
Filomat 32:9 (2018), 3347–3354
https://doi.org/10.2298/FIL1809347K

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In the present article, a direct approach, namely exp(−ϕ)-expansion method, is used for obtaining
analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions
are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with
some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial
differential equations, but it seems that the exp(−ϕ)-expansion method appears to be efficient for finding
exact solutions of many nonlinear differential equations.

1. Introduction

Many physical phenomena can be modeled by nonlinear partial differential equations (NLPDEs), such
as plasma physics, solid state physics, fluid mechanics, optimal fiber, electro magnetics, chemical physics,
propagation of shallow water waves, fluid dynamics, and so on. The exact solutions of nonlinear differential
equations have an important role in the investigation of nonlinear physical phenomena. Therefore, many
researchers have studied mathematical physics[17] and exact solutions of NLPDEs. Recently, many methods
have been used for solving NLPDEs analytically, such as the first integral method [1], the sin-cos-function
method [2, 7], the homogeneous balance method [8], the G′

G -expansion method[9, 15], the exp-function
method [12], the tanh-function method [3], the tan-expansion method [13], the simplest equation method
[10, 20], the Hirota,s bilinear method [22], and so on. These methods consider a useful scheme for analytic
solutions of a wide class of nonlinear differential equations describing real physical problems. Many
solutions types from the most nonlinear equations can be obtained with the above methods. Recently,
some new methods were introduced, among which is exp(−ϕ)-expansion method [18, 19]. In this method,
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y.khalili@sanru.ac.ir (Yasser Khalili)
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the travelling wave solutions of nonlinear equations can be expressed by a polynomial in exp(−ϕ), where
ϕ = ϕ(ξ) satisfies the following ordinary differential equation:

ϕ′(ξ) = exp(−ϕ(ξ)) + µ exp(ϕ(ξ)) + λ, (1)

where µ, λ are constants. The exp(−ϕ)-expansion method is one of the powerful methods by which the
exact and appropriate analytical solutions to nonlinear equations can be obtained. The aim of this article is
to investigate the exp(−ϕ)-expansion method to solve the Pochhammer-Chree equation of the form [14]:

utt − uxxtt − (αu + βun+1 + γu2n+1)xx = 0, n ≥ 1, (2)

where α, β and γ are constants. The Eq.(2) illustrates a nonlinear plan of longitudinal wave propagation
of elastic bars [16, 21]. The phenomenon of dispersion is the reason wherefore waves with different
wavelengths move with several speeds in the similar material. This phenomenon becomes visible in
a cylindrical rod when the radius of the rod is analogous to the wavelength of the wave spread in it
[23]. Pochhammer and Chree introduced the accurate formulation of the wave equation in an infinite
long cylindrical rod of circular cross-section [6]. The Pochhammer-Chree equation is concluded along
the formulation of the motion equation in the diffusion of a sinusoidal wave sequence in an infinite long
rod of circular cross-section, when the motion equation is converted into cylindrical coordinates, and the
boundary conditions for traction-free surfaces are applied. A first model for α = 0, β = − 1

2 and γ = 0 was
investigated by Parker [5], and solitary wave solutions were obtained for n = 1, 2 and 4. Furthermore,
a second model for α = 1, β = 1

n+1 and γ = 0 was studied in [11, 21], and solitary wave solutions were
obtained. Moreover, a third model was studied in [16, 23] for n = 1 and 2, where kinks solutions and explicit
solitary wave solutions were obtained. The extended G′

G -expansion method was employed for Eq.(2) with
all possible cases of γ by Jin-Ming Zuo [14]. The tanh-coth and the sin-cos-methods for kinks, solitons, and
periodic solutions for the Pochhammer-Chree equations were applied [4].

The rest of this article is organized as follows. In section 2, we recall the methodology of the exp(−ϕ)-
expansion method. In section 3, we extend the application of the exp(−ϕ)-expansion method to construct
analytical solutions for the nonlinear Pochhammer-Chree equation. Finally, conclusions are summarized
in section 4.

2. The methodology of exp(−ϕ)-expansion method

In this section, we illustrate the basic idea of the exp(−ϕ)-expansion method for obtaining exact solutions
of NLPDEs. For a given partial differential equation in a form

N(u,ux,ut,uxx,uxt,utt, ...) = 0, (3)

where u = u(x, t), and N is a polynomial in u = u(x, t) and its various partial derivatives. We take the
travelling wave transformation

ξ = x − ct, (4)

where c is a nonzero constant to be determined later. Substituting (4) into (3), we reduce (3) to the following
ordinary differential equation:

Ñ(u,u′,u′′,u′′′, . . . ) = 0 (5)

to a polynomial Ñ. Here prime denotes the derivative with respect to ξ. Exact solutions for this equation
can be constructed as a finite series

u(ξ) =

m∑
i=0

Ai(exp(−ϕ(ξ)))i, (6)
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where Ai (Am , 0) are constants to be determined later, ϕ = ϕ(ξ) satisfies the following ordinary differential
equation:

ϕ′(ξ) = exp(−ϕ(ξ)) + µ exp(ϕ(ξ)) + λ. (7)

We know the Eq.(7) has been following special solutions:

• case 1. Hyperbolic function solutions. (When λ2
− 4µ > 0, µ , 0.)

ϕ1(ξ) = Ln

−λ −
√
λ2 − 4µ tanh

(
1
2

√
λ2 − 4µ(ξ + ξ0)

)
2µ

 . (8)

• case 2. Trigonometric function solutions. (When λ2
− 4µ < 0, µ , 0.)

ϕ2(ξ) = Ln


√

4µ − λ2 tan
(

1
2

√
4µ − λ2(ξ + ξ0)

)
− λ

2µ

 . (9)

• case 3. Hyperbolic function solutions. (When λ2
− 4µ > 0, λ , 0, µ = 0.)

ϕ3(ξ) = −Ln
(

λ
cosh(λ(ξ + ξ0)) + sinh(λ(ξ + ξ0)) − 1

)
. (10)

• case 4. Rational function solutions.(When λ2
− 4µ = 0, λ , 0, µ , 0.)

ϕ4(ξ) = Ln
(
−

2 (λ (ξ + ξ0) + 2)
λ2 (ξ + ξ0)

)
. (11)

• case 5. (When λ2
− 4µ = 0, λ = 0, µ = 0.)

ϕ5(ξ) = Ln (ξ + ξ0) . (12)

Here ξ0 is an integration constant. Now the main steps of the exp(−ϕ)-expansion method is to obtain exact
solutions of NLPDEs that can be determined as follows:

• Step (1). By considering the homogeneous balance between the highest order derivatives and the
highest nonlinear terms of u(x) in Eq.(5), we can obtain the positive integer m in (6).

• Step (2). By substituting (6) with Eq.(7) into (5) and collecting all terms with the same powers of
exp(−ϕ) together, the left hand side of Eq.(5) is converted into a polynomial. After setting each
coefficient of this polynomial to zero, we obtain a set of algebraic equations in terms of Am (m =
0, 1, 2, ...,n), c, λ, µ.

• Step (3). Solving the system of algebraic equations and then substituting the results and the general
solutions of (8)-(12) into (6), it gives travelling wave solutions of (5).

3. Application of exp(−ϕ)-expansion method to NLPDEs

Here, we use the exp(−ϕ)-expansion method to obtain the travelling wave solutions for the Pochhammer-
Chree equation (2). We will conduct our analysis by examining some possible cases of γ, β.
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3.1. Case I: γ = 0, β , 0.

We now consider the Pochhammer-Chree equation for γ = 0, β , 0,

utt − uxxtt − (αu + βun+1)xx = 0. (13)

Using the travelling wave transformation ξ = x − ct, and integrating twice Eq.(13), we have

(c2
− α)u − c2u′′ − βun+1 = 0. (14)

By the balancing procedure according to Step (1), between u′′ and un+1, we have:

m + 2 = m(n + 1),

therefore, we get m = 2
n . Now m should be an integer. Therefore, we use a transformation as follows:

u = ϕ
1
n . (15)

Using (15), Eq.(14) can be written to

(
c2
− α

)
n2ϕ2

− nc2ϕϕ′′ − c2(1 − n)(ϕ′)2
− n2βϕ3 = 0. (16)

Balancing ϕϕ′′ and ϕ3, we have m + (m + 2) = 3m. Therefore, we get m = 2.
Also, balancing (ϕ′)2 and ϕ3, we have 2(m + 1) = 3m. Therefore, we get m = 2.
Therefore, the solution of (16) can be expressed by a polynomial in exp(−ϕ) as follows:

ϕ(ξ) = A0 + A1 exp(−ϕ(ξ)) + A2(exp(−ϕ(ξ)))2, A2 , 0, (17)

where ϕ is the solution of Eq.(7). Substituting (17) into (16) and making use of Eq.(7) and equating each
coefficient of this polynomial to zero, we obtain a set of nonlinear algebraic equations for A0,A1,A2, c, λ, µ.
Solving obtained system using Mathematica, we obtain

case 1 : A0 = 0, A1 = −
2αλ(µ + 1)(n + 2)

β(n2 − λ2)
, A2 = −

2α(µ + 1)2(n + 2)
β(n2 − λ2)

, (18)

β
(
n2
− λ2

)
, 0,

case 2 : A0 = 0, A1 = −
2c2λ(µ + 1)

β
, A2 = −

c2λ2(µ + 1)2

2β
, (19)

α = 0, λ = ±2, β , 0,

case 3 : A0 = 0, A1 = −
2c2(µ + 1)(λ + 2)

βλ
, A2 = −

2c2(µ + 1)2(λ + 2)
βλ2 , (20)

α = 0, n = λ ≥ 1, λ2
− 4 , 0.

Therefore, substituting (18) (case 1) in (17) and using the general solutions of Eq.(7) according to (8)-(12),
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we obtain solutions of Eq.(16) as follows:

ϕ1(ξ) =
4αµ(µ + 1)(n + 2)

β (n2 − λ2)

λ
√
λ2 − 4µ tanh

(
1
2 (ξ + ξ0)

√
λ2 − 4µ

)
+ λ2

− 2µ(µ + 1)(√
λ2 − 4µ tanh

(
1
2 (ξ + ξ0)

√
λ2 − 4µ

)
+ λ

)2 ;

λ2
− 4µ > 0, µ , 0,

ϕ2(ξ) = −
4αµ(µ + 1)(n + 2)

β (n2 − λ2)

λ
√

4µ − λ2 tan
(

1
2 (ξ + ξ0)

√
4µ − λ2

)
− λ2 + 2µ(µ + 1)(

λ −
√

4µ − λ2 tan
(

1
2 (ξ + ξ0)

√
4µ − λ2

))2 ;

λ2
− 4µ < 0, µ , 0,

ϕ3(ξ) = −
2αλ2(n + 2)
β (n2 − λ2)

sinh(λ(ξ + ξ0)) + cosh(λ(ξ + ξ0))
(sinh(λ(ξ + ξ0)) + cosh(λ(ξ + ξ0)) − 1)2 ;

λ2
− 4µ > 0, λ , 0, µ = 0,

ϕ4(ξ) = −
αλ3(µ + 1)(n + 2)(ξ + ξ0)(λ(µ − 1)(ξ + ξ0) − 4)

2β(λ(ξ + ξ0) + 2)2 (n2 − λ2)
; λ2

− 4µ = 0, λ , 0, µ , 0,

ϕ5(ξ) = −
2α(n + 2)
βn2(ξ + ξ0)2 ; λ2

− 4µ = 0, λ = 0, µ = 0.

Now, substituting (19) (case 2) in (17) and using the general solutions of Eq.(7) according to (8)-(12), we
obtain solutions of Eq.(16) as follows:

ϕ6(ξ) = −
2c2λµ(µ + 1)

β

λ
(
µ2 + µ − 2

)
− 2

√
λ2 − 4µ tanh

(
1
2 (ξ + ξ0)

√
λ2 − 4µ

)
(√
λ2 − 4µ tanh

(
1
2 (ξ + ξ0)

√
λ2 − 4µ

)
+ λ

)2 ;

λ2
− 4µ > 0, µ , 0,

ϕ7(ξ) = −
2c2λµ(µ + 1)

β

2
√

4µ − λ2 tan
(

1
2 (ξ + ξ0)

√
4µ − λ2

)
+ λ

(
µ2 + µ − 2

)
(
λ −

√
4µ − λ2 tan

(
1
2 (ξ + ξ0)

√
4µ − λ2

))2 ;

λ2
− 4µ < 0, µ , 0,

ϕ8(ξ) = −
c2λ2

2β
λ2 + 4 sinh(λ(ξ + ξ0)) + 4 cosh(λ(ξ + ξ0)) − 4

(sinh(λ(ξ + ξ0)) + cosh(λ(ξ + ξ0)) − 1)2 ;

λ2
− 4µ > 0, λ , 0, µ = 0,

ϕ9(ξ) = −

c2λ3(µ + 1)(ξ + ξ0)
(
λ3(µ + 1)(ξ + ξ0) − 8λ(ξ + ξ0) − 16

)
8β(λ(ξ + ξ0) + 2)2 ;

λ2
− 4µ = 0, λ , 0, µ , 0.

Finally, substituting (20) (case 3) in (17) and using the general solutions of Eq.(7) according to (8)-(12), we



N. Kadkhoda, M. Fečkan, Y. Khalili / Filomat 32:9 (2018), 3347–3354 3352

obtain solutions of Eq.(16) as follows:

ϕ10(ξ) =
4c2(λ + 2)µ(µ + 1)

βλ2

λ
√
λ2 − 4µ tanh

(
1
2 (ξ + ξ0)

√
λ2 − 4µ

)
+ λ2

− 2µ(µ + 1)(√
λ2 − 4µ tanh

(
1
2 (ξ + ξ0)

√
λ2 − 4µ

)
+ λ

)2 ;

λ2
− 4µ > 0, µ , 0,

ϕ11(ξ) =
4c2(λ + 2)µ(µ + 1)

βλ2

−λ
√

4µ − λ2 tan
(

1
2 (ξ + ξ0)

√
4µ − λ2

)
+ λ2

− 2µ(µ + 1)(
λ −

√
4µ − λ2 tan

(
1
2 (ξ + ξ0)

√
4µ − λ2

))2 ;

λ2
− 4µ < 0, µ , 0,

ϕ12(ξ) = −
2c2(λ + 2)

β

sinh(λ(ξ + ξ0)) + cosh(λ(ξ + ξ0))
(sinh(λ(ξ + ξ0)) + cosh(λ(ξ + ξ0)) − 1)2 ;

λ2
− 4µ > 0, λ , 0, µ = 0,

ϕ13(ξ) = −
c2λ(λ + 2)(µ + 1)(ξ + ξ0)(λ(µ − 1)(ξ + ξ0) − 4)

2β(λ(ξ + ξ0) + 2)2 ; λ2
− 4µ = 0, λ , 0, µ , 0.

3.2. Case II: β = 0, γ , 0.

We next study the Pochhammer-Chree equation for β = 0, γ , 0. Using the travelling wave transforma-
tion ξ = x − ct, and integrating twice we have:

(c2
− α)u − c2u′′ − γu2n+1 = 0. (21)

By the balancing procedure according to Step (1) we get m = 1
n . Therefore, proceeding as before, we use a

transformation as follows:

u = ϕ
1
n . (22)

Using (22), Eq.(21) can be written to(
c2
− α

)
n2ϕ2

− nc2ϕϕ′′ − c2(1 − n)(ϕ′)2
− n2γϕ4 = 0. (23)

Balancing ϕϕ′′ and ϕ4 gives m = 1. Therefore, the solution of (23) can be expressed by a polynomial in
exp(−ϕ) as follows:

ϕ(ξ) = A0 + A1 exp(−ϕ(ξ)), A1 , 0, (24)

where ϕ is the solution of Eq.(7). Substituting (24) into (23) and making use of Eq.(7) and equating each
coefficient of this polynomial to zero, we obtain a set of nonlinear algebraic equations for A0,A1, c, λ, µ.
Solving obtained system using Mathematica, we obtain

case 1 : A0 =
c
√
γ
, A1 =

cλ(µ + 1)(5λ2
− 14)

24
√
γ

, (25)

λ = ±i
√

2, α = 0, n = −
λ2

2
,

case 2 : A0 =

√

c2 − α
√
γ

, A1 =
(µ + 1)(−10α + c2(5λ2

− 14))

24
√
γ(c2 − α)

, (26)

λ2 + 2 , 0, n = 1, c = ±

√
2α

√

λ2 + 2
, γ , 0.
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Therefore, substituting (25) (case 1) in (24) and using the general solutions of Eq.(7) according to (8)-(12),
we obtain solutions of Eq.(23) as follows:

ϕ1(ξ) =

√
c
√
γ
−

cλ
(
5λ2
− 14

)
µ(µ + 1)

12
√
γ
(√
λ2 − 4µ tanh

(
1
2 (ξ + ξ0)

√
λ2 − 4µ

)
+ λ

) ;

λ2
− 4µ > 0, µ , 0,

ϕ2(ξ) =

√
c
√
γ
−

cλ
(
5λ2
− 14

)
µ(µ + 1)

12
√
γ
(
λ −

√
4µ − λ2 tan

(
1
2 (ξ + ξ0)

√
4µ − λ2

)) ;

λ2
− 4µ < 0, µ , 0,

ϕ3(ξ) =

√
c
√
γ

+
c
(
5λ2
− 14

)
λ2

24
√
γ(sinh(λ(ξ + ξ0)) + cosh(λ(ξ + ξ0)) − 1)

;

λ2
− 4µ > 0, λ , 0, µ = 0,

ϕ4(ξ) =

√
c
√
γ
−

cλ3
(
5λ2
− 14

)
(µ + 1)(ξ + ξ0)

48
√
γ(λ(ξ + ξ0) + 2)

; λ2
− 4µ = 0, λ , 0, µ , 0.

Finally, substituting (26) (case 2) in (24) and using the general solutions of Eq.(7) according to (8)-(12), we
obtain solutions of Eq.(23) as follows:

ϕ5(ξ) =

√

c2 − α
√
γ

+
µ(µ + 1)

(
10α + c2

(
14 − 5λ2

))
12

√
γ(c2 − α)

(√
λ2 − 4µ tanh

(
1
2 (ξ + ξ0)

√
λ2 − 4µ

)
+ λ

) ;

λ2
− 4µ > 0, µ , 0,

ϕ6(ξ) =

√

c2 − α
√
γ

+
µ(µ + 1)

(
10α + c2

(
14 − 5λ2

))
12

√
γ (c2 − α)

(
λ −

√
4µ − λ2 tan

(
1
2 (ξ + ξ0)

√
4µ − λ2

)) ;

λ2
− 4µ < 0, µ , 0,

ϕ7(ξ) =

√

c2 − α
√
γ

+
λ
(
c2

(
5λ2
− 14

)
− 10α

)
24

√
γ (c2 − α)(sinh(λ(ξ + ξ0)) + cosh(λ(ξ + ξ0)) − 1)

;

λ2
− 4µ > 0, λ , 0, µ = 0,

ϕ8(ξ) =

√

c2 − α
√
γ
−

λ2(µ + 1)(ξ + ξ0)
(
c2

(
5λ2
− 14

)
− 10α

)
48(λ(ξ + ξ0) + 2)

√
γ (c2 − α)

; λ2
− 4µ = 0, λ , 0, µ , 0,

ϕ9(ξ) =

√

c2 − α
√
γ

+
−14c2

− 10α

24(ξ + ξ0)
√
γ (c2 − α)

; λ2
− 4µ = 0, λ = 0, µ = 0.

4. Concluding remarks

In this paper, we obtained exact travelling wave solutions for the nonlinear Pochhammer-Chree equa-
tion. These exact solutions are composed from the hyperbolic function solutions, rational function solutions
and trigonometric function solutions as well, and they are very useful in many circumstances. The applied
method to get these solutions was the exp(−ϕ)-expansion method. It was concluded that the exp(−ϕ)-
expansion method is a direct and a powerful method for solving nonlinear equations of mathematical
physics. In the future the direct method could be used to solve nonlinear systems of mathematical systems
(e.g. [17]).
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