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Abstract. In this paper, by using a new comparison inequality for order statistics of Gaussian variables, we
proved an almost sure central limit theorem for extreme order statistics of stationary Gaussian sequences
with covariance rn under the condition rn log n(log log n)1+ε = O(1) for some ε > 0. A similar result
on intermediate order statistics is also proved for stationary Gaussian sequences. The obtained results
improve some of the existing results.

1. Introduction

The almost sure central limit theorem (ASCLT) has been first introduced independently by Brosamler
(1988) and Schatte (1988) for partial sum, and then it become an intensively studied subject. Fahrner
and Stadtmüller (1998) and independently Cheng et al. (1998) investigated the ASCLT for the maxima
Mn = maxk≤n Xk of independent random variables and showed that

lim
N→∞

1
log N

N∑
n=1

1
n

1(an(Mn − bn) ≤ x) = G(x) a.s. (1)

for any x ∈ R under the conditions that

lim
n→∞

P(an(Mn − bn) ≤ x) = G(x) (2)

with real sequences an > 0, bn ∈ R,n ≥ 1 and a non-degenerate distribution G(x), where 1 denotes the
indicator function.
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Csáki and Gonchigdanzan (2002) extended (1) to stationary Gaussian case. Let X1,X2, · · · be a sequence
of stationary Gaussian random variables with covariance function rn = EX1Xn+1 satisfying

rn log n(log log n)1+ε = O(1) (3)

for some ε > 0. Csáki and Gonchigdanzan (2002) showed that condition (3) is enough for (1). For more
work on this topic, we refer to Chen and Lin (2006) and Peng and Nadarajah (2011) for the non-stationary
Gaussian case, Tan (2013) for continuous time Gaussian process, Tan and Wang (2014) and Wu (2017) for
Gaussian random field.

It is also of interest to extend (1) to order statistics. The pioneers in this direction are Stadtmüller (2002),
Peng and Qi (2003) who studied the ASCLT for intermediate and central order statistics of i.i.d. random
variables. Hörmann (2005) provided a relative simple proof for ASCLT for order statistics. Especially for
extreme order statistics i.e., for some fixed k ∈N they showed that

lim
N→∞

1
log N

N∑
n=1

1
n

1(an(M(k)
n − bn) ≤ x) = G(x)

k−1∑
s=0

(− log G(x))s

s!
a.s. (4)

for any x ∈ R provided that (2) held, where M(k)
n denotes the k-th maximum of X1, . . . ,Xn. Dudziński

(2009) extended (4) to stationary Gaussian sequences provided that the covariance function of the sequence
satisfies the following condition, i.e.,

∞∑
i=bn1/kβ c

|ri| ≤ O(1)
1

nk−1−1/kβ−1+1/kβ
(5)

for some β > 1, where bxc denotes the integral part of x. ASCLT for intermediate order statistics was
also obtained under condition (5) and some other conditions. By studying the exceedance point processes
of some stationary sequences, Tan (2015) proved that (4) still holds under some long range dependence
conditions. As an application to stationary Gaussian case, it is shown that the following convergence rate
on the covariance function is enough, i.e.,

rn = O(|n|−(1+ε))

with some ε > 0, but the spectral of the Gaussian sequence {Xn}n≥1 should be bounded below. In this paper,
we show that (4) holds for stationary Gaussian sequence with covariance function satisfying condition (3),
which completes the work of Dudziński (2009) and Tan (2015). The ASCLT for intermediate order statistics
from stationary Gaussian sequence is also studied.

In the following part of this paper, let X1,X2, · · · be a sequence of stationary Gaussian random variables
with covariance function rn = EX1Xn+1 and denote by M(1)

n ≥ M(2)
n ≥, · · · ,≥ M(n)

n the order statistics of
X1,X2, · · · ,Xn.

For the extreme order statistics, Theorem 5.3.1 of Leadbetter et al. (1983) provided the following result.
Theorem 1.1. Assume that the covariance function rn of the stationary Gaussian sequence {Xn,n ≥ 1}

satisfies
rn log n→ 0 as n→∞.

If moreover, the numerical sequences un fulfills the relation

n(1 −Φ(un))→ τ, for 0 < τ < ∞ as n→∞ (6)

then we have

lim
n→∞

P(M(k)
n ≤ un) = e−τ

k−1∑
s=0

τs

s!
(7)
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for some fixed k ∈N. As a direct conclusion of (7), we have, if,

an = (2 log n)1/2, bn = an − (log log n + log 4π)/(2(2 log n)1/2), (8)

then

lim
n→∞

P(an(M(k)
n − bn) ≤ x) = exp(−e−x)

k−1∑
s=0

(e−x)s

s!
(9)

for any x ∈ R.
Now, let kn be integers such that 1 ≤ kn ≤ n for each n. Then if kn → ∞ but kn/n → 0, {M(kn)

n } is called a
sequence of intermediate order satistics and {kn} an intermediate rank sequence. Define θ = θ(kn) by

θ = inf{θ′ : kn = O(nθ
′

)}.

For the intermediate order statistics from stationary Gaussian sequence, Watts et al. (1982) proved the
following result.

Theorem 1.2. Assume that the covariance function rn of the stationary Gaussian sequence {Xn,n ≥ 1}
satisfies

rn = O(n−ρ) for some ρ > max{3θ/2, 2(2 − 1/θ)}, (10)

and suppose that in addition kn/(log n)2/ρ
→∞. Then

lim
n→∞

P(αn(M(kn)
n − βn) ≤ x) = Φ(x), (11)

for any x ∈ R, where αn and βn are defined by Φ(βn) = 1 − kn/n and αn = nΦ′(βn)/
√

kn and Φ(x) stands for
the standard normal distribution function.

In this paper, we extend Theorems 1.1 and 1.2 to the almost sure limit sure version. As a by-product,
we show that condition (10) can be weakened, if we assume that kn does not increase too faster.

2. Main results

Now we state our main results. The first result is about the ASCLT for extreme order statistics.
Theorem 2.1. Let X1,X2, · · · be a standardized stationary Gaussian sequence with covariance function

rn = E(X1Xn+1) satisfying (3), i.e.,
rn log n(log log n)1+ε = O(1)

for some ε > 0. Then:
(i). If the numerical sequence un fulfills (6), we have

lim
N→∞

1
log N

N∑
n=1

1
n

1(M(k)
n ≤ un) = e−τ

k−1∑
s=0

(τ)s

s!
a.s. (12)

for some fixed k ∈N.
(ii). If an, bn are defined as in (8), we have

lim
N→∞

1
log N

N∑
n=1

1
n

1(an(M(k)
n − bn) ≤ x) = exp(−e−x)

k−1∑
s=0

(e−x)s

s!
a.s. (13)

for any x ∈ R and some fixed k ∈N
Remark 2.1. Under the same conditions, Theorem 2.1 extends the main result of Csáki and Gonchig-

danzan (2002) to the k−th maxima. Theorem 2.1 also improves the results of Dudziński (2009) and Tan
(2015).
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For the intermediate order statistics, we have the following result.
Theorem 2.2. Let X1,X2, · · · be a standardized stationary Gaussian sequence with covariance function

rn = E(X1Xn+1) satisfying
rn = O(n−ρ) for some ρ > 0,

and suppose that in addition kn →∞ and log kn � (log n)1−ε for some ε > 0. Then:
(i). If the numerical sequence vn fulfills

nΦ(vn)(1 −Φ(vn))→∞ and
kn − n(1 −Φ(vn)

nΦ(vn)(1 −Φ(vn))
→ τ (14)

as n→∞ for some fixed constant τ, we have

lim
n→∞

P(M(kn)
n ≤ vn) = Φ(τ) (15)

and

lim
N→∞

1
log N

N∑
n=1

1
n

1(M(kn)
n ≤ vn) = Φ(τ) a.s. (16)

(ii). If αn and βn are defined by Φ(βn) = 1 − kn/n and αn = nΦ′(βn)/
√

kn, we have

lim
n→∞

P(αn(M(kn)
n − βn) ≤ x) = Φ(x) (17)

and

lim
N→∞

1
log N

N∑
n=1

1
n

1(αn(M(kn)
n − βn) ≤ x) = Φ(x) a.s. (18)

for any x ∈ R.
Remark 2.2. (i). This result does not need the condition on the constant ρ as in Theorem 1.2, since

here we assume that kn does not increase too fast, i.e, log kn � (log n)1−ε for some ε > 0. Note that the
condition kn/(log n)2/ρ

→ ∞ is replaced by kn → ∞ as n→ ∞. Thus, Theorem 2.2 extends the main results
of Dudziński (2009).
(ii). Especially, we can choose the normalized constants αn and βn as

αn =

(
2 log(n/kn)

kn

)1/2

and βn = (2 log(n/kn))1/2
−

log log(n/kn) + log 4π
2(2 log(n/kn))1/2

.

(iii). The results in Theorem 2.1 and 2.2 can be extended to more general weight sequences, ie., the sequence
n−1 and log N can be replaced by such as dn = n−1 exp(lnα n) and DN =

∑N
n=1 dn, respectively. See Wu

(2017) and the references therein for more details. Since the proof of the general case is similar with that of
Theorem 2.1 and 2.2, we omit the details.

3. Proofs of the main results

Before giving the proofs, we state and prove several lemmas which will be used in the proofs of our main
results. Let Y1,Y2, · · · , be an associated independent sequence of X1,X2, · · · , i.e., a sequence of independent
standard normal random variables, and we denote by M̃(1)

n ≥ M̃(2)
n ≥, · · · ,≥ M̃(n)

n the order statistics of
Y1,Y2, · · · ,Yn. For n − m > k, let M(k)

m,n and M̃(k)
m,n be the k-th maximum of Xm+1, . . . ,Xn and Ym+1, . . . ,Yn,

respectively. As usual, an � bn means lim supn→∞ |an/bn| < +∞. K will denote a constant whose value will
change from line to line.
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Lemma 3.1. Let (ξk)∞k=1 be a sequence of uniformly bounded random variables, i.e., there exists some
M ∈ (0,∞) such that |ξk| ≤M a.s. for all k ∈ N. If

Var

 N∑
n=1

1
n
ξn

� (log N)2(log log N)−(1+ε)

for some ε > 0, then

lim
N→∞

1
log N

N∑
n=1

1
n

(ξn − Eξn) = 0 a.s.

Proof: See Lemma 3.1 of Csáki and Gonchigdanzan (2002).
The following lemma is from Dȩbicki et al. (2017) which plays a crucial role in the proofs of Theorems

2.1 and 2.2.
Lemma 3.2. Denote by X = (Xil)d×n and Y = (Yil)d×n two random arrays with N(0, 1) components,

and let (σ(1)
il, jk)dn×dn and (σ(0)

il, jk)dn×dn be the covariance matrices of X and Y, respectively, with σ(1)
il, jk := EXilX jk

and σ(0)
il, jk := EYilY jk, 1 ≤ i, j ≤ d, 1 ≤ l, k ≤ n. Furthermore, define (M(r)

1n(X), · · · ,M(r)
dn(X)) to be the r-th order

statistics vector generated by X as follows

M(1)
in (X) = max

1≤l≤n
Xil ≥ · · · ≥M(r)

in (X) ≥ · · · ≥ min
1≤l≤n

Xil = M(n)
in (X), 1 ≤ i ≤ d.

Similarly, we write (M(r)
1n(Y), · · · ,M(r)

dn(Y)) which is generated by Y. Then for any real numbers u1, . . . ,ud,
and any 1 ≤ r ≤ n∣∣∣∣∣P(

M(r)
in (X) ≤ ui, i = 1, . . . , d

)
− P

(
M(r)

in (Y) ≤ ui, i = 1, . . . , d
)∣∣∣∣∣

≤ K
∑
1≤i, j≤d
1≤l,k≤n

| arcsin(σ(1)
il, jk) − arcsin(σ(0)

il, jk)| exp

− u2
i + u2

j

2(1 + ρil, jk)

 ,
where ρil, jk = max{|σ(0)

il, jk|, |σ
(1)
il, jk|}.

Lemma 3.3. Under the conditions of Theorem 2.1, we have for m + k < n

E|1(M(k)
m,n ≤ un) − 1(M(k)

n ≤ un)| � k
m
n

+ 2(log log n)−(1+ε)

and
|Cov(1(M(k)

m ≤ um), 1(M(k)
m,n ≤ un))| � (log log n)−(1+ε)

for some ε > 0.
Proof. Obviously, we have

E|1(M(k)
m,n ≤ un) − 1(M(k)

n ≤ un)|

= P(M(k)
m,n ≤ un) − P(M(k)

n ≤ un)

≤ |P(M(k)
m,n ≤ un) − P(M̃(k)

m,n ≤ un)| + |P(M(k)
n ≤ un) − P(M̃(k)

n ≤ un)| + |P(M̃(k)
m,n ≤ un) − P(M̃(k)

n ≤ un)|
=: An,1 + An,2 + An,3.

By Lemma 3.2 for the case d = 1 and Lemma 2.1 of Csáki and Gonchigdanzan (2002), we have

An,1 ≤ Kn
n∑

j=1

|r j| exp
(
−

u2
n

1 + |r j|

)
� (log log n)−(1+ε)
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and

An,2 ≤ Kn
n∑

j=1

|r j| exp
(
−

u2
n

1 + |r j|

)
� (log log n)−(1+ε)

for some ε > 0. By Lemma 1 of Peng et al. (2009), we have

An,3 ≤ P(M̃(k)
m,n , M̃(k)

n ) ≤ k
m
n
,

which completes the first assertion of the lemma. For the second assertion, by Lemma 3.2 for case d = 2
and Lemma 2.1 of Csáki and Gonchigdanzan (2002) again, we have

|Cov(1(M(k)
m ≤ um), 1(M(k)

m,n ≤ un))| = |P(M(k)
m ≤ um,M

(k)
m,n ≤ un) − P(M(k)

m ≤ um)P(M(k)
m,n ≤ un)|

≤

m∑
i=1

n∑
j=m+1

|r j−i| exp
(
−

u2
m + u2

n

2(1 + |r j−i|)

)

≤ m
n∑

j=1

|r j| exp
(
−

u2
m + u2

n

2(1 + |r j|)

)
� (log log n)−(1+ε).

The proof of the lemma is complete.
Lemma 3.4. Under the conditions of Theorem 2.2, we have

n
n∑

j=1

|r j| exp
(
−

v2
n

1 + |r j|

)
� n−ε

and

sup
1≤m≤ n

kn
−1

m
n∑

j=1

|r j| exp
(
−

v2
m + v2

n

2(1 + |r j|)

)
� n−ε

′

for some ε, ε′ > 0.
Proof. By the conditions of (14), it is easy to see that

kn/n ∼ 1 −Φ(vn) ∼ (2π)−1/2v−1
n exp(−

v2
n

2
)

and taking logarithms gives

vn ∼
√

2 log(n/kn)

so that

exp(−
v2

n

2
) ∼ 2

√
π(kn/n)(log(n/kn))1/2.

Let
δ = sup

n≥1
|rn|, δm = sup

n≥m
|rn|.

It is easy to see that since rn = O(n−ρ), we must have δ < 1 and δn = O(n−ρ). Thus, we can chose γ such that
0 < γ < 2

1+δ − 1. We have

n
n∑

j=1

|r j| exp
(
−

v2
n

1 + |r j|

)
= n

bnγc∑
j=1

|r j| exp
(
−

v2
n

1 + |r j|

)
+ n

n∑
j=bnγc+1

|r j| exp
(
−

v2
n

1 + |r j|

)
=: Bn,1 + Bn,2.
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For Bn,1, noting that, by assumption log kn � (log n)1−ε, kn � nλ for any λ > 0, we have

Bn,1 ≤ n
bnγc∑
j=1

exp
(
−

v2
n

1 + δ

)
� n1+γ−2/(1+δ)(kn)2/(1+δ)(log(n/kn))2/(1+δ)

≤ n−ε1

for some ε1 > 0. For Bn,2, since δn ≤ Kn−ρ by rn = O(n−ρ), v2
nδnγ ≤ K(log n)n−ργ < ε for any ε > 0, and hence

Bn,2 ≤ nδnγ exp
(
−v2

n

) n∑
j=bnγc+1

exp
(

v2
n|r j|

1 + |r j|

)
� n2δnγ exp

(
−v2

n

)
exp

(
v2

nδnγ
)

� δnγk2
n log(n/kn)

≤ n−ε2

for some ε2 > 0. Letting ε = min{ε1, ε2}, we get the desired result. Similarly, write

sup
1≤m≤ n

kn
−1

m
n∑

j=1

|r j| exp
(
−

v2
m + v2

n

2(1 + |r j|)

)

≤ sup
1≤m≤ n

kn
−1

m
bnγc∑
j=1

|r j| exp
(
−

v2
m + v2

n

2(1 + |r j|)

)
+ sup

1≤m≤ n
kn
−1

m
n∑

j=bnγc+1

|r j| exp
(
−

v2
m + v2

n

2(1 + |r j|)

)
=: Bn,3 + Bn,4.

For the first term, recalling that kn � nλ for any λ > 0, we have

Bn,3 ≤ sup
1≤m≤ n

kn
−1

m
bnγc∑
j=1

exp
(
−

v2
m + v2

n

2(1 + δ)

)
� sup

1≤m≤ n
kn
−1

mnγ(km/m)1/(1+δ)(kn/n)1/(1+δ)(log(m/km))1/2(1+δ)(log(n/kn))1/2(1+δ)

≤ n1+γ−2/(1+δ)(kn)2/(1+δ)(log(n/kn))1/(1+δ)

≤ n−ε3

for some ε3 > 0. For Bn,4, we have

exp
(

(v2
m + v2

n)δnγ

2

)
≤ exp

(
v2

nδnγ
)
≤ K

Thus,

Bn,4 ≤ sup
1≤m≤ n

kn
−1

mδnγ exp
(
−

v2
m + v2

n

2

) n∑
j=nγ

exp
(

(v2
m + v2

n)|r j|

2(1 + |r j|)

)

≤ sup
1≤m≤ n

kn
−1

mnδnγ exp
(
−

v2
m + v2

n

2

)
exp

(
(v2

m + v2
n)δnγ

2

)
� sup

1≤m≤ n
kn
−1

mnδnγ (kn/n)(km/m)(log(n/kn))1/2(log(m/km))1/2

≤ δnγk2
n(log(n/kn))

≤ n−ε4
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for some ε4 > 0. Setting ε′ = min{ε3, ε4}, we get the desired result.
Lemma 3.5. Under the conditions of Theorem 2.2, we have for m ≤ n

kn
− 1

E|1(M(kn)
m,n ≤ vn) − 1(M(kn)

n ≤ vn)| � kn
m

n − kn
+ 2n−ε

and
Cov(1(M(km)

m ≤ vm), 1(M(kn)
m,n ≤ vn))� n−ε

′

.

Proof. Obviously, we have

E|1(M(kn)
m,n ≤ vn) − 1(M(kn)

n ≤ vn)|

= P(M(kn)
m,n ≤ vn) − P(M(kn)

n ≤ vn)

≤ |P(M(kn)
m,n ≤ vn) − P(M̃(kn)

m,n ≤ vn)| + |P(M(kn)
n ≤ vn) − P(M̃(kn)

n ≤ vn)|

+|P(M̃(kn)
m,n ≤ vn) − P(M̃(kn)

n ≤ vn)|
=: Cn,1 + Cn,2 + Cn,3.

By Lemmas 3.2 and 3.4, we have

Cn,1 ≤ Kn
n∑

j=1

|r j| exp
(
−

v2
n

1 + |r j|

)
� n−ε

and

Cn,2 ≤ Kn
n∑

j=1

|r j| exp
(
−

v2
n

1 + |r j|

)
� n−ε.

By Lemma 1 of Stadtmüller (2002), we have

Cn,3 ≤ kn
m

n − kn
,

which completes the first assertion of the lemma. For the second assertion, By Lemmas 3.2 and 3.4 again,
we have

|Cov(1(M(kn)
m ≤ vm), 1(M(kn)

m,n ≤ vn))| = |P(M(kn)
m ≤ vm,M

(kn)
m,n ≤ vn) − P(M(kn)

m ≤ vm)P(M(kn)
m,n ≤ vn)|

≤

m∑
i=1

n∑
j=m+1

|r j−i| exp
(
−

v2
m + v2

n

2(1 + |r j−i|)

)

≤ m
n∑

j=1

|r j| exp
(
−

v2
m + v2

n

2(1 + |r j|)

)
� n−ε

′

.

The proof of the lemma is complete.
Proof of Theorem 2.1. We first prove (i). Let ηn = 1(M(k)

n ≤ un) − P(M(k)
n ≤ un). Notice that (ηn)∞n=1 is a

sequence of bounded random variables with Var(ηn) ≤ 1. We first show

lim
N→∞

1
log N

N∑
n=1

1
n
ηn = 0, a.s. (19)

Using Lemma 3.1, we only need to show

Var

 N∑
n=1

1
n
ηn

� (log N)2(log log N)−(1+ε). (20)
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We have,

Var

 N∑
n=1

1
n
ηn

 = E

 N∑
n=1

1
n
ηn


2

=

N∑
n=1

Eη2
n

n2 + 2
∑

1≤m<n≤N

E(ηmηn)
nm

=: LN,1 + 2LN,2.

Clearly

LN,1 =

N∑
n=1

1
n2 Eη2

n ≤

N∑
n=1

1
n2 = O(1).

For LN,2, for n > m + k, by Lemma 3.3, we have∣∣∣E(ηmηn)
∣∣∣ =

∣∣∣Cov(1(M(k)
m ≤ um), 1(M(k)

n ≤ un)
∣∣∣

≤

∣∣∣Cov(1(M(k)
m ≤ um), [1(M(k)

n ≤ un) − 1(M(k)
m,n ≤ un)])

∣∣∣ +
∣∣∣Cov(1(M(k)

m ≤ um), 1(M(k)
m,n ≤ un))

∣∣∣
≤ 2E

∣∣∣1(M(k)
n ≤ un) − 1(M(k)

m,n ≤ un)
∣∣∣ +

∣∣∣Cov(1(M(k)
m ≤ um), 1(M(k)

m,n ≤ un))
∣∣∣

�
m
n

+ (log log n)−(1+ε).

and then we conclude that

LN,2 �

∑
1≤m<n≤N

n>m+k

1
mn

(
m
n

+ (log log n)−(1+ε)) +
∑

1≤m<n≤N
n≤m+k

1
mn

≤

N∑
n=1

1
n

+

N∑
n=3

log n
n

(log log n)−(1+ε) +

N∑
m=1

1
m

� (log N)2(log log N)−(1+ε).

Thus, (20) holds. Note that Theorem 1.1 implies

lim
N→∞

1
log N

N∑
n=1

1
n

P(M(k)
n ≤ un) = e−τ

k−1∑
s=0

(τ)s

s!
a.s., (21)

and then the first assertion of Theorem 2.1 follows from (19) and (21).
(ii). (ii) is a special case of (i), thus we omit the proof.
Proof of Theorem 2.2. (i). We give first the proof of (15). We have

|P(M(kn)
n ≤ vn) −Φ(x)| ≤ |P(M(kn)

n ≤ vn) − P(M̃(kn)
n ≤ vn)| + |P(M̃(kn)

n ≤ vn) −Φ(x)|
=: Dn,1 + Dn,2.

By Lemmas 3.2 and 3.4, we have

Dn,1 ≤ Kn
n∑

j=1

|r j| exp
(
−

v2
n

1 + |r j|

)
→ 0

as n → ∞. Recall that vn = α−1
n x + βn and kn is an intermediate rank sequence, from Theorem 2.5.2 of

Leadbetter et al. (1983), Dn,2 → 0 as n→∞, see also Wu (1966). This completes the proof of (15).
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Since the proof for (16) is similar to that of Theorem 2.1, we only give the arguments for LN,2. By Lemma
3.5 and using the condition log kn � (log n)1−ε for some ε > 0, we have

LN,2 ≤

∑
1≤m<n≤N
m≤ n

kn
−1

1
mn

(kn
m

n − kn
+ n−ε + n−ε

′

) +
∑

1≤m<n≤N
m> n

kn
−1

1
mn

≤

N∑
n=kn+1

bn/knc∑
m=1

kn

n(n − kn)
+

N∑
n=1

n∑
m=1

1
mn1+ε

+

N∑
n=1

n∑
m=1

1
mn1+ε′

+

N∑
n=1

n∑
m=bn/knc

1
mn

≤

N∑
n=kn+1

1
n − kn

+

N∑
n=1

log n
n1+ε

+

N∑
n=1

log n
n1+ε′

+

N∑
n=1

log kn

n

≤ 3 log N + (log N)2−ε.

Thus, (20) holds. Note that (15) implies

lim
N→∞

1
log N

N∑
n=1

1
n

P(M(kn)
n ≤ vn) = Φ(x) a.s.,

and then (16) follows from (19).
(ii). Since (ii) is a special case of (i), the proof is omitted.
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