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Abstract. In this paper, by using a new comparison inequality for order statistics of Gaussian variables, we
proved an almost sure central limit theorem for extreme order statistics of stationary Gaussian sequences
with covariance r, under the condition r, logn(loglogn)'*¢ = O(1) for some ¢ > 0. A similar result
on intermediate order statistics is also proved for stationary Gaussian sequences. The obtained results
improve some of the existing results.

1. Introduction

The almost sure central limit theorem (ASCLT) has been first introduced independently by Brosamler
(1988) and Schatte (1988) for partial sum, and then it become an intensively studied subject. Fahrner
and Stadtmiiller (1998) and independently Cheng et al. (1998) investigated the ASCLT for the maxima
M, = maxy, Xy of independent random variables and showed that

lim !
N—-oco log N

N
Z %1(%(1\/1,1 ~b,) <x) = G&) as. 1)
n=1
for any x € R under the conditions that
lim P(a,(M,, — b,) < x) = G(x) (2)

with real sequences a, > 0,b, € R,n > 1 and a non-degenerate distribution G(x), where 1 denotes the
indicator function.
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Cséki and Gonchigdanzan (2002) extended (1) to stationary Gaussian case. Let Xi, X5, - -+ be a sequence
of stationary Gaussian random variables with covariance function r, = EX;X,4+1 satisfying

r.log n(loglogn)'* = O(1) 3)

for some ¢ > 0. Csdki and Gonchigdanzan (2002) showed that condition (3) is enough for (1). For more
work on this topic, we refer to Chen and Lin (2006) and Peng and Nadarajah (2011) for the non-stationary
Gaussian case, Tan (2013) for continuous time Gaussian process, Tan and Wang (2014) and Wu (2017) for
Gaussian random field.

It is also of interest to extend (1) to order statistics. The pioneers in this direction are Stadtmdiller (2002),
Peng and Qi (2003) who studied the ASCLT for intermediate and central order statistics of i.i.d. random
variables. Hormann (2005) provided a relative simple proof for ASCLT for order statistics. Especially for
extreme order statistics i.e., for some fixed k € IN they showed that

Z logGlor "

MlogNZ ~1(a, (M} - by) < %) = G()

for any x € R provided that (2) held, where M,(f) denotes the k-th maximum of Xj,...,X,. Dudzinski
(2009) extended (4) to stationary Gaussian sequences provided that the covariance function of the sequence
satisfies the following condition, i.e.,

[e9]

1
Y, Inls O w ©

i=[n!/¥ |

for some > 1, where |x] denotes the integral part of x. ASCLT for intermediate order statistics was
also obtained under condition (5) and some other conditions. By studying the exceedance point processes
of some stationary sequences, Tan (2015) proved that (4) still holds under some long range dependence
conditions. As an application to stationary Gaussian case, it is shown that the following convergence rate
on the covariance function is enough, i.e.,

1y = O(In|~1+9)

with some ¢ > 0, but the spectral of the Gaussian sequence {X,},>1 should be bounded below. In this paper,
we show that (4) holds for stationary Gaussian sequence with covariance function satisfying condition (3),
which completes the work of Dudziiski (2009) and Tan (2015). The ASCLT for intermediate order statistics
from stationary Gaussian sequence is also studied.

In the following part of this paper, let Xj, X5, - - - be a sequence of stationary Gaussian random variables
with covariance function r, = EX;X,4+1 and denote by Mf}) > Mff) >, 2 Mﬁ,”) the order statistics of
X1, X0, , Xy

For the extreme order statistics, Theorem 5.3.1 of Leadbetter et al. (1983) provided the following result.

Theorem 1.1. Assume that the covariance function r, of the stationary Gaussian sequence {X,,n > 1}
satisfies

rnlogn — 0 as n — co.

If moreover, the numerical sequences u,, fulfills the relation
n(l—-®d(u,)) »> 1, for 0 <T <00 as n — oo (6)

then we have

k-1
lim PM® <u,) =e"

n—oo
s=0

S

= )

©® |9
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for some fixed k € IN. As a direct conclusion of (7), we have, if,
a, = (2log 2, b, =a, - (loglogn + log4m)/(2(2log n)t/?), (8)
then

lim P(a, (M - by) < x) = exp(~¢”™) Z G )

for any x € R.

Now, let k,, be integers such that 1 < k, < n for each n. Then if k, — oo butk,/n — 0, {Mﬁ,k”)} is called a
sequence of intermediate order satistics and {k,} an intermediate rank sequence. Define 6 = 9(k,) by

0 = inf{0’ : k, = O(n?))}.

For the intermediate order statistics from stationary Gaussian sequence, Watts et al. (1982) proved the
following result.

Theorem 1.2. Assume that the covariance function r, of the stationary Gaussian sequence {X,,n > 1}
satisfies

r, = O(n™P) for some p >max{36/2,2(2 -1/9)}, (10)
and suppose that in addition k,/(logn)?/? — co. Then

lim P(a, (M%) - B,) < x) = D(x), (11)

for any x € R, where a,, and B, are defined by ®(,) = 1 — k,/n and a,, = n®’(,,)/ vk, and ®(x) stands for
the standard normal distribution function.

In this paper, we extend Theorems 1.1 and 1.2 to the almost sure limit sure version. As a by-product,
we show that condition (10) can be weakened, if we assume that k,, does not increase too faster.

2. Main results

Now we state our main results. The first result is about the ASCLT for extreme order statistics.
Theorem 2.1. Let X;,X»,--- be a standardized stationary Gaussian sequence with covariance function
rn = E(X1X,41) satisfying (3), i.e.,
r.log n(loglogn)'* = O(1)

for some ¢ > 0. Then:
(i). If the numerical sequence u, fulfills (6), we have

1 N 1 k-1 )s
li (k) < —T t S,
Nlm I NnEl—l(M” <u,)=e SEO . a.s (12)

for some fixed k € IN.
(ii). If a,, b, are defined as in (8), we have

k-1 *XS
o _ - -x )
lef—mologNZ 1M}~ by) < x) = exp(-e )Z;‘ (13)

for any x € R and some fixed k € N

Remark 2.1. Under the same conditions, Theorem 2.1 extends the main result of Csaki and Gonchig-
danzan (2002) to the k—th maxima. Theorem 2.1 also improves the results of Dudziriski (2009) and Tan
(2015).
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For the intermediate order statistics, we have the following result.
Theorem 2.2. Let X;,X»,--- be a standardized stationary Gaussian sequence with covariance function
rn = E(X1X,41) satisfying
ty = O(nF) for some p >0,

and suppose that in addition k, — oo and logk, < (logn)'¢ for some ¢ > 0. Then:
(i). If the numerical sequence v, fulfills

ky, —n(l — O(vy,)

n®(v,)(1 — O(v,)) = o and (o, (L= B(o,)) (14)
asn — o for some fixed constant T, we have

lim P(M®) < 0,) = (1) (15)
and

51
3 — (ku) —
lim TogN Zf S1MY < 0,) = O(1) as, (16)
(ii). If a, and B, are defined by ®(B,) = 1 — k,/n and a,, = n®’(8,)/ vk, we have

lim P(a, (M = B,) < x) = D(x) (17)

and
(kll)
Jim 1og N Z “A(an (M~ ) < 7) = O() as. (18)

for any x € R.

Remark 2.2. (i). This result does not need the condition on the constant p as in Theorem 1.2, since
here we assume that k, does not increase too fast, i.e, logk, < (log n)'=¢ for some ¢ > 0. Note that the
condition k,/(logn)*f — oo is replaced by k, — oo as n — oo. Thus, Theorem 2.2 extends the main results
of Dudziniski (2009).

(ii). Especially, we can choose the normalized constants o, and g, as

loglog(n/k,) + log 4m
22log(n/ky)12 -

. = (2 log(n/k,)

1/2
- ) and B, = 2log(n/k,))"/* -

(iii). The results in Theorem 2.1 and 2.2 can be extended to more general weight sequences, ie., the sequence
n~! and logN can be replaced by such as d, = n'exp(In®n) and Dy = Y\, d,, respectively. See Wu
(2017) and the references therein for more details. Since the proof of the general case is similar with that of
Theorem 2.1 and 2.2, we omit the details.

3. Proofs of the main results

Before giving the proofs, we state and prove several lemmas which will be used in the proofs of our main
results. Let Y1, Y5, -, be an associated independent sequence of X3, X5, - - -, i.e., a sequence of independent
standard normal random variables, and we denote by 1\71511) > 1\71512) 2,00, 2 1\7[51”) the order statistics of
Yy,Y5,---,Y,. Forn—m > k, let MS?,, and ]\715,’?,1 be the k-th maximum of X,,41,..., X, and Y,41,..., Y.,
respectively. As usual, 2, < b, means limsup, _,__ |a,/b,| < +oo. K will denote a constant whose value will
change from line to line.
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Lemma 3.1. Let (&k);2, be a sequence of uniformly bounded random variables, i.e., there exists some
M € (0, ) such that |&x] < M a.s. for allk € N. If

N
Var [Z %én] < (log N)*(log log N)~1+9)
n=1

for some ¢ > 0, then

lim 1
N-e log N

= 1
; E(En - Eén) =0 as.

Proof: See Lemma 3.1 of Csdki and Gonchigdanzan (2002).

The following lemma is from Debicki et al. (2017) which plays a crucial role in the proofs of Theorems
2.1 and 2.2.

Lemma 3.2. Denote by X = (Xi)ixn and Y = (Yi)axn two random arrays with N(0,1) components,

and let (c7fl1 ;.k)dnxdn and (Ggloi-k)dnxdn be the covariance matrices of X and Y, respectively, with ofll ;.k = EXaXjk
and Og;);k = EYyYj,1<1i,j<d,1 <1k < n. Furthermore, define (MEZ(X), e ,M;Q(X)) to be the r-th order

statistics vector generated by X as follows

MP(X) =maxX; > - > MO(X) > >min X; =M(X), 1<i<d
1<I<n mn

1<i<n

Similarly, we write (MgZ(Y), e ,M;Q(Y)) which is generated by Y. Then for any real numbers uy, ..., U4,
andanyl <r<mn

‘p(Mf.,?(X) <ty i =1,.,d) = P(M(N) < = 1,...,d)‘

O o ui + u?
<K E |arcsin(o,’ ) — arcsin(o;, . ) exp | —————
= 1,jk 1,jk N K
1<ij<d ) i 2(1+ le,]k)
1<lLksn

0) (€] I
il, k7 195, jic-
Lemma 3.3. Under the conditions of Theorem 2.1, we have form + k <n

where p; i = max{lo," |, |0

EAM®, < u,) —1(MP < u,) < k% +2(log log 1)1+
and
ICoo(1(M}) < ), 1AM, < u))| < (loglog n)~1+)

for some ¢ > 0.
Proof. Obviously, we have

EMY, < uy) = 1M < )|

= P(My), < 1) — POV < 11y)

< IP(MSy, < ) = POV, < )] + 1PV < ) = POV < w,)| + [P(M), < w,) = POV < )
=1 Apg + Anp + Ans.

By Lemma 3.2 for the case d = 1 and Lemma 2.1 of Csaki and Gonchigdanzan (2002), we have

n 2
j=1 j
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and

I 2
An2 < Kn Z Irilexp (— 1 "L‘ln|7”'|) < (loglog n)~1+9
=1 j

for some ¢ > 0. By Lemma 1 of Peng et al. (2009), we have

— — m
Ans < PMY, # MY) < k—

3360

which completes the first assertion of the lemma. For the second assertion, by Lemma 3.2 for case d = 2

and Lemma 2.1 of Csaki and Gonchigdanzan (2002) again, we have

ICov(A(MY) < 1), 1ME, <w )l = 1PME < 1y, MY, < 1) = PME < u,)PME, < u
u?, + u?
) Z " "e"p( 2<1+|r] 4))
i=1 j=m+1
< m rilex < (log log 1)~(+2),

The proof of the lemma is complete.
Lemma 3.4. Under the conditions of Theorem 2.2, we have

n vz
n —
nZ |1’j|exp(—1 n |f"|) <«<n®
j=1 /

and

V2, + 02 ,
sup MZ|r]|exp( m) <«<n®

lemst-1 o

for some e, e’ > 0.
Proof. By the conditions of (14), it is easy to see that

2
Kuln ~ 1= ®(0,) ~ @) 20, exp(——2)

~ +/2log(n/ky,)

2
exp(—2) ~ 2 Vr(k /m)(log(n k)2

and taking logarithms gives

so that

Let

O =suplryl, Om =suplryl.
n=1 n>m

n)l

It is easy to see that since r, = O(n™?), we must have 6 < 1 and 6, = O(n™"). Thus, we can chose y such that

0<y < 1% —1. Wehave

n Uf, Ln”] n 2
n;Irjlexp(—m) = erjlexp( | |) Z Irjlexp|———

j=lnr]+1
= Bn,1 + Bn,Z'
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For B, 1, noting that, by assumption logk, < (log n)'=¢, k, < n’ for any A > 0, we have

Ln”] 2
By, < nz‘exp(—1 -:6)

j=1

< nl+}/—2/(l+5) (kn)Z/(1+6) (log(n/kn))Z/(1+6)
< na

for some €; > 0. For B,,», since 6, < Kn™" by r, = O(n™"), V20, < K(logn)n=f7 < ¢ for any ¢ > 0, and hence

B < 5 2 - v%lrjl
w2 < om nrexp(—vn) Z exp T+

=l J+1

< 1ow exp (—vﬁ) exp (vﬁénw)
< Ok log(n/ky)
< n®

for some €, > 0. Letting € = min{ej, €2}, we get the desired result. Similarly, write

- 2+ 02
sup m Z |rilexp (—m)

1Sm$ﬁf1 j=1
L] 2 2 n 2 2
< sup mY Ilexp (_M) +osup m Y Inlexp (_M)
= j j
1Snlﬁﬁ—l j:1 2(1 + |7’]|) 15m5ﬁ—1 j:LVl'VJ+1 2(1 + |7]|)
=: Bn,?, + Bn,4.

For the first term, recalling that k, < n for any A > 0, we have

o V2 + 2
s s )5
< sup mn! (ki /m)" O /)0 log (m /) 2T (log 1 hin)) A
15m5ﬁ—1
< n1+)/72/(1+5)(k”)2/(1+6)(log(n/kn))l/(l+6)
< n®

for some €3 > 0. For B, 4, we have

2 2 6”1,
exp (M) <exp (0,216,1;/) <K

2
Thus,
2 +02) Z ((vfn+v%)|rj|)
Bys < sup mdy exp | -—2—= exp|———
S p( 2 ]Z P\l2a+1mp
V2, + U2 (02, + ©2)0,
< sup mnd,r exp i o ] E e
1Smsﬁ—1
< sup  mndy (kn/n)(kn/m)(log(1n/k,)) > (log(m/k,)) />
ISmSﬁ—l
Swki(log(n/ky))

—€4

IAN A

n
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for some €4 > 0. Setting €’ = min{es, €4}, we get the desired result.
Lemma 3.5. Under the conditions of Theorem 2.2, we have for m < kl,, -1

EnM®) < v,) — 1M%< 0,)] < knﬁ +one

n

and
Coo(1ME < v,), 1M < v,)) < n™

Proof. Obviously, we have
EnM%) < v,) —1(M& < v,)|
= P(M\y) < v,) - P(MY < vy)
< IPOMY) < v,) = POMY) < v,)] + IPME < v,) - PVME < 0,)
+|P<M§Ji:;2 <v,) - PM <v,)|
=:Cy1 + Cpo + Cpy3.

By Lemmas 3.2 and 3.4, we have

n 'Uz
Cu1 < KnZ Irilexp|——— | <n™*
! p= 1+ |Tj|

and

n ’Z]Z
Cuo < KnZ rilexp|-—2— | < n®.
n,2 j_l | ]l p 1 + |rj|

By Lemma 1 of Stadtmdiller (2002), we have

Cn,

m
—= n— kn 7
which completes the first assertion of the lemma. For the second assertion, By Lemmas 3.2 and 3.4 again,
we have

ICov(1(M%) < 0,), 1M%) <0, ) = IPME) <0, ME) <0,) - PME) < 0,)PME) < 0,)]
2, + 02
<
< 3 3 rten-5i )
j=m+1

IN

v2, + 02 -
lerjlexp( 2(1+|]|)) .

The proof of the lemma is complete.
Proof of Theorem 2.1. We first prove (i). Let n, = l(quk) < uy) - P(M;k) < uy). Notice that (1,);”, is a
sequence of bounded random variables with Var(n,) < 1. We first show

1 w1
lim TogN ; =0, as. (19)

Using Lemma 3.1, we only need to show

N
Var [Z %77"] < (log N)2(10g log N y-(+e). (20)

n=1
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N
: [z
n

o
nzl‘ 1<m<n<N
=: LN,] + ZLN/Z.

:I»—\

s
=
——
1=
S
=
=
——
Il

UmT]n

Clearly

o1 Sl
=) SEm <), — =00

n=1 n=1

For Ly, for n > m + k, by Lemma 3.3, we have

[EGum)| = |Cooa(M) < ), 1M < )|
< |Coo@MS < 1), [AM < 1) = LMY, < w)])] + [Cov@M,) < ), 1M, < )
< 2EIMY < u,) - 1ME), < )| +|Coo@MY) < 1), 1M, < )|

< % + (loglog )=+,
and then we conclude that

1 m : 1
Lny < Z %(;+(loglogn)‘(“é))+ Z -

1<m<n<N 1<m<n<N mn
n>m+k n<m+k
N N N
1 logn e 1
< E -+ E 8 (loglog n)~1*) 4+ E —
n m
n=1 n=3 m=1

< (logN)*(loglog N)=1+9),
Thus, (20) holds. Note that Theorem 1.1 implies

s_.) as., (21)

MP\N

N
. 1 k
1 —P ()< =e "
N logN anl n (M <) =

@
Il
[=}

and then the first assertion of Theorem 2.1 follows from (19) and (21).
(ii). (ii) is a special case of (i), thus we omit the proof.
Proof of Theorem 2.2. (i). We give first the proof of (15). We have

IPME < v,) - PME < 0,)| + IPME < v,) - D(x)|
= Dn,l + Dn,Z-

IPME) < v,) — D(x)|

IA

By Lemmas 3.2 and 3.4, we have

D,1 < KnZIrJIexp( ||)

as n — oo. Recall that v, = a,'x + Bn and k, is an intermediate rank sequence, from Theorem 2.5.2 of
Leadbetter et al. (1983), D,,» — 0 as n — oo, see also Wu (1966). This completes the proof of (15).
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Since the proof for (16) is similar to that of Theorem 2.1, we only give the arguments for Ly,. By Lemma
and using the condition logk, < (logn)'~¢ for some ¢ > 0, we have

1 m , 1
Lno < —(ky, +n ¢ +n)+ Z —
1<m<n<N n n- k” 1<m<n<N mn
msﬁ—l m>kl—1
N [|n/k, N n
SZZ k+ZZ MZZ Tt Y
n=k,+1 m=1 1’l(1’l ) mn n=1 m=1 mn n=1 m=n/k,]
N
1 logn logn logk
<y Aoy leny ke, y ks
n=k,+1 n n=1 n=1 n=1
< 3logN + (log N)*™¢

Thus, (20) holds. Note that (15) implies

(kﬂ) pa—
All_wo logN Z —P(M,"” <v,) = D(x) as.,

and then (16) follows from (19).

(ii). Since (ii) is a special case of (i), the proof is omitted.
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