
tribution, introduced by Gupta and Kundu [13], has widespread interest and applications, e.g., it can be
used quite effectively in analyzing many lifetime data, particularly in place of two-parameter gamma and
two-parameter Weibull distributions. The GE distribution has a nice physical interpretation. Suppose, there
are n−components in a parallel system and the lifetime distribution of each component is independent and
identically distributed. If the lifetime distribution of each component is GE, then the lifetime distribution of
the system is also GE. As opposed to Weibull distribution, which represents a series system, GE represents
a parallel system. Many authors studied various properties of the GE. See, for example, AL-Hussaini and
Ahsanullah [4], Ahsanullah et al. [3], Kundu and Pradham [17], among others. Nadarajah [19] surveyed
the GE distribution.

A continuous random variable (rv) is said to have the GE with scale parameter θ > 0 and shape
parameter α > 0 (denoted by GE(θ;α)), if the probability density function (pdf) and the corresponding
cumulative distribution function (cdf) are given, for x > 0, respectively, by

fX(x) = αθ(1 − e−θx)α−1e−θx (1.1)

and
FX(x) = (1 − e−θx)α. (1.2)
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Its hazard function is

HX(x) =
αθ(1 − e−θx)α−1e−θx

1 − (1 − e−θx)α
.

Gupta and Kundu [13] showed that the kth moment of GE(θ;α) is

µk(θ, α) =
αk!
θk

ℵ(α−1)∑
i=0

(−1)i

(i + 1)k+1

(
α − 1

i

)
,

where ℵ(x) = ∞, if x is non-integer and ℵ(x) = x, if x is integer. Moreover, the mean, variance and moment
generating function of GE(θ;α) are given, respectively, by

µ1(θ, α) = E(X) =
B(α)
θ
, Var(X) =

C(α)
θ2 and MX(t) = αβ(α, 1 −

t
θ

), (1.3)

where B(α) = Ψ(α + 1) −Ψ(1), C(α) = Ψ′(1) −Ψ′(α + 1), β(a, b) =
Γ(a)Γ(b)
Γ(a+b) and Ψ(.) is the digamma function,

while Ψ′(.) is its derivation (the trigamma function). Moreover, the higher central moments can be obtained
in terms of the polygamma functions.

In this paper we introduce the BKB-FGM type bivariate-generalized exponential distribution. Bairamov
et al. [6] presented a four-parameter extension of the classical Farlie-Gumble-Morgenstern (FGM) family of
distributions, which allow to increase the dependence between the variables. Bairamov et al. [6] considered
a most general form of FGM model, where the cdf and pdf of this extension are given by

FX,Y(x, y) = FX(x)FY(y)[1 + λ(1 − Fp1

X (x))q1 (1 − Fp2

Y (y))q2 ], p1, p1, q1, q2 ≥ 1, (1.4)

fX,Y(x, y) = fX(x) fY(y)[1 + λ(1 − Fp1

X (x))q1−1(1 − (1 + p1q1)Fp1

X (x))

.(1 − Fp2

Y (y))q2−1(1 − (1 + p2q2)Fp2

Y (y))], (1.5)

where FX(x) and FY(y) are cdf’s, while fX(x) and fY(y) are pdf’s of the rv’s X and Y, respectively. The
admissible range of the associated parameter λ is

λ(p1, p1; p2, q2) = −min{1,
1

l1(p1, q1)l2(p2, q2)
} ≤ λ

≤ min
{

1
l1(p1, q1)

,
1

l2(p2, q2)

}
= λ(p1, p1; p2, q2), (1.6)

where

li(pi, qi) =

 pi(
pi(qi−1)
1+piqi

)qi−1 qi > 1,
1
pi

qi = 1, i = 1, 2.

The HK-FGM model (denoted by HK-FGM(λ, p)) suggested by Huang and Kotz [15] and the classical FGM
family are obtained as special cases of the BKB-FGM family (1.4) by choosing pi = p, qi = 1, i = 1, 2 and
pi = qi = 1, i = 1, 2, respectively.

In this paper, all the results of Tahmasebi and Jafari [21] are extended to BKB-FGM family with two
marginals FX(x) and FY(y),where X ∼ GE(θ1;α1) and Y ∼ GE(θ2;α2) (denoted by BKB-FGM-GE(θ1, α1;θ2, α2)).
Moreover, some new results, which were not obtained by Tahmasebi and Jafari [21] for FGM family, are
given such as recurrence relations between the moments of concomitants of order statistics. It is worth
mentioning that most of the obtained recurrence relations are valued for any arbitrary distributions.
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2. Some Properties of BKB-FGM-GE(θ1, α1;θ2, α2) and the Motivation of the Work

In this section we study the correlation coefficient of the model BKB-FGM-GE(θ1, α1;θ2, α2) and we show
that it is large than the correlation coefficient of the two models HK-FGM-GE(θ1, α1;θ2, α2) and FGM-GE
(θ1, α1;θ2, α2). Now, by using the Hoeffding formula (see Lehmann [18]), we get

COV(X,Y : λ;α1, α2; p1, p2; q1, q2) =

∫
∞

0

∫
∞

0
[FX,Y(x, y) − FX(x)FY(y)]dxdy

=

∫
∞

0

∫
∞

0
λFX(x)FY(y)(1 − Fp1

X (x))q1 (1 − Fp2

Y (y))q2 dxdy =
λ

θ1θ2
I1I2, (2.1)

where

Ii =

∫ 1

0
ξαi (1 − ξαipi )qi

1
1 − ξ

dξ =

∞∑
j=0

∫ 1

0
ξαi+ j(1 − ξαipi )qi dξ

=
1
αipi

∞∑
j=0

∫ 1

0
ξ
αi+ j+1
αipi
−1(1 − ξ)qi dξ =

1
αipi

∞∑
j=1

β(
αi + j + 1
αipi

, qi + 1), (2.2)

and β(a, b) is the usual Beta function. Therefore, the correlation coefficient of the BKB-FGM-GE(θ1, α1;θ2, α2))
is given by

ρ(X,Y : λ;α1, α2; p1, p2; q1, q2) = λ
2∏

i=1

1√
C(αi)αipi

∞∑
j=1

β(
αi + j + 1
αipi

, qi + 1). (2.3)

Remark 2.1. For p1 = p2 = p and q1 = q2 = 1, we get

COV(X,Y : λ;α1, α2; p1, p2; q1, q2)

=
λ

p2

2∏
i=1

1
θiαi

∞∑
j=0

Γ(αi+ j+1
αip

)

Γ(αi+ j+1
αip

+ 2)
=
λ

p2

2∏
i=1

1
θiαi

∞∑
j=0

1

(αi+ j+1
αip

+ 1)(αi+ j+1
αip

)

=
λ

θ1θ2

2∏
i=1

∞∑
j=0

[
1

αi + j + 1
−

1
αi(1 + p) + j + 1

]
=

λ
θ1θ2

2∏
i=1

(Ψ(αi(1 + p) + 1) −Ψ(αi + 1)).

Therefore, for the family HK-FGM-GE(θ1, α1;θ2, α2) we get

ρ(X,Y : λ;α1, α2; p, p; 1, 1) = λ
D(α1, p)D(α2, p)√

C(α1(p + 1))C(α2(p + 1))
,

where D(αi, p) = B(αi(1 + p)) − B(αi). Barakat et al. [7] showed that

ρ(p) = −
6(log(p + 1))2

π2p2 ≤ lim
α1→0
α2→0

ρ(X,Y : λ;α1, α2; p, p; 1, 1)

= ρ(X,Y : λ; p) ≤
6(log(p + 1))2

π2p
= ρ(p),

which yields ρ(X,Y : λ; p) → 0, as p → ∞, and |ρ(X,Y : λ; 1)| ≤ 0.2921 (i.e., when p = 1). Moreover,
ρ(3.9241) ≤ 0.3937, which is a significant improvement comparing with the upper bound “0.2921”obtained
by Tahmasebi and Jafari [21].

The following theorem gives some interesting properties of the family BKB-FGM-GE(θ1, α1;θ2, α2).
Theorem 2.1. Let λ(p1, p2; 1, 1) ≤ λ ≤ λ(p1, p2; 1, 1). Then,

ρ(X,Y : λ;α1, α2; p1, p2; q1, q2) ≤ ρ(X,Y : λ;α1, α2; p1, p2; 1, 1),∀q1, q2 > 1. (2.4)
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Moreover,

lim
α1→0
α2→0

ρ(X,Y : λ;α1, α2; p1, p2; q1, q2) = 0,

and

lim
α1→∞
α2→∞

ρ(X,Y : λ;α1, α2; p1, p2; q1, q2) = ρ(X,Y : λ; p1, p2; q1, q2)

=
6λ
π2

2∏
i=1

∫ 1

0
(1 − zpi )qi

1
log z

dz. (2.5)

Finally, if q1 and q2 are integers, we get

ρ(X,Y : λ; p1, p2; q1, q2) =
6λ
π2

2∏
i=1

qi∑
j=1

(−1) j
( qi

j

)
log(1 + pi j). (2.6)

Remark 2.2. The relation (2.4) reveals an interesting fact that whenever λ is belonging to the admissible
range of HK-FGM model, the correlation coefficient of the HK-FGM model is greater than the BKB-FGM
model. However, we will show that outside this admissible range, the correlation coefficient of the BKB-
FGM model may be extremely greater than the correlation coefficient of the HK-FGM model.
Remark 2.3. At q1 = q2 = 1, p1 = p2 = p, the R.H.S. of (2.6), becomes λlog2(1 + p), which coincides with the
result of Barakat et al. [7].

Proof. The proof of the relation (2.4) follows immediately from the fact that the function β(x, y) is non-
increasing in both x and y, and qi ≥ 1. In order to prove the relation (2.5), we start with the relation (2.1)
with

Ii =

∫ 1

0
ξαi (1 − ξαipi )qi

1
1 − ξ

dξ =
1
αi

∫ 1

0
(1 − zpi )qi

z
1
αi

1 − z
1
αi

dz (2.7)

(by using the transformation z = ξαi ). On the other hand, for any 0 < z < 1, we have

lim
αi→∞

1

αi(1 − z
1
αi )

= lim
θ→0

θ

1 − zθ
= lim
θ→0

1
zθ log z

= −
1

log z
(2.8)

and

lim
αi→∞

C(αi) =
π2

6
. (2.9)

Combining (2.7), (2.8) and (2.9), we get the relation (2.5). Finally, the relation (2.8) follows immediately by

using the relation
∫ 1

0 (zpi − 1)qi 1
log z dz =

∑qi

j=1(−1)qi− j
( qi

j

)
log(1 + pi j) (cf. Prudnikov et al. [20]).

Corollary 2.1. Simple calculations reveal that, when q1 = q2 = q and p1 = p2 = p, where both of q and p
are integers, the correlation coefficient ρ(X,Y : λ; p, p; q, q) attains its maximum “0.393602”at q = 2, p = 8.
On the other hand, when 1 < q < 1.9, the correlation coefficient ρ(X,Y : λ; p, p; q, q) nearly attains its
maximum “0.5518971”at q = 1.3, p = 6. This result represents a significant improvement comparing with
the maximum value of the correlation coefficient in HK-FGM-GE family (which is 0.3937, cf. Barakat et
al. [7]). Consequently, this fact gives a satisfactory motivation to deal with BKB-FGM-GE rather than
HK-FGM-GE.
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3. Concomitants of Order Statistics

Let (X1,Y1), (X2,Y2), ..., (Xn,Yn) be a random sample from a bivariate cdf FX,Y(x, y). If we arrange the
X−variate in ascending order as X1:n ≤ X2:n ≤ .... ≤ Xn:n, then, the Y−variate paired with these order
statistics are denoted by Y[1:n],Y[2:n], ...,Y[n:n] and termed the concomitants of order statistics. The concept
of concomitants of order statistics was first introduced by David [11] and almost simultaneously under
the name of induced order statistics by Bhattacharya [9]. These concomitant order statistics are of interest
in selection and prediction problems based on the ranks of the X’s. Another application of concomitants
of order statistics is in ranked-set sampling. It is a sampling scheme for situations where measurement
of the variable of primary interest for sampled items is expensive or time-consuming while ranking of a
set of items related to the variable of interest can be easily done. A comprehensive review of ranked-set
sampling can be found in Chen et al. [10]. For a recent comprehensive review of possible applications of
the concomitants of order statistics, see David and Nagaraja [12].

Let X ∼ GE(θ1;α1) and Y ∼ GE(θ2;α2). Since the conditional pdf of Y[r:n] given X[r:n] = x is fY[r:n] |Xr:n (y|x) =
fY|X(y|x), then the pdf of Y[r:n] is given by

f[r:n](y) =

∫
∞

0
fY|X(y|x) fr:n(x)dx, (3.1)

where fr:n(x) = 1
β(r,n−r+1) F

r−1
X (x)(1 − FX(x))n−r fX(x) is the pdf of the rth order statistic Xr:n and fY|X(y|x) can be

computed by using (1.1), (1.2) and (1.5). The following simple proved theorem gives the useful representa-
tion of the pdf f[r:n](y).
Theorem 3.1. Let Ui ∼ GE(θ2, α2(ip2 + 1)) and Vi ∼ GE(θ2, α2((i + 1)p2 + 1)). Then

f[r:n](y) = fY(y) + S(t)
r,n(p1, q1)

×

ℵ(q2−1)∑
i=0

( q2 − 1
i

)
(−1)i

{
1

ip2 + 1
fUi (y) −

1 + p2q2

(i + 1)p2 + 1
fVi (y)

}
, t = 1, 2,

where

S
(1)
r,n(p1, q1) =

λ
p1

n−r∑
j=0

( n − r
j

)
(−1) j∆?

j:r,n(p1, q1),

∆?
j:r,n(p1, q1) =

β( r+ j
p1
, q1) − (1 + p1q1)β( r+ j

p1
+ 1, q1)

β(r,n − r + 1)
,

S
(2)
r,n(p1, q1) = λ

ℵ(q1−1)∑
j=0

( q1 − 1
j

)
(−1) j∆??

j:r,n(p1, q1)

and

∆??
j:r,n(p1, q1) =

β( jp1 + r,n − r + 1) − (1 + p1q1)β(( j + 1)p1 + r,n − r + 1)
β(r,n − r + 1)

.

Proof. Clearly, the relation (3.1), can be written in the form

f[r:n](y) = fY(y)
[
1 + λ

(
1 − Fp2

Y (y)
)q2−1 (

1 − (1 + p2q2)Fp2

Y (y)
)

(J1 − (1 + p1q1)J2)
]

= fY(y) + (J1 − (1 + p1q1)J2)
ℵ(q2−1)∑

i=0

( q2 − 1
i

)
(−1)i

{
1

ip2 + 1
fUi (y) −

1 + p2q2

(i + 1)p2 + 1
fVi (y)

}
,

where

J1β(r,n − r + 1) =

∫
∞

0

(
1 − Fp1

X (x)
)q1−1

Fr−1
X (x)(1 − FX(x))n−r fX(x)dx
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and

J2β(r,n − r + 1) =

∫
∞

0

(
1 − Fp1

X (x)
)q1−1

Fp1+r−1
X (x)(1 − FX(x))n−r fX(x)dx.

Now, the proof of the relations S(1)
r,n(p1, q1) = J1 − (1 + p1q1)J2 and S(2)

r,n(p1, q1) = J1 − (1 + p1q1)J2 follows
immediately, upon using the transformations Z = Fp1

X (x) and W = FX(x) and then applying the binomial

theorem on the resulted terms (1 − Z
1

p1 )n−r and (1 −Wp1 )q1−r in J1 − (1 + p1q1)J2, respectively.

The following corollary is a direct consequence of Theorem 3.1.
Corollary 3.1. Let µ(k)

[r:n] = E(Yk
[r:n]), k ∈ <+. Then,

µ(k)
[r:n] = µk(θ2, α2) + S(t)

r,n(p1, q1)D(k; p2, q2)

= µk(θ2, α2) + S(t)
r,n(p1, q1)

ℵ(q2−1)∑
i=0

( q2 − 1
i

)
(−1)i

 E(Uk
i )

ip2 + 1
−

(1 + p2q2)E(Vk
i )

(i + 1)p2 + 1

 , t = 1, 2, (3.2)

where, E(Uk
i ) and E(Vk

i ), can be easily computed by using the relation (1.3). Therefore, the mean µ[r:n] =
E(Y[r:n]) is given by

µ[r:n] =
B(α2)
θ2

+ S(t)
r,n(p1, q1)D(1, p2, q2), t = 1, 2, (3.3)

where

D(1, p2, q2) =
1
θ2

ℵ(q2−1)∑
i=0

( q2 − 1
i

)
(−1)i

[
B(α2(ip2 + 1))

ip2 + 1
−

(1 + p2q2)B(α2((i + 1)p2 + 1))
(i + 1)p2 + 1

]
.

Corollary 3.2. When q1 = q2 = 1 and p1 = p2 = p, i.e., for the family HK-FGM-GE, we get

µ[r:n] =
1
θ2

[
(1 + λ∆??

0:r,n(p, 1))B(α2) − λ∆??
0:r,n(p, 1)B(α2(p + 1))

]
. (3.4)

Proof. ClearlyD(1, p, 1) = 1
θ2

[B(α2)− B(α2(p + 1))] and S(2)
r,n(p, 1) = λ∆??

0:r,n(p, 1). Therefore, the proof of (3.4) is
obvious for t = 2. On the other hand, upon using the relation (cf. Kamps [16], Page 186)

M∑
j=0

( M
j

)
(−1) j 1

aj + b
= aMM!

 M∏
t=0

(at + b)


−1

,∀aj + b , 0,M ∈ <+, (3.5)

it is easy to show that

S
(1)
r,n(p, 1) =

λ
β(r,n − r + 1)

n−r∑
j=0

( n − r
j

)
(−1) j

[
1

r + j
−

1 + p
r + j + p

]
= λ∆??

0:r,n(p, 1),

(by choosing M = n − r, a = 1, b = r and M = n − r, a = 1, b = r + p in the first and the second term of the last
summation, respectively).

Remark 3.1. It is worth mentioning that, if we replace µk(θ2, α2) by E(Yk).Moreover, Ui and Vi inD(k; p2, q2)
are taken to be such that Ui ∼ Fip2+1

Y (y) and Vi ∼ F(i+1)p2+1
Y (y), then the representation (3.2) holds for any two

arbitrary distributions FX(x) and FY(y).
Now, by using the two representations in relation (3.2), as well as (3.3), at t = 1 and t = 2, we can derive

some useful recurrence relations satisfied by the moments µ(k)
[r:n], k = 1, 2, .... The following theorem give a

new recurrence relation by using the representation at t = 1. It is worth mentioning that this recurrence
relation was not proved even for the model FGM-GE. Moreover, in view of Remark 3.1, all the next



H. M. Barakat et al. / Filomat 32:9 (2018), 3313–3324 3319

recurrence relations are satisfied for arbitrary distributions FX(x) and FY(y), if only we would consider the
obvious changes illustrated in Remark 3.1.
Theorem 3.2. Let p1 be an integer, then

1

m(2)
r,n(p1)

µ(k)
[r+2p1:n+2p1] +

1

m(1)
r,n(p1)

µ(k)
[r+p1:n+p1] − 2µ(k)

[r:n] =

 1

m(2)
r,n(p1)

+
1

m(1)
r,n(p1)

− 2

µk(θ2, α2) −
λ
p1
D(k, p2, q2)

n−r∑
j=0

( n − r
j

)
(−1) jη j:r,n(p1, q1),

where

m(i)
r,n(p1) =

Γ(r)Γ(n + ip1 + 1)
Γ(r + ip1)Γ(n + 1)

, i = 1, 2,

and

η j:r,n(p1, q1) =

(
3 −

p1(1 + q1)
r + p1(1 + q1) + j

) β( r+ j
p1
, q1 + 1)

β(r,n − r + 1)

−(1 + p1q1)
(
3 −

p1(1 + q1)
r + p1(2 + q1) + j

) β( r+ j
p1

+ 1, q1 + 1)

β(r,n − r + 1)
.

Proof. Starting with ∆?
j:r,n(p1, q1), after simple calculations, we can show that

∆?
j:r+p1,n+p1

(p1, q1) = m(1)
r,n(p1)[∆?

j:r,n(p1, q1) − ξ1],

where

ξ1 =
β( r+ j

p1
, q1 + 1) − (1 + p1q1)β( r+ j

p1
+ 1, q1 + 1)

β(r,n − r + 1)
.

Therefore,
1

m(1)
r,n(p1)

∆?
j:r+p1,n+p1

(p1, q1) − ∆?
j:r,n(p1, q1) = −ξ1. (3.6)

Similarly, after some calculations, we get

∆?
j:r+2p1,n+2p1

(p1, q1) = m(2)
r,n(p1)[∆?

j:r,n(p1, q1) − ξ2], (3.7)

where

ξ2 = ξ1 +

j+r
p1
β( r+ j

p1
, q1 + 1)

( r+ j
p1

+ q1 + 1)β(r,n − r + 1)
−

(1 + p1q1)(1 +
j+r
p1

)β( r+ j
p1

+ 1, q1 + 1)

( j+r
p1

+ q1 + 2)β(r,n − r + 1)
.

Therefore,
1

m(2)
r,n(p1)

∆?
j:r+2p1,n+2p1

(p1, q1) − ∆?
j:r,n(p1, q1) = −ξ2. (3.8)

Moreover, it is easy to show that η j:r,n(p1, q1) = ξ1 + ξ2, thus by combining this equality with (3.6), (3.7), (3.8)
and (3.2), at t = 1, the proof of the theorem follows immediately.

Corollary 3.3. For q1 = q2 = 1 and p1 = p2 = p, i.e., for HK-FGM-GE family, we get

1

m(2)
r,n(p)

µ(k)
[r+2p:n+2p] +

1

m(1)
r,n(p)

µ(k)
[r+p:n+p] − 2µ(k)

[r:n] =
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m(2)
r,n(p)

+
1

m(1)
r,n(p)

− 2

µk(θ2, α2) −
λD(k, p, 1)

pβ(r,n − r + 1)

3∑
j=0

c j(p)β(r + jp,n − r + 1), (3.9)

where c0(p) = 2p, c1(p) = −p(2p + 3), c2(p) = p2, c3(p) = p(1 + p) andD(k, p, 1) = µk(θ2, α2) − µk(θ2, α2(1 + p)).
Moreover, For q1 = q2 = 1 and p1 = p2 = 1, i.e., for FGM-GE family, we get

r
n + 1

µ(k)
[r+2:n+2] +

r + 1
n + 2

µ(k)
[r+1:n+1] − 2µ(k)

[r:n] = −
(n − r + 1)(2n + 3)

(n + 2)(n + 1)
µk(θ2, α2)

−λD(k, 1, 1)
[
2 −

5r
n + 1

+
(r + 1)r

(n + 2)(n + 1)
+

2(r + 2)(r + 1)r
(n + 3)(n + 2)(n + 1)

]
. (3.10)

Proof. The proof of the relation D(k, p, 1) = µk(θ2, α2) − µk(θ2, α2(p + 1)) is clear. On the other hand, after
simple calculations, it can be shown that

η j:r, j(p, 1) =
p3

β(r,n − r + 1)

×

[
3
(

2 − r − j
(r + j + 2p)(r + j + p)(r + j)

)
− 2p

(
3 − r − j

(r + j + 3p)(r + j + 2p)(r + j + p)(r + j)

)]

=
1

β(r,n − r + 1)

[
p(1 + p)

j + (r + 3p)
+

p2

j + (r + 2p)
−

p(2p + 3)
j + (r + p)

+
2p

j + r)

]
.

Upon using the relation (3.5) and after simple calculations, we get the relation

n−r∑
j=0

( n − r
j

)
(−1) jη j:r,n(p, 1) =

1
β(r,n − r + 1)

3∑
j=0

c j(p)β(r + jp,n − r + 1).

This completes the proof of the relation (3.9). The proof of (3.10) is obvious.

The following theorem, which is relying on the representation (3.2), at t = 2, given some recurrence relations
satisfied by the kth moments of concomitants of order statistics for any arbitrary distributions
Theorem 3.3. For any k ∈ <+, we have

µ(k)
[r+2:n] − µ

(k)
[r:n]

µ(k)
[r+1:n] − µ

(k)
[r:n]

=
2r + 1
r + 1

+
p1

r + 1
Ωr,n(p1, q1) (3.11)

and
µ(k)

[r:n−2] − µ
(k)
[r:n]

µ(k)
[r:n−1] − µ

(k)
[r:n]

=
2n − 1
n − 1

+
p1

n − 1
Ωr,n(p1, q1), (3.12)

where
Ωr,n(p1, q1)

=

ℵ(q1−1)∑
j=0

( q1−1
j

)
(−1) j

[
j2β( jp1 + r,n − r + 1)−(1 + p1q1)(1+ j)2β(( j+1)p1 + r,n − r + 1)

]
ℵ(q1−1)∑

j=0

( q1−1
j

)
(−1) j [ jβ( jp1 + r,n − r + 1)−(1 + p1q1)(1+ j)β(( j+1)p1 + r,n − r + 1)

] .
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Proof. It is easy to check that

S
(2)
r+1,n(p1, q1) − S(2)

r,n(p1, q1) =
λ

rβ(r,n − r + 1)

×

ℵ(q1−1)∑
j=0

( q1−1
j

)
(−1) j [ jp1β( jp1+r,n − r + 1)−(1+p1q1)(1+ j)p1β(( j+1)p1 + r,n − r+1)

]
(3.13)

and
S

(2)
r+2,n(p1, q1) − S(2)

r,n(p1, q1) =
λ

r(r + 1)β(r,n − r + 1)

×[
ℵ(q1−1)∑

j=0

( q1−1
j

)
(−1) j[ jp1( jp1 + 2r + 1)β( jp1 + r,n − r + 1)

−(1 + p1q1)(1 + j)p1(( j + 1)p1 + 2r + 1)β(( j + 1)p1 + r,n − r + 1)]. (3.14)

Therefore, the proof of (3.11) follows after simple calculation, upon dividing (3.14) by (3.13) and using the
representation (3.2). The proof of the relation (3.12) follows along the same way as the proof of (3.11), with
only the obvious changes.

Corollary 3.4. For q1 = q2 = 1 and p1 = p2 = p, i.e., for HK-FGM-GE family, we get

(r + 1)µ(k)
[r+2:n] = (2r + p + 1)µ(k)

[r+1:n] − (r + p)µ(k)
[r:n]

and
(n + p)µ(k)

[r:n] = (2n + p − 1)µ(k)
[r:n−1] − (n − 1)µ(k)

[r:n−2].

Proof. The proof is obvious, since Ωr,n(p, 1) = 1.

Theorem 3.4. For any k ∈ <+, we have

µ(k)
[r+2:n] + µ(k)

[r+1:n] − 2µ(k)
[r:n] = D(k, p2, q2)Ω(1)

r,n(p1, q1),

where

Ω(1)
r,n(p1, q1) =

λp1

r(r + 1)β(r,n − r + 1)

ℵ(q1−1)∑
j=0

( q1 − 1
j

)
(−1) j[ j( jp1 + 3r + 2)β( jp1 + r,n − r + 1)

−(1 + p1q1)(1 + j)(( j + 1)p1 + 3r + 2)β(( j + 1)p1 + r,n − r + 1)].

Moreover,
µ(k)

[r:n−2] + µ(k)
[r:n−1] − 2µ(k)

[r:n] = D(k, p2, q2)Ω(2)
r,n(p1, q1),

where

Ω(2)
r,n(p1, q1) =

λp1

n(n − 1)β(r,n − r + 1)

ℵ(q1−1)∑
j=0

( q1 − 1
j

)
(−1) j[ j( jp1 + 3n − 2)β( jp1 + r,n − r + 1)

−(1 + p1q1)(1 + j)(( j + 1)p1 + 3n − 2)β(( j + 1)p1 + r,n − r + 1)].

Proof. The proof of the theorem is similar to the proof of Theorem 3.3, with the exception that we carry out
the addition operation instead of substraction operation (e.g. on the relations (3.13) and (3.14) for proving
(3.11)).
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Corollary 3.5. For q1 = q2 = 1 and p1 = p2 = p, i.e., for HK-FGM-GE family, we get

µ(k)
[r+2:n] + µ(k)

[r+1:n] − 2µ(k)
[r:n] = −

λp(1 + p)(p + 3r + 2)β(r + p,n − r + 1)
r(r + 1)β(r,n − r + 1)

D(k, p, 1).

When p = 1, i.e., for FGM-GE family, we get

µ(k)
[r+2:n] + µ(k)

[r+1:n] − 2µ(k)
[r:n] = −

6λ
n + 1

D(k, 1, 1).

Moreover, For q1 = q2 = 1 and p1 = p2 = p, i.e., for HK-FGM-GE family, we get

µ(k)
[r:n−2] + µ(k)

[r:n−1] − 2µ(k)
[r:n] = −

λp(1 + p)(p + 3n − 2)β(r + p,n − r + 1)
n(n − 1)β(r,n − r + 1)

D(k, p, 1).

When p = 1, i.e., for FGM-GE family, we get

µ(k)
[r:n−2] + µ(k)

[r:n−1] − 2µ(k)
[r:n] = −

2λr(3n − 1)
(n − 1)n(n + 1)

D(k, 1, 1).

Proof. The proof is obvious, since it follows after simple calculations.

4. Concomitants of Record Values Based on BKB-FGM-GE Family

Let {(Xi,Yi)}, i = 1, 2, ... be a random sample from BKB-FGM-GE(θ1, α1;θ2, α2). When the experimenter
interests in studying just the sequence of records of the first component X′i s the second component associated
with the record value of the first one is termed as the concomitant of that record value. The concomitants
of record values has many applications, e.g., see Bdair and Raqab [8] and Arnold et al. [5]. Some
properties from concomitants of record values can be found in Ahsanullah [1] and Ahsanullah and Shakil
[2]. Let {Rn,n ≥ 1} be the sequence of record values in the sequence of X′s while R[n] be the corresponding
concomitant. Houchens [14] obtained the pdf of concomitant of nth record value for n ≥ 1, as R[n](y) =∫
∞

0 fY(y|x)hn(x)dx, where hn(x) = 1
Γ(n) (− log(1 − FX(x)))n−1 fX(x) is the pdf of Rn. The following theorem gives

a useful representation for the pdf R[n](y), as well as the kth moments concomitants of record values based
on BKB-FGM-GE.
Theorem 4.1. Let Ui and Vi be defined as in Theorem 3.1. Then,

R[n](y) = fY(y) + λ
[
S
?(p1, q1) − (1 + p1q1)S??(p1, q1)

]
×

ℵ(q2−1)∑
i=0

( q2 − 1
i

)
(−1)i

{
1

ip2 + 1
fUi (y) −

1 + p2q2

(i + 1)p2 + 1
fVi (y)

}
, (4.1)

where

S
?(p1, q1) =

ℵ(q1−1)∑
j=0

ℵ( jp1)∑
`=0

(−1) j+`

( q1 − 1
j

) ( jp1
`

)
(` + 1)n

and

S
??(p1, q1) =

ℵ(q1−1)∑
j=0

ℵ(p1( j+1))∑
`=0

(−1) j+`

( q1 − 1
j

) ( p1( j + 1)
`

)
(` + 1)n .

Moreover, if µ(k)
Rn

= E(Rk
n), k ∈ <+. Then,

µ(k)
Rn

= µk(θ2, α2) + λ
[
S
?(p1, q1) − (1 + p1q1)S??(p1, q1)

]
D(k; p2, q2). (4.2)
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Proof. Clearly, (4.2) is a simple consequence of (4.1). Therefore, we have only to prove the relation (4.1).
Now, we have

R[n](y) = fY(y) + λ(1 − FY(y)p2 (y))q2−1[1 − (1 + p2q2)Fp2

Y (y)]

×

∫
∞

0
(1 − Fp1

X (x))q1−1[1 − (1 + p1q1)Fp1

X (x)]
(− log(1 − FX(x)))n−1

Γ(n)
fX(x)dx

= fY(y) +

ℵ(q2−1)∑
i=0

( q2 − 1
i

)
(−1)i

{
1

ip2 + 1
fUi (y) −

1 + p2q2

(i + 1)p2 + 1
fVi (y)

}
ℵ(q1−1)∑

j=0

( q1 − 1
j

)
(−1) j 1

Γ(n)

∫
∞

0
F jp1

X (x)(− log(1 − FX(x)))n−1 fX(x)dx

−(1 + p1q1)
ℵ(q1−1)∑

j=0

( q1 − 1
i

)
(−1) j

∫
∞

0
F( j+1)p1

X (x)(− log(1 − FX(x)))n−1 fX(x)dx.

Upon using the transformation − log(1−FX(x)) = t in the above two integrations and applying the binomial
theorem on the terms (1 − e−t) jp1 and (1 − e−t)( j+1)p1 , in the first and second integrations, respectively, we get
the representation (4.1).

Corollary 4.1. For q1 = q2 = 1 and p1 = p2 = p, i.e., for HK-FGM-GE family, we get

µ(k)
Rn

= µk(θ2, α2) + λ
[
S
?(p, 1) − (1 + p)S??(p, 1)

]
D(k; p, q)

= µk(θ2, α2) + λ[µk(θ2, α2) − (1 + p)µk(θ2, α2p)][1 − (1 + p)
ℵ(p1)∑
`=0

(−1)`

( p1
`

)
(` + 1)n ].

Moreover, For q1 = q2 = 1 and p1 = p2 = 1, i.e., for FGM-GE family, we get

µ(k)
Rn

= µk(θ2, α2) + λ
[
S
?(1, 1) − (1 + p)S??(1, 1)

]
D(k; 1, 1)

= µk(θ2, α2)
[
1 − λ(2−(n−1)

− 1)
]
.

Proof. The proof is obvious, since it follows after simple algebra.
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